2h34 Citations

A conserved dimer and global conformational changes in the structure of apo-PknE Ser/Thr protein kinase from Mycobacterium tuberculosis.

J Mol Biol 360 409-20 (2006)
Cited: 45 times
EuropePMC logo PMID: 16762364

Abstract

The "eukaryotic-like" receptor Ser/Thr protein kinases (STPKs) are candidates for the sensors that mediate environmental adaptations of Mycobacterium tuberculosis (Mtb). To define the mechanisms of regulation and substrate recognition, we determined the crystal structure of the ligand-free, activated kinase domain (KD) of the Mtb STPK, PknE. Remarkably, the PknE KD formed a dimer similar to that first observed in the structure of the ATPgammaS complex of the Mtb paralog, PknB. This structural similarity, which occurs despite little sequence conservation between the PknB and PknE dimer interfaces, supports the idea that dimerization regulates the Mtb receptor STPKs. Insertion of the DFG motif into the ATP-binding site and other conformational differences compared the ATPgammaS:PknB complex suggest that apo-PknE is not pre-organized to bind nucleotides. This structure may represent an inactive conformation stabilized by dimerization or, alternatively, an active conformation that reveals shifts that mediate nucleotide exchange and order substrate binding.

Reviews - 2h34 mentioned but not cited (3)

  1. Substrate and docking interactions in serine/threonine protein kinases. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Chem Rev 107 5065-5081 (2007)
  2. Bacterial cell division regulation by Ser/Thr kinases: a structural perspective. Ruggiero A, De Simone P, Smaldone G, Squeglia F, Berisio R. Curr. Protein Pept. Sci. 13 756-766 (2012)
  3. Mycobacterium tuberculosis Serine/Threonine Protein Kinases. Prisic S, Husson RN. Microbiol Spectr 2 (2014)

Articles - 2h34 mentioned but not cited (8)

  1. Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis. Scherr N, Honnappa S, Kunz G, Mueller P, Jayachandran R, Winkler F, Pieters J, Steinmetz MO. Proc. Natl. Acad. Sci. U.S.A. 104 12151-12156 (2007)
  2. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases. Premkumar L, Heras B, Duprez W, Walden P, Halili M, Kurth F, Fairlie DP, Martin JL. Acta Crystallogr. D Biol. Crystallogr. 69 1981-1994 (2013)
  3. Molecular determinants of CaV2.1 channel regulation by calcium-binding protein-1. Few AP, Nanou E, Scheuer T, Catterall WA. J. Biol. Chem. 286 41917-41923 (2011)
  4. Molecular determinants of modulation of CaV2.1 channels by visinin-like protein 2. Nanou E, Martinez GQ, Scheuer T, Catterall WA. J. Biol. Chem. 287 504-513 (2012)
  5. SInCRe-structural interactome computational resource for Mycobacterium tuberculosis. Metri R, Hariharaputran S, Ramakrishnan G, Anand P, Raghavender US, Ochoa-Montaño B, Higueruelo AP, Sowdhamini R, Chandra NR, Blundell TL, Srinivasan N. Database (Oxford) 2015 bav060 (2015)
  6. In Silico Screen and Structural Analysis Identifies Bacterial Kinase Inhibitors which Act with β-Lactams To Inhibit Mycobacterial Growth. Wlodarchak N, Teachout N, Beczkiewicz J, Procknow R, Schaenzer AJ, Satyshur K, Pavelka M, Zuercher W, Drewry D, Sauer JD, Striker R. Mol. Pharm. 15 5410-5426 (2018)
  7. Computational prediction and validation of specific EmbR binding site on PknH. Na I, Dai H, Li H, Gupta A, Kreda D, Zhang P, Chen X, Zhang L, Alterovitz G. Synth Syst Biotechnol 6 429-436 (2021)
  8. correction Correction for Scherr et al., Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U.S.A. 104 16388-16388 (2007)


Reviews citing this publication (9)

