|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transferase
|
 |
|
Title:
|
 |
Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of e. Coli DNA polymerase iii: structure of beta-delta (1-140)
|
|
Structure:
|
 |
DNA polymerase iii, beta chain. Chain: a. Engineered: yes. Mutation: yes. DNA polymerase iii, delta subunit. Chain: b. Fragment: amino terminal (1-140) domain. Engineered: yes
|
|
Source:
|
 |
Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562. Expression_system_taxid: 562
|
|
Biol. unit:
|
 |
Dimer (from
)
|
|
Resolution:
|
 |
|
2.50Å
|
R-factor:
|
0.249
|
R-free:
|
0.294
|
|
|
Authors:
|
 |
D.Jeruzalmi,O.Yurieva,Y.Zhao,M.Young,J.Stewart,M.Hingorani, M.O'Donnell,J.Kuriyan
|
Key ref:
|
 |
D.Jeruzalmi
et al.
(2001).
Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III.
Cell,
106,
417-428.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
07-Aug-01
|
Release date:
|
26-Sep-01
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chain B:
E.C.2.7.7.7
- DNA-directed Dna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
DNA(n)
|
+
|
2'-deoxyribonucleoside 5'-triphosphate
|
=
|
DNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Cell
106:417-428
(2001)
|
|
PubMed id:
|
|
|
|
|
| |
|
Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III.
|
|
D.Jeruzalmi,
O.Yurieva,
Y.Zhao,
M.Young,
J.Stewart,
M.Hingorani,
M.O'Donnell,
J.Kuriyan.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The dimeric ring-shaped sliding clamp of E. coli DNA polymerase III (beta
subunit, homolog of eukaryotic PCNA) is loaded onto DNA by the clamp loader
gamma complex (homolog of eukaryotic Replication Factor C, RFC). The delta
subunit of the gamma complex binds to the beta ring and opens it. The crystal
structure of a beta:delta complex shows that delta, which is structurally
related to the delta' and gamma subunits of the gamma complex, is a molecular
wrench that induces or traps a conformational change in beta such that one of
its dimer interfaces is destabilized. Structural comparisons and molecular
dynamics simulations suggest a spring-loaded mechanism in which the beta ring
opens spontaneously once a dimer interface is perturbed by the delta wrench.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2. Structure of the β:δ Complex(A) View along the
edge of the β ring, centered on Domain 2 of β. (B) View
showing the intermolecular interface involving Domain 3 of β.
Structures shown in color are the β subunit and the δ subunit
from the crystal structure of the complex. For reference, a
second β monomer is shown in gray, taken from the crystal
structure of the dimeric form of β (Kong et al., 1992), PDB
code 2POL. The β-interaction element on δ (helix α4 and the
loop following it) is colored yellow, and the side chains of two
key hydrophobic residues of δ (Leu-73 and Phe-74) are shown
|
 |
Figure 5.
Figure 5. Similarity in the Binding Modes of p21 and RB69
DNA Polymerase to the Interaction of δ with βThe structure of
the β subunit in the β:δ complex is shown in gray and cyan.
The structures of PCNA complexed to p21 (Gulbis et al., 1996)
(PDB code 1AXC) and gp45 of RB69 complexed to a segment of RB69
DNA polymerase (Shamoo and Steitz, 1999) (PDB code 1B8H) were
superimposed individually onto the structure of the β subunit
by using the β strands at this interdomain interface to overlay
the structures. The structure of the p21 peptide (orange) and
the RB69 DNA polymerase tethering segment (yellow) are shown,
but were not used in the structural superposition. The structure
of δ is shown in green. PCNA and gp45 are not shown
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Cell
(2001,
106,
417-428)
copyright 2001.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
L.Johnsen,
I.Flåtten,
Morigen,
B.Dalhus,
M.Bjørås,
T.Waldminghaus,
and
K.Skarstad
(2011).
The G157C mutation in the Escherichia coli sliding clamp specifically affects initiation of replication.
|
| |
Mol Microbiol,
79,
433-446.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.T.Yano,
and
L.B.Rothman-Denes
(2011).
A phage-encoded inhibitor of Escherichia coli DNA replication targets the DNA polymerase clamp loader.
|
| |
Mol Microbiol,
79,
1325-1338.
|
 |
|
|
|
|
 |
J.N.Ollivierre,
J.Fang,
and
P.J.Beuning
(2010).
