2nst Citations

Molecular basis of the activity of the phytopathogen pectin methylesterase.

EMBO J 26 3879-87 (2007)
Related entries: 2nsp, 2nt6, 2nt9, 2ntb, 2ntp, 2ntq

Cited: 47 times
EuropePMC logo PMID: 17717531

Abstract

We provide a mechanism for the activity of pectin methylesterase (PME), the enzyme that catalyses the essential first step in bacterial invasion of plant tissues. The complexes formed in the crystal using specifically methylated pectins, together with kinetic measurements of directed mutants, provide clear insights at atomic resolution into the specificity and the processive action of the Erwinia chrysanthemi enzyme. Product complexes provide additional snapshots along the reaction coordinate. We previously revealed that PME is a novel aspartic-esterase possessing parallel beta-helix architecture and now show that the two conserved aspartates are the nucleophile and general acid-base in the mechanism, respectively. Other conserved residues at the catalytic centre are shown to be essential for substrate binding or transition state stabilisation. The preferential binding of methylated sugar residues upstream of the catalytic site, and demethylated residues downstream, drives the enzyme along the pectin molecule and accounts for the sequential pattern of demethylation produced by both bacterial and plant PMEs.

Articles - 2nst mentioned but not cited (2)

  1. Structural biology of pectin degradation by Enterobacteriaceae. Abbott DW, Boraston AB. Microbiol Mol Biol Rev 72 301-16, table of contents (2008)
  2. Molecular basis of the activity of the phytopathogen pectin methylesterase. Fries M, Ihrig J, Brocklehurst K, Shevchik VE, Pickersgill RW. EMBO J 26 3879-3887 (2007)


Reviews citing this publication (4)

  1. The biochemistry and structural biology of plant cell wall deconstruction. Gilbert HJ. Plant Physiol 153 444-455 (2010)
  2. Pectin methylesterase and its proteinaceous inhibitor: a review. Jolie RP, Duvetter T, Van Loey AM, Hendrickx ME. Carbohydr Res 345 2583-2595 (2010)
  3. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. Sénéchal F, Wattier C, Rustérucci C, Pelloux J. J Exp Bot 65 5125-5160 (2014)
  4. Bacterial pectate lyases, structural and functional diversity. Hugouvieux-Cotte-Pattat N, Condemine G, Shevchik VE. Environ Microbiol Rep 6 427-440 (2014)

Articles citing this publication (41)