  1. Antituberculosis drugs: ten years of research. Janin YL. Bioorg. Med. Chem. 15 2479-2513 (2007)
  2. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Pereira SF, Goss L, Dworkin J. Microbiol. Mol. Biol. Rev. 75 192-212 (2011)
  3. Activation of PKR: an open and shut case? Cole JL. Trends Biochem. Sci. 32 57-62 (2007)
  4. Protein-protein interactions in the allosteric regulation of protein kinases. Pellicena P, Kuriyan J. Curr. Opin. Struct. Biol. 16 702-709 (2006)
  5. Signaling mechanisms of the Mycobacterium tuberculosis receptor Ser/Thr protein kinases. Alber T. Curr. Opin. Struct. Biol. 19 650-657 (2009)
  6. Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis. Manuse S, Fleurie A, Zucchini L, Lesterlin C, Grangeasse C. FEMS Microbiol. Rev. 40 41-56 (2016)
  7. Emerging roles of the αC-β4 loop in protein kinase structure, function, evolution, and disease. Yeung W, Ruan Z, Kannan N. IUBMB Life 72 1189-1202 (2020)
  8. The enterococcal PASTA kinase: A sentinel for cell envelope stress. Djorić D, Minton NE, Kristich CJ. Mol Oral Microbiol 36 132-144 (2021)
  9. Targeting the messengers: Serine/threonine protein kinases as potential targets for antimycobacterial drug development. Khan MZ, Kaur P, Nandicoori VK. IUBMB Life 70 889-904 (2018)

Articles citing this publication (25)