The Roles of UmuD in Regulating Mutagenesis.
|
| |
J Nucleic Acids,
2010,
0.
|
 |
|
|
|
|
 |
M.D.Sutton
(2010).
Coordinating DNA polymerase traffic during high and low fidelity synthesis.
|
| |
Biochim Biophys Acta,
1804,
1167-1179.
|
 |
|
|
|
|
 |
N.M.Dupes,
B.W.Walsh,
A.D.Klocko,
J.S.Lenhart,
H.L.Peterson,
D.A.Gessert,
C.E.Pavlick,
and
L.A.Simmons
(2010).
Mutations in the Bacillus subtilis beta clamp that separate its roles in DNA replication from mismatch repair.
|
| |
J Bacteriol,
192,
3452-3463.
|
 |
|
|
|
|
 |
R.McNally,
G.D.Bowman,
E.R.Goedken,
M.O'Donnell,
and
J.Kuriyan
(2010).
Analysis of the role of PCNA-DNA contacts during clamp loading.
|
| |
BMC Struct Biol,
10,
3.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.C.Mueser,
J.M.Hinerman,
J.M.Devos,
R.A.Boyer,
and
K.J.Williams
(2010).
Structural analysis of bacteriophage T4 DNA replication: a review in the Virology Journal series on bacteriophage T4 and its relatives.
|
| |
Virol J,
7,
359.
|
 |
|
|
|
|
 |
A.R.Parks,
Z.Li,
Q.Shi,
R.M.Owens,
M.M.Jin,
and
J.E.Peters
(2009).
Transposition into replicating DNA occurs through interaction with the processivity factor.
|
| |
Cell,
138,
685-695.
|
 |
|
|
|
|
 |
B.Roucourt,
and
R.Lavigne
(2009).
The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome.
|
| |
Environ Microbiol,
11,
2789-2805.
|
 |
|
|
|
|
 |
F.J.López de Saro
(2009).
Regulation of interactions with sliding clamps during DNA replication and repair.
|
| |
Curr Genomics,
10,
206-215.
|
 |
|
|
|
|
 |
J.A.Thompson,
C.O.Paschall,
M.O'Donnell,
and
L.B.Bloom
(2009).
A slow ATP-induced conformational change limits the rate of DNA binding but not the rate of beta clamp binding by the escherichia coli gamma complex clamp loader.
|
| |
J Biol Chem,
284,
32147-32157.
|
 |
|
|
|
|
 |
J.M.Heltzel,
R.W.Maul,
S.K.Scouten Ponticelli,
and
M.D.Sutton
(2009).
A model for DNA polymerase switching involving a single cleft and the rim of the sliding clamp.
|
| |
Proc Natl Acad Sci U S A,
106,
12664-12669.
|
 |
|
|
|
|
 |
J.M.Heltzel,
S.K.Scouten Ponticelli,
L.H.Sanders,
J.M.Duzen,
V.Cody,
J.Pace,
E.H.Snell,
and
M.D.Sutton
(2009).
Sliding clamp-DNA interactions are required for viability and contribute to DNA polymerase management in Escherichia coli.
|
| |
J Mol Biol,
387,
74-91.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.R.Simonetta,
S.L.Kazmirski,
E.R.Goedken,
A.J.Cantor,
B.A.Kelch,
R.McNally,
S.N.Seyedin,
D.L.Makino,
M.O'Donnell,
and
J.Kuriyan
(2009).
The mechanism of ATP-dependent primer-template recognition by a clamp loader complex.
|
| |
Cell,
137,
659-671.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.B.Bloom
(2009).
Loading clamps for DNA replication and repair.
|
| |
DNA Repair (Amst),
8,
570-578.
|
 |
|
|
|
|
 |
M.S.Park,
and
M.O'Donnell
(2009).