  1. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. Chung WSF, Meijerink M, Zeuner B, Holck J, Louis P, Meyer AS, Wells JM, Flint HJ, Duncan SH. FEMS Microbiol Ecol 93 (2017)
  2. Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Xu X, Zeng L, Tao Y, Vuong T, Wan J, Boerma R, Noe J, Li Z, Finnerty S, Pathan SM, Shannon JG, Nguyen HT. Proc Natl Acad Sci U S A 110 13469-13474 (2013)
  3. Structural insights into the pH-controlled targeting of plant cell-wall invertase by a specific inhibitor protein. Hothorn M, Van den Ende W, Lammens W, Rybin V, Scheffzek K. Proc Natl Acad Sci U S A 107 17427-17432 (2010)
  4. Novel mechanism of outer membrane targeting of proteins in Gram-negative bacteria. Ferrandez Y, Condemine G. Mol Microbiol 69 1349-1357 (2008)
  5. Genomic, Network, and Phylogenetic Analysis of the Oomycete Effector Arsenal. McGowan J, Fitzpatrick DA. mSphere 2 e00408-17 (2017)
  6. Identification and characterization of novel Salmonella mobile elements involved in the dissemination of genes linked to virulence and transmission. Moreno Switt AI, den Bakker HC, Cummings CA, Rodriguez-Rivera LD, Govoni G, Raneiri ML, Degoricija L, Brown S, Hoelzer K, Peters JE, Bolchacova E, Furtado MR, Wiedmann M. PLoS One 7 e41247 (2012)
  7. Crystal structure of the passenger domain of the Escherichia coli autotransporter EspP. Khan S, Mian HS, Sandercock LE, Chirgadze NY, Pai EF. J Mol Biol 413 985-1000 (2011)
  8. Structural and functional insights into the pilotin-secretin complex of the type II secretion system. Gu S, Rehman S, Wang X, Shevchik VE, Pickersgill RW. PLoS Pathog 8 e1002531 (2012)
  9. The Phytophthora infestans Haustorium Is a Site for Secretion of Diverse Classes of Infection-Associated Proteins. Wang S, Welsh L, Thorpe P, Whisson SC, Boevink PC, Birch PRJ. mBio 9 e01216-18 (2018)
  10. Structural characterization of homogalacturonan by NMR spectroscopy-assignment of reference compounds. Petersen BO, Meier S, Duus JØ, Clausen MH. Carbohydr Res 343 2830-2833 (2008)
  11. Substrate recognition by the bacterial type II secretion system: more than a simple interaction. Pineau C, Guschinskaya N, Robert X, Gouet P, Ballut L, Shevchik VE. Mol Microbiol 94 126-140 (2014)
  12. Comparative Genomic and Proteomic Analyses of Three Widespread Phytophthora Species: Phytophthora chlamydospora, Phytophthora gonapodyides and Phytophthora pseudosyringae. McGowan J, O'Hanlon R, Owens RA, Fitzpatrick DA. Microorganisms 8 E653 (2020)
  13. Activity of an atypical Arabidopsis thaliana pectin methylesterase. Dedeurwaerder S, Menu-Bouaouiche L, Mareck A, Lerouge P, Guerineau F. Planta 229 311-321 (2009)
  14. Dph7 catalyzes a previously unknown demethylation step in diphthamide biosynthesis. Lin Z, Su X, Chen W, Ci B, Zhang S, Lin H. J Am Chem Soc 136 6179-6182 (2014)
  15. Structure and functional features of olive pollen pectin methylesterase using homology modeling and molecular docking methods. Jimenez-Lopez JC, Kotchoni SO, Rodríguez-García MI, Alché JD. J Mol Model 18 4965-4984 (2012)
  16. Integrated bioinformatics to decipher the ascorbic acid metabolic network in tomato. Ruggieri V, Bostan H, Barone A, Frusciante L, Chiusano ML. Plant Mol Biol 91 397-412 (2016)
  17. Substrate dynamics in enzyme action: rotations of monosaccharide subunits in the binding groove are essential for pectin methylesterase processivity. Mercadante D, Melton LD, Jameson GB, Williams MA, De Simone A. Biophys J 104 1731-1739 (2013)
  18. Structure and Properties of a Non-processive, Salt-requiring, and Acidophilic Pectin Methylesterase from Aspergillus niger Provide Insights into the Key Determinants of Processivity Control. Kent LM, Loo TS, Melton LD, Mercadante D, Williams MA, Jameson GB. J Biol Chem 291 1289-1306 (2016)
  19. High-throughput screening of Erwinia chrysanthemi pectin methylesterase variants using carbohydrate microarrays. Øbro J, Sørensen I, Derkx P, Madsen CT, Drews M, Willer M, Mikkelsen JD, Willats WG. Proteomics 9 1861-1868 (2009)
  20. Processive pectin methylesterases: the role of electrostatic potential, breathing motions and bond cleavage in the rectification of Brownian motions. Mercadante D, Melton LD, Jameson GB, Williams MA. PLoS One 9 e87581 (2014)