  1. Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing. Lee KP, Dey M, Neculai D, Cao C, Dever TE, Sicheri F. Cell 132 89-100 (2008)
  2. M. tuberculosis Ser/Thr protein kinase D phosphorylates an anti-anti-sigma factor homolog. Greenstein AE, MacGurn JA, Baer CE, Falick AM, Cox JS, Alber T. PLoS Pathog. 3 e49 (2007)
  3. Auto-activation mechanism of the Mycobacterium tuberculosis PknB receptor Ser/Thr kinase. Mieczkowski C, Iavarone AT, Alber T. EMBO J. 27 3186-3197 (2008)
  4. Key residues in Mycobacterium tuberculosis protein kinase G play a role in regulating kinase activity and survival in the host. Tiwari D, Singh RK, Goswami K, Verma SK, Prakash B, Nandicoori VK. J. Biol. Chem. 284 27467-27479 (2009)
  5. Understanding the role of PknJ in Mycobacterium tuberculosis: biochemical characterization and identification of novel substrate pyruvate kinase A. Arora G, Sajid A, Gupta M, Bhaduri A, Kumar P, Basu-Modak S, Singh Y. PLoS ONE 5 e10772 (2010)
  6. Allosteric activation mechanism of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknB. Lombana TN, Echols N, Good MC, Thomsen ND, Ng HL, Greenstein AE, Falick AM, King DS, Alber T. Structure 18 1667-1677 (2010)
  7. A eukaryotic-type serine/threonine protein kinase StkP of Streptococcus pneumoniae acts as a dimer in vivo. Pallová P, Hercík K, Sasková L, Nováková L, Branny P. Biochem. Biophys. Res. Commun. 355 526-530 (2007)
  8. Functional characterization of the Mycobacterium tuberculosis serine/threonine kinase PknJ. Jang J, Stella A, Boudou F, Levillain F, Darthuy E, Vaubourgeix J, Wang C, Bardou F, Puzo G, Gilleron M, Burlet-Schiltz O, Monsarrat B, Brodin P, Gicquel B, Neyrolles O. Microbiology (Reading, Engl.) 156 1619-1631 (2010)
  9. Structural effects of clinically observed mutations in JAK2 exons 13-15: comparison with V617F and exon 12 mutations. Lee TS, Ma W, Zhang X, Kantarjian H, Albitar M. BMC Struct. Biol. 9 58 (2009)
  10. Mycobacterium tuberculosis protein kinase K enables growth adaptation through translation control. Malhotra V, Okon BP, Clark-Curtiss JE. J. Bacteriol. 194 4184-4196 (2012)
  11. Proteins with complex architecture as potential targets for drug design: a case study of Mycobacterium tuberculosis. Mészáros B, Tóth J, Vértessy BG, Dosztányi Z, Simon I. PLoS Comput. Biol. 7 e1002118 (2011)
  12. Evidence that phosphorylation of threonine in the GT motif triggers activation of PknA, a eukaryotic-type serine/threonine kinase from Mycobacterium tuberculosis. Ravala SK, Singh S, Yadav GS, Kumar S, Karthikeyan S, Chakraborti PK. FEBS J. 282 1419-1431 (2015)
  13. Signatures of the ATP-binding pocket as a basis for structural classification of the serine/threonine protein kinases of gram-positive bacteria. Zakharevich NV, Osolodkin DI, Artamonova II, Palyulin VA, Zefirov NS, Danilenko VN. Proteins 80 1363-1376 (2012)
  14. Homology modelling, docking, pharmacophore and site directed mutagenesis analysis to identify the critical amino acid residue of PknI from Mycobacterium tuberculosis. Kandasamy S, Hassan S, Gopalaswamy R, Narayanan S. J. Mol. Graph. Model. 52 11-19 (2014)
  15. Phosphorylation and ATP-binding induced conformational changes in the PrkC, Ser/Thr kinase from B. subtilis. Gruszczyński P, Obuchowski M, Kaźmierkiewicz R. J. Comput. Aided Mol. Des. 24 733-747 (2010)
  16. The crystal structure of the catalytic domain of the ser/thr kinase PknA from M. tuberculosis shows an Src-like autoinhibited conformation. Wagner T, Alexandre M, Duran R, Barilone N, Wehenkel A, Alzari PM, Bellinzoni M. Proteins 83 982-988 (2015)
  17. Structural Insight into the Activation of PknI Kinase from M. tuberculosis via Dimerization of the Extracellular Sensor Domain. Yan Q, Jiang D, Qian L, Zhang Q, Zhang W, Zhou W, Mi K, Guddat L, Yang H, Rao Z. Structure 25 1286-1294.e4 (2017)
  18. Mycobacterium tuberculosis serine/threonine protein kinases: structural information for the design of their specific ATP-competitive inhibitors. Caballero J, Morales-Bayuelo A, Navarro-Retamal C. J. Comput. Aided Mol. Des. 32 1315-1336 (2018)
  19. Structural Basis of Protein Kinase R Autophosphorylation. Mayo CB, Erlandsen H, Mouser DJ, Feinstein AG, Robinson VL, May ER, Cole JL. Biochemistry 58 2967-2977 (2019)
  20. The crystal structure of PknI from Mycobacterium tuberculosis shows an inactive, pseudokinase-like conformation. Lisa MN, Wagner T, Alexandre M, Barilone N, Raynal B, Alzari PM, Bellinzoni M. FEBS J. 284 602-614 (2017)
  21. Crystal structures of the kinase domain of PpkA, a key regulatory component of T6SS, reveal a general inhibitory mechanism. Li P, Xu D, Ma T, Wang D, Li W, He J, Ran T, Wang W. Biochem. J. 475 2209-2224 (2018)
  22. Engineering Selectivity for Reduced Toxicity of Bacterial Kinase Inhibitors Using Structure-Guided Medicinal Chemistry. Wlodarchak N, Feltenberger JB, Ye Z, Beczkiewicz J, Procknow R, Yan G, King TM, Golden JE, Striker R. ACS Med Chem Lett 12 228-235 (2021)
  23. Monitoring of three distinct structures of restriction enzyme complexes using characteristic fluorescence from site-selectively incorporated solvatochromic probe. Nakayama K, Endo M, Fujitsuka M, Majima T. Photochem. Photobiol. Sci. 6 836-841 (2007)
  24. Probing the Highly Disparate Dual Inhibitory Mechanisms of Novel Quinazoline Derivatives against Mycobacterium tuberculosis Protein Kinases A and B. Olotu FA, Soliman ME. Molecules 25 E4247 (2020)
  25. Structure of the Mycobacterium tuberculosis cPknF and conformational changes induced in forkhead-associated regulatory domains. Cabarca S, Frazão de Souza M, Albert de Oliveira A, Vignoli Muniz GS, Lamy MT, Vinicius Dos Reis C, Takarada J, Effer B, Souza LS, Iriarte de la Torre L, Couñago R, Pinto Oliveira CL, Balan A. Curr Res Struct Biol 3 165-178 (2021)