The clamp loader assembles the beta clamp onto either a 3' or 5' primer terminus: the underlying basis favoring 3' loading.
|
| |
J Biol Chem,
284,
31473-31483.
|
 |
|
|
|
|
 |
Q.Xu,
D.McMullan,
P.Abdubek,
T.Astakhova,
D.Carlton,
C.Chen,
H.J.Chiu,
T.Clayton,
D.Das,
M.C.Deller,
L.Duan,
M.A.Elsliger,
J.Feuerhelm,
J.Hale,
G.W.Han,
L.Jaroszewski,
K.K.Jin,
H.A.Johnson,
H.E.Klock,
M.W.Knuth,
P.Kozbial,
S.Sri Krishna,
A.Kumar,
D.Marciano,
M.D.Miller,
A.T.Morse,
E.Nigoghossian,
A.Nopakun,
L.Okach,
S.Oommachen,
J.Paulsen,
C.Puckett,
R.Reyes,
C.L.Rife,
N.Sefcovic,
C.Trame,
H.van den Bedem,
D.Weekes,
K.O.Hodgson,
J.Wooley,
A.M.Deacon,
A.Godzik,
S.A.Lesley,
and
I.A.Wilson
(2009).
A structural basis for the regulatory inactivation of DnaA.
|
| |
J Mol Biol,
385,
368-380.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.K.Scouten Ponticelli,
J.M.Duzen,
and
M.D.Sutton
(2009).
Contributions of the individual hydrophobic clefts of the Escherichia coli beta sliding clamp to clamp loading, DNA replication and clamp recycling.
|
| |
Nucleic Acids Res,
37,
2796-2809.
|
 |
|
|
|
|
 |
L.A.Simmons,
B.W.Davies,
A.D.Grossman,
and
G.C.Walker
(2008).
Beta clamp directs localization of mismatch repair in Bacillus subtilis.
|
| |
Mol Cell,
29,
291-301.
|
 |
|
|
|
|
 |
N.A.Tanner,
S.M.Hamdan,
S.Jergic,
P.M.Schaeffer,
N.E.Dixon,
and
A.M.van Oijen
(2008).
Single-molecule studies of fork dynamics in Escherichia coli DNA replication.
|
| |
Nat Struct Mol Biol,
15,
170-176.
|
 |
|
|
|
|
 |
N.Y.Yao,
and
M.O'Donnell
(2008).
Replisome dynamics and use of DNA trombone loops to bypass replication blocks.
|
| |
Mol Biosyst,
4,
1075-1084.
|
 |
|
|
|
|
 |
P.Pietroni,
and
P.H.von Hippel
(2008).
Multiple ATP binding is required to stabilize the "activated" (clamp open) clamp loader of the t4 DNA replication complex.
|
| |
J Biol Chem,
283,
28338-28353.
|
 |
|
|
|
|
 |
R.A.Wing,
S.Bailey,
and
T.A.Steitz
(2008).
Insights into the replisome from the structure of a ternary complex of the DNA polymerase III alpha-subunit.
|
| |
J Mol Biol,
382,
859-869.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.E.Georgescu,
O.Yurieva,
S.S.Kim,
J.Kuriyan,
X.P.Kong,
and
M.O'Donnell
(2008).
Structure of a small-molecule inhibitor of a DNA polymerase sliding clamp.
|
| |
Proc Natl Acad Sci U S A,
105,
11116-11121.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.E.Georgescu,
S.S.Kim,
O.Yurieva,
J.Kuriyan,
X.P.Kong,
and
M.O'Donnell
(2008).
Structure of a sliding clamp on DNA.
|
| |
Cell,
132,
43-54.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Chen,
M.M.Coman,
M.Sakato,
M.O'Donnell,
and
M.M.Hingorani
(2008).
Conserved residues in the delta subunit help the E. coli clamp loader, gamma complex, target primer-template DNA for clamp assembly.
|
| |
Nucleic Acids Res,
36,
3274-3286.
|
 |
|
|
|
|
 |
R.W.Maul,
S.K.Ponticelli,
J.M.Duzen,
and
M.D.Sutton
(2007).
Differential binding of Escherichia coli DNA polymerases to the beta-sliding clamp.
|
| |
Mol Microbiol,
65,
811-827.
|
 |
|
|
|
|
 |
S.Jergic,
K.Ozawa,
N.K.Williams,
X.C.Su,
D.D.Scott,
S.M.Hamdan,
J.A.Crowther,
G.Otting,
and
N.E.Dixon
(2007).
The unstructured C-terminus of the tau subunit of Escherichia coli DNA polymerase III holoenzyme is the site of interaction with the alpha subunit.
|
| |
Nucleic Acids Res,
35,
2813-2824.
|
 |
|
|
|
|
 |
X.C.Su,
S.Jergic,
M.A.Keniry,
N.E.Dixon,
and
G.Otting
(2007).