  21. Comparative transcriptomic analysis of the evolution and development of flower size in Saltugilia (Polemoniaceae). Landis JB, Soltis DE, Soltis PS. BMC Genomics 18 475 (2017)
  22. Structural and dynamical characterization of the pH-dependence of the pectin methylesterase-pectin methylesterase inhibitor complex. Sénéchal F, Habrylo O, Hocq L, Domon JM, Marcelo P, Lefebvre V, Pelloux J, Mercadante D. J Biol Chem 292 21538-21547 (2017)
  23. Transcriptional analysis of pmeA gene encoding a pectin methylesterase in Xanthomonas campestris pv. campestris. Hsiao YM, Liu YF, Huang YL, Lee PY. Res Microbiol 162 270-278 (2011)
  24. Proteomic analysis of mature Lagenaria siceraria seed. Kumari N, Tajmul M, Yadav S. Appl Biochem Biotechnol 175 3643-3656 (2015)
  25. Thermal Stabilization of Erwinia chrysanthemi pectin methylesterase a for application in a sugar beet pulp biorefinery. Chakiath C, Lyons MJ, Kozak RE, Laufer CS. Appl Environ Microbiol 75 7343-7349 (2009)
  26. Vibrational Spectroscopic Analyses and Imaging of the Early Middle Ages Hemp Bast Fibres Recovered from Lake Sediments. Kalisz G, Gieroba B, Chrobak O, Suchora M, Starosta AL, Sroka-Bartnicka A. Molecules 26 1314 (2021)
  27. Structural insights into the loss of catalytic competence in pectate lyase activity at low pH. Ali S, Søndergaard CR, Teixeira S, Pickersgill RW. FEBS Lett 589 3242-3246 (2015)
  28. Attenuation and quantitation of virulence gene expression in quorum-quenched Dickeya chrysanthemi. Hosseinzadeh S, Shams-Bakhsh M, Shams-Bakhsh M, Sadeghizadeh M. Arch Microbiol 199 51-61 (2017)
  29. Family-Specific Gains and Losses of Protein Domains in the Legume and Grass Plant Families. Yadav A, Fernández-Baca D, Cannon SB. Evol Bioinform Online 16 1176934320939943 (2020)
  30. Phylogenetic Relationships and Potential Functional Attributes of the Genus Parapedobacter: A Member of Family Sphingobacteriaceae. Nagar S, Talwar C, Haider S, Puri A, Ponnusamy K, Gupta M, Sood U, Bajaj A, Lal R, Kumar R. Front Microbiol 11 1725 (2020)
  31. Rheo-NMR studies of an enzymatic reaction: evidence of a shear-stable macromolecular system. Edwards PJ, Kakubayashi M, Dykstra R, Pascal SM, Williams MA. Biophys J 98 1986-1994 (2010)
  32. The crystal structure of the outer membrane lipoprotein YbhC from Escherichia coli sheds new light on the phylogeny of carbohydrate esterase family 8. Eklöf JM, Tan TC, Divne C, Brumer H. Proteins 76 1029-1036 (2009)
  33. Ascertaining the biochemical function of an essential pectin methylesterase in the gut microbe Bacteroides thetaiotaomicron. Duan CJ, Baslé A, Liberato MV, Gray J, Nepogodiev SA, Field RA, Juge N, Ndeh D. J Biol Chem 295 18625-18637 (2020)
  34. Molecular Cloning, Expression and Characterization of Pectin Methylesterase (CtPME) from Clostridium thermocellum. Rajulapati V, Goyal A. Mol Biotechnol 59 128-140 (2017)
  35. Biochemical characterization and molecular insights into substrate recognition of pectin methylesterase from Phytophthora infestans. Kumar R, Kumar S, Bulone V, Srivastava V. Comput Struct Biotechnol J 20 6023-6032 (2022)
  36. Biological control of potato common scab and growth promotion of potato by Bacillus velezensis Y6. Tao H, Wang S, Li X, Li X, Cai J, Zhao L, Wang J, Zeng J, Qin Y, Xiong X, Cai Y. Front Microbiol 14 1295107 (2023)
  37. Crystal Structures of Bacterial Pectin Methylesterases Pme8A and PmeC2 from Rumen Butyrivibrio. Carbone V, Reilly K, Sang C, Schofield LR, Ronimus RS, Kelly WJ, Attwood GT, Palevich N. Int J Mol Sci 24 13738 (2023)
  38. Genomes of four Streptomyces strains reveal insights into putative new species and pathogenicity of scab-causing organisms. Henao L, Zade RSH, Restrepo S, Husserl J, Abeel T. BMC Genomics 24 143 (2023)
  39. QM/MM studies on the calcium-assisted β-elimination mechanism of pectate lyase from bacillus subtilis. Ma G, Zhu W, Liu Y. Proteins 84 1606-1615 (2016)
  40. Restraining Quiescence Release-Related Ageing in Plant Cells: A Case Study in Carrot. Schulz K, Machaj G, Knox P, Hancock RD, Verrall SR, Korpinen R, Saranpää P, Kärkönen A, Karpinska B, Foyer CH. Cells 12 2465 (2023)
  41. The Right-Handed Parallel β-Helix Topology of Erwinia chrysanthemi Pectin Methylesterase Is Intimately Associated with Both Sequential Folding and Resistance to High Pressure. Guillerm J, Frère JM, Meersman F, Matagne A. Biomolecules 11 1083 (2021)