Solution structure of Domains IVa and V of the tau subunit of Escherichia coli DNA polymerase III and interaction with the alpha subunit.
|
| |
Nucleic Acids Res,
35,
2825-2832.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Belley,
M.Callejo,
F.Arhin,
M.Dehbi,
I.Fadhil,
J.Liu,
G.McKay,
R.Srikumar,
P.Bauda,
D.Bergeron,
N.Ha,
M.Dubow,
P.Gros,
J.Pelletier,
and
G.Moeck
(2006).
Competition of bacteriophage polypeptides with native replicase proteins for binding to the DNA sliding clamp reveals a novel mechanism for DNA replication arrest in Staphylococcus aureus.
|
| |
Mol Microbiol,
62,
1132-1143.
|
 |
|
|
|
|
 |
A.F.Neuwald
(2006).
Hypothesis: bacterial clamp loader ATPase activation through DNA-dependent repositioning of the catalytic base and of a trans-acting catalytic threonine.
|
| |
Nucleic Acids Res,
34,
5280-5290.
|
 |
|
|
|
|
 |
A.F.Neuwald
(2006).
Bayesian shadows of molecular mechanisms cast in the light of evolution.
|
| |
Trends Biochem Sci,
31,
374-382.
|
 |
|
|
|
|
 |
A.Seybert,
M.R.Singleton,
N.Cook,
D.R.Hall,
and
D.B.Wigley
(2006).
Communication between subunits within an archaeal clamp-loader complex.
|
| |
EMBO J,
25,
2209-2218.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.A.Appleton,
J.Brooks,
A.Loregian,
D.J.Filman,
D.M.Coen,
and
J.M.Hogle
(2006).
Crystal structure of the cytomegalovirus DNA polymerase subunit UL44 in complex with the C terminus from the catalytic subunit. Differences in structure and function relative to unliganded UL44.
|
| |
J Biol Chem,
281,
5224-5232.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Indiani,
and
M.O'Donnell
(2006).
The replication clamp-loading machine at work in the three domains of life.
|
| |
Nat Rev Mol Cell Biol,
7,
751-761.
|
 |
|
|
|
|
 |
C.W.Liu,
X.Li,
D.Thompson,
K.Wooding,
T.L.Chang,
Z.Tang,
H.Yu,
P.J.Thomas,
and
G.N.DeMartino
(2006).
ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome.
|
| |
Mol Cell,
24,
39-50.
|
 |
|
|
|
|
 |
J.C.Randell,
J.L.Bowers,
H.K.Rodríguez,
and
S.P.Bell
(2006).
Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase.
|
| |
Mol Cell,
21,
29-39.
|
 |
|
|
|
|
 |
J.L.Beck,
T.Urathamakul,
S.J.Watt,
M.M.Sheil,
P.M.Schaeffer,
and
N.E.Dixon
(2006).
Proteomic dissection of DNA polymerization.
|
| |
Expert Rev Proteomics,
3,
197-211.
|
 |
|
|
|
|
 |
J.M.Kaguni
(2006).
DnaA: controlling the initiation of bacterial DNA replication and more.
|
| |
Annu Rev Microbiol,
60,
351-375.
|
 |
|
|
|
|
 |
J.P.Erzberger,
and
J.M.Berger
(2006).
Evolutionary relationships and structural mechanisms of AAA+ proteins.
|
| |
Annu Rev Biophys Biomol Struct,
35,
93.
|
 |
|
|
|
|
 |
K.Kongsuwan,
P.Josh,
M.J.Picault,
G.Wijffels,
and
B.Dalrymple
(2006).
The plasmid RK2 replication initiator protein (TrfA) binds to the sliding clamp beta subunit of DNA polymerase III: implication for the toxicity of a peptide derived from the amino-terminal portion of 33-kilodalton TrfA.
|
| |
J Bacteriol,
188,
5501-5509.
|
 |
|
|
|
|
 |
M.A.Argiriadi,
E.R.Goedken,
I.Bruck,
M.O'Donnell,
and
J.Kuriyan
(2006).
Crystal structure of a DNA polymerase sliding clamp from a Gram-positive bacterium.
|
| |
BMC Struct Biol,
6,
2.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.O'Donnell
(2006).
Replisome architecture and dynamics in Escherichia coli.
|
| |
J Biol Chem,
281,
10653-10656.
|
 |
|
|
|
|
 |
N.Y.Yao,
A.Johnson,
G.D.Bowman,
J.Kuriyan,
and
M.O'Donnell
(2006).
Mechanism of proliferating cell nuclear antigen clamp opening by replication factor C.
|
| |
J Biol Chem,
281,
17528-17539.
|
 |
|
|
|
|
 |
P.J.Beuning,
D.Sawicka,
D.Barsky,
and
G.C.Walker
(2006).
Two processivity clamp interactions differentially alter the dual activities of UmuC.
|
| |
Mol Microbiol,
59,
460-474.
|
 |
|
|
|
|
 |
P.J.Beuning,
S.M.Simon,
A.Zemla,
D.Barsky,
and
G.C.Walker
(2006).
A non-cleavable UmuD variant that acts as a UmuD' mimic.
|
| |
J Biol Chem,
281,
9633-9640.
|
 |
|
|
|
|
 |
A.F.Neuwald
(2005).
Evolutionary clues to eukaryotic DNA clamp-loading mechanisms: analysis of the functional constraints imposed on replication factor C AAA+ ATPases.
|
| |
Nucleic Acids Res,
33,
3614-3628.
|
 |
|
|
|
|
 |
A.Johnson,
and
M.O'Donnell
(2005).
Cellular DNA replicases: components and dynamics at the replication fork.
|
| |
Annu Rev Biochem,
74,
283-315.
|
 |
|
|
|
|
 |
C.Indiani,
P.McInerney,
R.Georgescu,
M.F.Goodman,
and
M.O'Donnell
(2005).
A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously.
|
| |
Mol Cell,
19,
805-815.
|
 |
|
|
|
|
 |
D.Jeruzalmi
(2005).
The opened processivity clamp slides into view.
|
| |
Proc Natl Acad Sci U S A,
102,
14939-14940.
|
 |
|
|
|
|
 |
E.R.Goedken,
S.L.Kazmirski,
G.D.Bowman,
M.O'Donnell,
and
J.Kuriyan
(2005).
Mapping the interaction of DNA with the Escherichia coli DNA polymerase clamp loader complex.
|
| |
Nat Struct Mol Biol,
12,
183-190.
|
 |
|
|
|
|
 |
G.L.Hersch,
R.E.Burton,
D.N.Bolon,
T.A.Baker,
and
R.T.Sauer
(2005).
Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine.
|
| |
Cell,
121,
1017-1027.
|
 |
|
|
|
|
 |
H.Nishida,
S.Ishino,
T.Miyata,
K.Morikawa,
and
Y.Ishino
(2005).
Identification of the critical region in replication factor C from Pyrococcus furiosus for the stable complex formation with proliferating cell nuclear antigen and DNA.
|
| |
Genes Genet Syst,
80,
83-93.
|
 |
|
|
|
|
 |
M.D.Sutton,
J.M.Duzen,
and
R.W.Maul
(2005).
Mutant forms of the Escherichia colibeta sliding clamp that distinguish between its roles in replication and DNA polymerase V-dependent translesion DNA synthesis.
|
| |
Mol Microbiol,
55,
1751-1766.
|
 |
|
|
|
|
 |
S.L.Kazmirski,
Y.Zhao,
G.D.Bowman,
M.O'donnell,
and
J.Kuriyan
(2005).
Out-of-plane motions in open sliding clamps: molecular dynamics simulations of eukaryotic and archaeal proliferating cell nuclear antigen.
|
| |
Proc Natl Acad Sci U S A,
102,
13801-13806.
|
 |
|
|
|
|
 |
T.Miyata,
H.Suzuki,
T.Oyama,
K.Mayanagi,
Y.Ishino,
and
K.Morikawa
(2005).
Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis.
|
| |
Proc Natl Acad Sci U S A,
102,
13795-13800.
|
 |
|
|
|
|
 |
A.Haroniti,
C.Anderson,
Z.Doddridge,
L.Gardiner,
C.J.Roberts,
S.Allen,
and
P.Soultanas
(2004).
The clamp-loader-helicase interaction in Bacillus. Atomic force microscopy reveals the structural organisation of the DnaB-tau complex in Bacillus.
|
| |
J Mol Biol,
336,
381-393.
|
 |
|
|
|
|
 |
A.K.Snyder,
C.R.Williams,
A.Johnson,
M.O'Donnell,
and
L.B.Bloom
(2004).
Mechanism of loading the Escherichia coli DNA polymerase III sliding clamp: II. Uncoupling the beta and DNA binding activities of the gamma complex.
|
| |
J Biol Chem,
279,
4386-4393.
|
 |
|
|
|
|
 |
A.Seybert,
and
D.B.Wigley
(2004).
Distinct roles for ATP binding and hydrolysis at individual subunits of an archaeal clamp loader.
|
| |
EMBO J,
23,
1360-1371.
|
 |
|
|
|
|
 |
B.I.Lee,
K.H.Kim,
S.J.Park,
S.H.Eom,
H.K.Song,
and
S.W.Suh
(2004).
Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair.
|
| |
EMBO J,
23,
2029-2038.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.López de Saro,
R.E.Georgescu,
F.Leu,
and
M.O'Donnell
(2004).
Protein trafficking on sliding clamps.
|
| |
Philos Trans R Soc Lond B Biol Sci,
359,
25-30.
|
 |
|
|
|
|
 |
G.D.Bowman,
M.O'Donnell,
and
J.Kuriyan
(2004).
Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex.
|
| |
Nature,
429,
724-730.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.M.Gulbis,
S.L.Kazmirski,
J.Finkelstein,
Z.Kelman,
M.O'Donnell,
and
J.Kuriyan
(2004).
Crystal structure of the chi:psi sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex.
|
| |
Eur J Biochem,
271,
439-449.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.D.Sutton
(2004).
The Escherichia coli dnaN159 mutant displays altered DNA polymerase usage and chronic SOS induction.
|
| |
J Bacteriol,
186,
6738-6748.
|
 |
|
|
|
|
 |
M.Karplus,
and
Y.Q.Gao
(2004).
Biomolecular motors: the F1-ATPase paradigm.
|
| |
Curr Opin Struct Biol,
14,
250-259.
|
 |
|
|
|
|
 |
M.Kurz,
B.Dalrymple,
G.Wijffels,
and
K.Kongsuwan
(2004).
Interaction of the sliding clamp beta-subunit and Hda, a DnaA-related protein.
|
| |
J Bacteriol,
186,
3508-3515.
|
 |
|
|
|
|
 |
M.Magdalena Coman,
M.Jin,
R.Ceapa,
J.Finkelstein,
M.O'Donnell,
B.T.Chait,
and
M.M.Hingorani
(2004).
Dual functions, clamp opening and primer-template recognition, define a key clamp loader subunit.
|
| |
J Mol Biol,
342,
1457-1469.
|
 |
|
|
|
|
 |
S.L.Kazmirski,
M.Podobnik,
T.F.Weitze,
M.O'Donnell,
and
J.Kuriyan
(2004).
Structural analysis of the inactive state of the Escherichia coli DNA polymerase clamp-loader complex.
|
| |
Proc Natl Acad Sci U S A,
101,
16750-16755.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Miyata,
T.Oyama,
K.Mayanagi,
S.Ishino,
Y.Ishino,
and
K.Morikawa
(2004).
The clamp-loading complex for processive DNA replication.
|
| |
Nat Struct Mol Biol,
11,
632-636.
|
 |
|
|
|
|
 |
Z.Zhuang,
M.M.Spiering,
A.J.Berdis,
M.A.Trakselis,
and
S.J.Benkovic
(2004).
'Screw-cap' clamp loader proteins that thread.
|
| |
Nat Struct Mol Biol,
11,
580-581.
|
 |
|
|
|
|
 |
A.F.Neuwald
(2003).
Evolutionary clues to DNA polymerase III beta clamp structural mechanisms.
|
| |
Nucleic Acids Res,
31,
4503-4516.
|
 |
|
|
|
|
 |
A.Haroniti,
R.Till,
M.C.Smith,
and
P.Soultanas
(2003).
Clamp-loader-helicase interaction in Bacillus. Leucine 381 is critical for pentamerization and helicase binding of the Bacillus tau protein.
|
| |
Biochemistry,
42,
10955-10964.
|
 |
|
|
|
|
 |
A.J.Oakley,
P.Prosselkov,
G.Wijffels,
J.L.Beck,
M.C.Wilce,
and
N.E.Dixon
(2003).
Flexibility revealed by the 1.85 A crystal structure of the beta sliding-clamp subunit of Escherichia coli DNA polymerase III.
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
1192-1199.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Johnson,
and
M.O'Donnell
(2003).
Ordered ATP hydrolysis in the gamma complex clamp loader AAA+ machine.
|
| |
J Biol Chem,
278,
14406-14413.
|
 |
|
|
|
|
 |
A.Munshi,
D.Cannella,
H.Brickner,
I.Salles-Passador,
V.Podust,
R.Fotedar,
and
A.Fotedar
(2003).
Cell cycle-dependent phosphorylation of the large subunit of replication factor C (RF-C) leads to its dissociation from the RF-C complex.
|
| |
J Biol Chem,
278,
48467-48473.
|
 |
|
|
|
|
 |
A.V.Grigorian,
R.B.Lustig,
E.C.Guzmán,
J.M.Mahaffy,
and
J.W.Zyskind
(2003).
Escherichia coli cells with increased levels of DnaA and deficient in recombinational repair have decreased viability.
|
| |
J Bacteriol,
185,
630-644.
|
 |
|
|
|
|
 |
C.S.McHenry
(2003).
Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences.
|
| |
Mol Microbiol,
49,
1157-1165.
|
 |
|
|
|
|
 |
E.Viguera,
M.Petranovic,
D.Zahradka,
K.Germain,
D.S.Ehrlich,
and
B.Michel
(2003).
Lethality of bypass polymerases in Escherichia coli cells with a defective clamp loader complex of DNA polymerase III.
|
| |
Mol Microbiol,
50,
193-204.
|
 |
|
|
|
|
 |
F.J.López de Saro,
R.E.Georgescu,
M.F.Goodman,
and
M.O'Donnell
(2003).
Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair.
|
| |
EMBO J,
22,
6408-6418.
|
 |
|
|
|
|
 |
F.J.López de Saro,
R.E.Georgescu,
and
M.O'Donnell
(2003).
A peptide switch regulates DNA polymerase processivity.
|
| |
Proc Natl Acad Sci U S A,
100,
14689-14694.
|
 |
|
|
|
|
 |
I.Salles-Passador,
A.Munshi,
D.Cannella,
V.Pennaneach,
S.Koundrioukoff,
M.Jaquinod,
E.Forest,
V.Podust,
A.Fotedar,
R.Fotedar,
and
M.Jacquinod
(2003).
Phosphorylation of the PCNA binding domain of the large subunit of replication factor C on Thr506 by cyclin-dependent kinases regulates binding to PCNA.
|
| |
Nucleic Acids Res,
31,
5202-5211.
|
 |
|
|
|
|
 |
K.A.Bunting,
S.M.Roe,
and
L.H.Pearl
(2003).
Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the beta-clamp.
|
| |
EMBO J,
22,
5883-5892.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Yao,
L.Coryell,
D.Zhang,
R.E.Georgescu,
J.Finkelstein,
M.M.Coman,
M.M.Hingorani,
and
M.O'Donnell
(2003).
Replication factor C clamp loader subunit arrangement within the circular pentamer and its attachment points to proliferating cell nuclear antigen.
|
| |
J Biol Chem,
278,
50744-50753.
|
 |
|
|
|
|
 |
S.Matsumiya,
S.Ishino,
Y.Ishino,
and
K.Morikawa
(2003).
Intermolecular ion pairs maintain the toroidal structure of Pyrococcus furiosus PCNA.
|
| |
Protein Sci,
12,
823-831.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.Ellison,
and
B.Stillman
(2003).
Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA.
|
| |
PLoS Biol,
1,
E33.
|
 |
|
|
|
|
 |
A.H.Elcock
(2002).
Modeling supramolecular assemblages.
|
| |
Curr Opin Struct Biol,
12,
154-160.
|
 |
|
|
|
|
 |
A.Seybert,
D.J.Scott,
S.Scaife,
M.R.Singleton,
and
D.B.Wigley
(2002).
Biochemical characterisation of the clamp/clamp loader proteins from the euryarchaeon Archaeoglobus fulgidus.
|
| |
Nucleic Acids Res,
30,
4329-4338.
|
 |
|
|
|
|
 |
C.Venclovas,
M.E.Colvin,
and
M.P.Thelen
(2002).
Molecular modeling-based analysis of interactions in the RFC-dependent clamp-loading process.
|
| |
Protein Sci,
11,
2403-2416.
|
 |
|
|
|
|
 |
D.Jeruzalmi,
M.O'Donnell,
and
J.Kuriyan
(2002).
Clamp loaders and sliding clamps.
|
| |
Curr Opin Struct Biol,
12,
217-224.
|
 |
|
|
|
|
 |
H.L.Klein,
and
K.N.Kreuzer
(2002).
Replication, recombination, and repair: going for the gold.
|
| |
Mol Cell,
9,
471-480.
|
 |
|
|
|
|
 |
H.Yang,
J.H.Chiang,
S.Fitz-Gibbon,
M.Lebel,
A.A.Sartori,
J.Jiricny,
M.M.Slupska,
and
J.H.Miller
(2002).
Direct interaction between uracil-DNA glycosylase and a proliferating cell nuclear antigen homolog in the crenarchaeon Pyrobaculum aerophilum.
|
| |
J Biol Chem,
277,
22271-22278.
|
 |
|
|
|
|
 |
J.M.Bullard,
A.E.Pritchard,
M.S.Song,
B.P.Glover,
A.Wieczorek,
J.Chen,
N.Janjic,
and
C.S.McHenry
(2002).
A three-domain structure for the delta subunit of the DNA polymerase III holoenzyme delta domain III binds delta' and assembles into the DnaX complex.
|
| |
J Biol Chem,
277,
13246-13256.
|
 |
|
|
|
|
 |
M.J.Davey,
D.Jeruzalmi,
J.Kuriyan,
and
M.O'Donnell
(2002).
Motors and switches: AAA+ machines within the replisome.
|
| |
Nat Rev Mol Cell Biol,
3,
826-835.
|
 |
|
|
|
|
 |
M.J.Davey,
L.Fang,
P.McInerney,
R.E.Georgescu,
and
M.O'Donnell
(2002).
The DnaC helicase loader is a dual ATP/ADP switch protein.
|
| |
EMBO J,
21,
3148-3159.
|
 |
|
|
|
|
 |
M.M.Hingorani,
and
M.M.Coman
(2002).
On the specificity of interaction between the Saccharomyces cerevisiae clamp loader replication factor C and primed DNA templates during DNA replication.
|
| |
J Biol Chem,
277,
47213-47224.
|
 |
|
|
|
|
 |
N.Lenne-Samuel,
J.Wagner,
H.Etienne,
and
R.P.Fuchs
(2002).
The processivity factor beta controls DNA polymerase IV traffic during spontaneous mutagenesis and translesion synthesis in vivo.
|
| |
EMBO Rep,
3,
45-49.
|
 |
|
|
|
|
 |
S.Matsumiya,
S.Ishino,
Y.Ishino,
and
K.Morikawa
(2002).
Physical interaction between proliferating cell nuclear antigen and replication factor C from Pyrococcus furiosus.
|
| |
Genes Cells,
7,
911-922.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.P.Bell,
and
A.Dutta
(2002).
DNA replication in eukaryotic cells.
|
| |
Annu Rev Biochem,
71,
333-374.
|
 |
|
|
|
|
 |
L.B.Bloom,
and
M.F.Goodman
(2001).
A sliding clamp monkey wrench.
|
| |
Nat Struct Biol,
8,
829-831.
|
 |
|
|
|
|
 |
M.A.Trakselis,
and
S.J.Benkovic
(2001).
Intricacies in ATP-dependent clamp loading: variations across replication systems.
|
| |
Structure,
9,
999.
|
 |
|
|
|
|
 |
M.O'Donnell,
D.Jeruzalmi,
and
J.Kuriyan
(2001).
Clamp loader structure predicts the architecture of DNA polymerase III holoenzyme and RFC.
|
| |
Curr Biol,
11,
R935-R946.
|
 |
|
|
|
|
 |
V.Ellison,
and
B.Stillman
(2001).
Opening of the clamp: an intimate view of an ATP-driven biological machine.
|
| |
Cell,
106,
655-660.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |