1t3s Citations

Structural analysis of the voltage-dependent calcium channel beta subunit functional core and its complex with the alpha 1 interaction domain.

Neuron 42 387-99 (2004)
Cited: 199 times
EuropePMC logo PMID: 15134636

Abstract

Voltage-dependent calcium channels (VDCC) are multiprotein assemblies that regulate the entry of extracellular calcium into electrically excitable cells and serve as signal transduction centers. The alpha1 subunit forms the membrane pore while the intracellular beta subunit is responsible for trafficking of the channel to the plasma membrane and modulation of its electrophysiological properties. Crystallographic analyses of a beta subunit functional core alone and in complex with a alpha1 interaction domain (AID) peptide, the primary binding site of beta to the alpha1 subunit, reveal that beta represents a novel member of the MAGUK protein family. The findings illustrate how the guanylate kinase fold has been fashioned into a protein-protein interaction module by alteration of one of its substrate sites. Combined results indicate that the AID peptide undergoes a helical transition in binding to beta. We outline the mechanistic implications for understanding the beta subunit's broad regulatory role of the VDCC, particularly via the AID.

Articles - 1t3s mentioned but not cited (7)

  1. In Vivo, Proteomic, and In Silico Investigation of Sapodilla for Therapeutic Potential in Gastrointestinal Disorders. Ansari SF, Khan AU, Qazi NG, Shah FA, Shah FA, Naeem K. Biomed Res Int 2019 4921086 (2019)
  2. Effect of Rumex dentatus on Gastrointestinal Protection and Toxicology in Rodents via Investigating H+/K+-ATPase, Calcium Channels, and PDE Mediated Signaling. Qazi NG, Khan AU, Abbasi SW, Malik I, Naeem K. Front Pharmacol 13 936161 (2022)
  3. Pharmacological Basis of Rumex hastatus D. Don in Gastrointestinal Diseases with Focusing Effects on H+/K+-ATPase, Calcium Channels Inhibition and PDE Mediated Signaling: Toxicological Evaluation on Vital Organs. Qazi NG, Khan AU, Abbasi SW, Shah FA, Rasheed F, Ali F, Hassan SSU, Bungau S. Molecules 27 5919 (2022)
  4. Pharmacological and computational evaluation of fig for therapeutic potential in hyperactive gastrointestinal disorders. Riaz MB, Khan AU, Qazi NG. BMC Complement Altern Med 19 348 (2019)
  5. Pharmacological basis of bergapten in gastrointestinal diseases focusing on H+/K+ ATPase and voltage-gated calcium channel inhibition: A toxicological evaluation on vital organs. Aslam H, Khan AU, Qazi NG, Ali F, Hassan SSU, Bungau S. Front Pharmacol 13 1005154 (2022)
  6. A novel calcium channel Cavβ2 splice variant with unique properties predominates in the retina. Seitter H, Obkircher J, Grabher P, Hartl J, Zanetti L, Lux UT, Fotakis G, Fernández-Quintero ML, Kaserer T, Koschak A. J Biol Chem 299 102972 (2023)
  7. Pharmacological and computational evaluation of Sapodilla and its constituents for therapeutic potential in hyperactive gastrointestinal disorders. Riaz MB, Khan AU, Qazi NG. Iran J Basic Med Sci 23 224-235 (2020)


Reviews citing this publication (60)

  1. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Zamponi GW, Striessnig J, Koschak A, Dolphin AC. Pharmacol Rev 67 821-870 (2015)
  2. Voltage-gated ion channels and gating modifier toxins. Catterall WA, Cestèle S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T. Toxicon 49 124-141 (2007)
  3. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Funke L, Dakoji S, Bredt DS. Annu Rev Biochem 74 219-245 (2005)
  4. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Simms BA, Zamponi GW. Neuron 82 24-45 (2014)
  5. Overview of molecular relationships in the voltage-gated ion channel superfamily. Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA. Pharmacol Rev 57 387-395 (2005)
  6. The ß subunit of voltage-gated Ca2+ channels. Buraei Z, Yang J. Physiol Rev 90 1461-1506 (2010)
  7. Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Dolphin AC. Nat Rev Neurosci 13 542-555 (2012)
  8. Calcium and arrhythmogenesis. Ter Keurs HE, Boyden PA. Physiol Rev 87 457-506 (2007)
  9. Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Feng W, Zhang M. Nat Rev Neurosci 10 87-99 (2009)
  10. Supramolecular assemblies and localized regulation of voltage-gated ion channels. Dai S, Hall DD, Hell JW. Physiol Rev 89 411-452 (2009)
  11. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Yu FH, Catterall WA. Sci STKE 2004 re15 (2004)
  12. Ca2+ channel alpha2delta ligands: novel modulators of neurotransmission. Dooley DJ, Taylor CP, Donevan S, Feltner D. Trends Pharmacol Sci 28 75-82 (2007)
  13. L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. Hofmann F, Flockerzi V, Kahl S, Wegener JW. Physiol Rev 94 303-326 (2014)
  14. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. Dolphin AC. J Physiol 594 5369-5390 (2016)
  15. The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Yang SN, Berggren PO. Endocr Rev 27 621-676 (2006)
  16. Direct G protein modulation of Cav2 calcium channels. Tedford HW, Zamponi GW. Pharmacol Rev 58 837-862 (2006)
  17. Mechanisms of specificity in neuronal activity-regulated gene transcription. Lyons MR, West AE. Prog Neurobiol 94 259-295 (2011)
  18. Regulation of Ca(V)2 calcium channels by G protein coupled receptors. Zamponi GW, Currie KP. Biochim Biophys Acta 1828 1629-1643 (2013)
  19. The chemical basis for electrical signaling. Catterall WA, Wisedchaisri G, Zheng N. Nat Chem Biol 13 455-463 (2017)
  20. Are Ca2+ channels targets of praziquantel action? Greenberg RM. Int J Parasitol 35 1-9 (2005)
  21. Beta-cell CaV channel regulation in physiology and pathophysiology. Yang SN, Berggren PO. Am J Physiol Endocrinol Metab 288 E16-28 (2005)
  22. L-type calcium channel targeting and local signalling in cardiac myocytes. Shaw RM, Colecraft HM. Cardiovasc Res 98 177-186 (2013)
  23. Ca2+ channel beta-subunits: structural insights AID our understanding. Richards MW, Butcher AJ, Dolphin AC. Trends Pharmacol Sci 25 626-632 (2004)
  24. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Minor DL, Findeisen F. Channels (Austin) 4 459-474 (2010)
  25. Structure and function of the β subunit of voltage-gated Ca²⁺ channels. Buraei Z, Yang J. Biochim Biophys Acta 1828 1530-1540 (2013)
  26. A short history of voltage-gated calcium channels. Dolphin AC. Br J Pharmacol 147 Suppl 1 S56-62 (2006)
  27. Trafficking and stability of voltage-gated calcium channels. Simms BA, Zamponi GW. Cell Mol Life Sci 69 843-856 (2012)
  28. The role of auxiliary subunits for the functional diversity of voltage-gated calcium channels. Campiglio M, Flucher BE. J Cell Physiol 230 2019-2031 (2015)
  29. Voltage-gated calcium channel subunits from platyhelminths: potential role in praziquantel action. Jeziorski MC, Greenberg RM. Int J Parasitol 36 625-632 (2006)
  30. Modulation of insect Ca(v) channels by peptidic spider toxins. King GF. Toxicon 49 513-530 (2007)
  31. Regulation of voltage-dependent calcium channels by RGK proteins. Yang T, Colecraft HM. Biochim Biophys Acta 1828 1644-1654 (2013)
  32. G protein modulation of CaV2 voltage-gated calcium channels. Currie KP. Channels (Austin) 4 497-509 (2010)
  33. Emerging evidence for specific neuronal functions of auxiliary calcium channel α₂δ subunits. Geisler S, Schöpf CL, Obermair GJ. Gen Physiol Biophys 34 105-118 (2015)
  34. Ca2+ currents in cardiac myocytes: Old story, new insights. Brette F, Leroy J, Le Guennec JY, Sallé L. Prog Biophys Mol Biol 91 1-82 (2006)
  35. The neurobiologist's guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data. Minor DL. Neuron 54 511-533 (2007)
  36. Remodeled cardiac calcium channels. Pitt GS, Dun W, Boyden PA. J Mol Cell Cardiol 41 373-388 (2006)
  37. The role of auxiliary dihydropyridine receptor subunits in muscle. Flucher BE, Obermair GJ, Tuluc P, Schredelseker J, Kern G, Grabner M. J Muscle Res Cell Motil 26 1-6 (2005)
  38. Bridging the myoplasmic gap: recent developments in skeletal muscle excitation-contraction coupling. Bannister RA. J Muscle Res Cell Motil 28 275-283 (2007)
  39. Bridging the myoplasmic gap II: more recent advances in skeletal muscle excitation-contraction coupling. Bannister RA. J Exp Biol 219 175-182 (2016)
  40. A guide to the 3D structure of the ryanodine receptor type 1 by cryoEM. Samsó M. Protein Sci 26 52-68 (2017)
  41. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels. Neely A, Hidalgo P. Front Physiol 5 209 (2014)
  42. Excitation-contraction coupling in skeletal muscle: recent progress and unanswered questions. Shishmarev D. Biophys Rev 12 143-153 (2020)
  43. Ion channel engineering: perspectives and strategies. Subramanyam P, Colecraft HM. J Mol Biol 427 190-204 (2015)
  44. Ca2+ signalling, voltage-gated Ca2+ channels and praziquantel in flatworm neuromusculature. Greenberg RM. Parasitology 131 Suppl S97-108 (2005)
  45. Adrenergic Regulation of Calcium Channels in the Heart. Papa A, Kushner J, Marx SO. Annu Rev Physiol 84 285-306 (2022)
  46. The voltage-gated calcium-channel beta subunit: more than just an accessory. Karunasekara Y, Dulhunty AF, Casarotto MG. Eur Biophys J 39 75-81 (2009)
  47. Structure and function of STAC proteins: Calcium channel modulators and critical components of muscle excitation-contraction coupling. Rufenach B, Van Petegem F. J Biol Chem 297 100874 (2021)
  48. Engineering proteins for custom inhibition of Ca(V) channels. Xu X, Colecraft HM. Physiology (Bethesda) 24 210-218 (2009)
  49. Structural insights into excitation-contraction coupling by electron cryomicroscopy. Serysheva II. Biochemistry (Mosc) 69 1226-1232 (2004)
  50. Calcium Revisited: New Insights Into the Molecular Basis of Long-QT Syndrome. Giudicessi JR, Ackerman MJ. Circ Arrhythm Electrophysiol 9 e002480 (2016)
  51. The dawn of high-resolution structure for the queen of ion channels. Yue DT. Neuron 42 357-359 (2004)
  52. Trafficking of neuronal calcium channels. Weiss N, Zamponi GW. Neuronal Signal 1 NS20160003 (2017)
  53. 3D Structure of the Dihydropyridine Receptor of Skeletal Muscle. Samsó M. Eur J Transl Myol 25 4840 (2015)
  54. Designer genetically encoded voltage-dependent calcium channel inhibitors inspired by RGK GTPases. Colecraft HM. J Physiol 598 1683-1693 (2020)
  55. Voltage-gated sodium and calcium channels in nerve, muscle, and heart. French RJ, Zamponi GW. IEEE Trans Nanobioscience 4 58-69 (2005)
  56. Alone at last! New functions for Ca2+ channel beta subunits? Rousset M, Cens T, Charnet P. Sci STKE 2005 pe11 (2005)
  57. A survey of protein interactions and posttranslational modifications that influence the polyglutamine diseases. Johnson SL, Tsou WL, Prifti MV, Harris AL, Todi SV. Front Mol Neurosci 15 974167 (2022)
  58. RGK regulation of voltage-gated calcium channels. Buraei Z, Lumen E, Kaur S, Yang J. Sci China Life Sci 58 28-38 (2015)
  59. Mechanisms controlling the trafficking, localization, and abundance of presynaptic Ca2+ channels. Cunningham KL, Littleton JT. Front Mol Neurosci 15 1116729 (2022)
  60. β subunits of voltage-gated calcium channels in cardiovascular diseases. Loh KWZ, Liu C, Soong TW, Hu Z. Front Cardiovasc Med 10 1119729 (2023)

Articles citing this publication (132)

  1. Structure of the voltage-gated calcium channel Cav1.1 complex. Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, Yan N. Science 350 aad2395 (2015)
  2. The Cavβ subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Altier C, Garcia-Caballero A, Simms B, You H, Chen L, Walcher J, Tedford HW, Hermosilla T, Zamponi GW. Nat Neurosci 14 173-180 (2011)
  3. RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels. Kiyonaka S, Wakamori M, Miki T, Uriu Y, Nonaka M, Bito H, Beedle AM, Mori E, Hara Y, De Waard M, Kanagawa M, Itakura M, Takahashi M, Campbell KP, Mori Y. Nat Neurosci 10 691-701 (2007)
  4. The beta 1a subunit is essential for the assembly of dihydropyridine-receptor arrays in skeletal muscle. Schredelseker J, Di Biase V, Obermair GJ, Felder ET, Flucher BE, Franzini-Armstrong C, Grabner M. Proc Natl Acad Sci U S A 102 17219-17224 (2005)
  5. Beta-subunits promote the expression of Ca(V)2.2 channels by reducing their proteasomal degradation. Waithe D, Ferron L, Page KM, Chaggar K, Dolphin AC. J Biol Chem 286 9598-9611 (2011)
  6. Critical role for the beta regulatory subunits of Cav channels in T lymphocyte function. Badou A, Jha MK, Matza D, Mehal WZ, Freichel M, Flockerzi V, Flavell RA. Proc Natl Acad Sci U S A 103 15529-15534 (2006)
  7. Removal of Ca2+ channel beta3 subunit enhances Ca2+ oscillation frequency and insulin exocytosis. Berggren PO, Yang SN, Murakami M, Efanov AM, Uhles S, Köhler M, Moede T, Fernström A, Appelskog IB, Aspinwall CA, Zaitsev SV, Larsson O, de Vargas LM, Fecher-Trost C, Weissgerber P, Ludwig A, Leibiger B, Juntti-Berggren L, Barker CJ, Gromada J, Freichel M, Leibiger IB, Flockerzi V. Cell 119 273-284 (2004)
  8. Expression of Rem2, an RGK family small GTPase, reduces N-type calcium current without affecting channel surface density. Chen H, Puhl HL, Niu SL, Mitchell DC, Ikeda SR. J Neurosci 25 9762-9772 (2005)
  9. Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities. Ruan B, Pong K, Jow F, Bowlby M, Crozier RA, Liu D, Liang S, Chen Y, Mercado ML, Feng X, Bennett F, von Schack D, McDonald L, Zaleska MM, Wood A, Reinhart PH, Magolda RL, Skotnicki J, Pangalos MN, Koehn FE, Carter GT, Abou-Gharbia M, Graziani EI. Proc Natl Acad Sci U S A 105 33-38 (2008)
  10. G protein-gated inhibitory module of N-type (ca(v)2.2) ca2+ channels. Agler HL, Evans J, Tay LH, Anderson MJ, Colecraft HM, Yue DT. Neuron 46 891-904 (2005)
  11. Interaction via a key tryptophan in the I-II linker of N-type calcium channels is required for beta1 but not for palmitoylated beta2, implicating an additional binding site in the regulation of channel voltage-dependent properties. Leroy J, Richards MW, Butcher AJ, Nieto-Rostro M, Pratt WS, Davies A, Dolphin AC. J Neurosci 25 6984-6996 (2005)
  12. The best disease-linked Cl- channel hBest1 regulates Ca V 1 (L-type) Ca2+ channels via src-homology-binding domains. Yu K, Xiao Q, Cui G, Lee A, Hartzell HC. J Neurosci 28 5660-5670 (2008)
  13. Interaction between the dihydropyridine receptor Ca2+ channel beta-subunit and ryanodine receptor type 1 strengthens excitation-contraction coupling. Cheng W, Altafaj X, Ronjat M, Coronado R. Proc Natl Acad Sci U S A 102 19225-19230 (2005)
  14. Alanine-scanning mutagenesis defines a conserved energetic hotspot in the CaValpha1 AID-CaVbeta interaction site that is critical for channel modulation. Van Petegem F, Duderstadt KE, Clark KA, Wang M, Minor DL. Structure 16 280-294 (2008)
  15. Disruption of the IS6-AID linker affects voltage-gated calcium channel inactivation and facilitation. Findeisen F, Minor DL. J Gen Physiol 133 327-343 (2009)
  16. Role of CaVbeta subunits, and lack of functional reserve, in protein kinase A modulation of cardiac CaV1.2 channels. Miriyala J, Nguyen T, Yue DT, Colecraft HM. Circ Res 102 e54-64 (2008)
  17. Essential Ca(V)beta modulatory properties are AID-independent. Maltez JM, Nunziato DA, Kim J, Pitt GS. Nat Struct Mol Biol 12 372-377 (2005)
  18. Mechanism of auxiliary β-subunit-mediated membrane targeting of L-type (Ca(V)1.2) channels. Fang K, Colecraft HM. J Physiol 589 4437-4455 (2011)
  19. A CaVbeta SH3/guanylate kinase domain interaction regulates multiple properties of voltage-gated Ca2+ channels. Takahashi SX, Miriyala J, Tay LH, Yue DT, Colecraft HM. J Gen Physiol 126 365-377 (2005)
  20. Molecular endpoints of Ca2+/calmodulin- and voltage-dependent inactivation of Ca(v)1.3 channels. Tadross MR, Ben Johny M, Yue DT. J Gen Physiol 135 197-215 (2010)
  21. Structure of human Cav2.2 channel blocked by the painkiller ziconotide. Gao S, Yao X, Yan N. Nature 596 143-147 (2021)
  22. Functional modularity of the beta-subunit of voltage-gated Ca2+ channels. He LL, Zhang Y, Chen YH, Yamada Y, Yang J. Biophys J 93 834-845 (2007)
  23. Transfer of beta subunit regulation from high to low voltage-gated Ca2+ channels. Arias JM, Murbartián J, Vitko I, Lee JH, Perez-Reyes E. FEBS Lett 579 3907-3912 (2005)
  24. Alternative splicing of the voltage-gated Ca2+ channel beta4 subunit creates a uniquely folded N-terminal protein binding domain with cell-specific expression in the cerebellar cortex. Vendel AC, Terry MD, Striegel AR, Iverson NM, Leuranguer V, Rithner CD, Lyons BA, Pickard GE, Tobet SA, Horne WA. J Neurosci 26 2635-2644 (2006)
  25. Cardiac CaV1.2 channels require β subunits for β-adrenergic-mediated modulation but not trafficking. Yang L, Katchman A, Kushner J, Kushnir A, Zakharov SI, Chen BX, Shuja Z, Subramanyam P, Liu G, Papa A, Roybal D, Pitt GS, Colecraft HM, Marx SO. J Clin Invest 129 647-658 (2019)
  26. Modulation of Cav1.3 Ca2+ channel gating by Rab3 interacting molecule. Gebhart M, Juhasz-Vedres G, Zuccotti A, Brandt N, Engel J, Trockenbacher A, Kaur G, Obermair GJ, Knipper M, Koschak A, Striessnig J. Mol Cell Neurosci 44 246-259 (2010)
  27. A single CaVbeta can reconstitute both trafficking and macroscopic conductance of voltage-dependent calcium channels. Dalton S, Takahashi SX, Miriyala J, Colecraft HM. J Physiol 567 757-769 (2005)
  28. Molecular basis for zinc transporter 1 action as an endogenous inhibitor of L-type calcium channels. Levy S, Beharier O, Etzion Y, Mor M, Buzaglo L, Shaltiel L, Gheber LA, Kahn J, Muslin AJ, Katz A, Gitler D, Moran A. J Biol Chem 284 32434-32443 (2009)
  29. Three-dimensional structure of CaV3.1: comparison with the cardiac L-type voltage-gated calcium channel monomer architecture. Walsh CP, Davies A, Butcher AJ, Dolphin AC, Kitmitto A. J Biol Chem 284 22310-22321 (2009)
  30. trans-Resveratrol protects ischemic PC12 Cells by inhibiting the hypoxia associated transcription factors and increasing the levels of antioxidant defense enzymes. Agrawal M, Kumar V, Singh AK, Kashyap MP, Khanna VK, Siddiqui MA, Pant AB. ACS Chem Neurosci 4 285-294 (2013)
  31. Origin of the voltage dependence of G-protein regulation of P/Q-type Ca2+ channels. Zhang Y, Chen YH, Bangaru SD, He L, Abele K, Tanabe S, Kozasa T, Yang J. J Neurosci 28 14176-14188 (2008)
  32. Regulation of maximal open probability is a separable function of Ca(v)beta subunit in L-type Ca2+ channel, dependent on NH2 terminus of alpha1C (Ca(v)1.2alpha). Kanevsky N, Dascal N. J Gen Physiol 128 15-36 (2006)
  33. Ablation of Ca2+ channel beta3 subunit leads to enhanced N-methyl-D-aspartate receptor-dependent long term potentiation and improved long term memory. Jeon D, Song I, Guido W, Kim K, Kim E, Oh U, Shin HS. J Biol Chem 283 12093-12101 (2008)
  34. Activity and calcium regulate nuclear targeting of the calcium channel beta4b subunit in nerve and muscle cells. Subramanyam P, Obermair GJ, Baumgartner S, Gebhart M, Striessnig J, Kaufmann WA, Geley S, Flucher BE. Channels (Austin) 3 343-355 (2009)
  35. Voltage-gated calcium channels: their discovery, function and importance as drug targets. Dolphin AC. Brain Neurosci Adv 2 2398212818794805 (2018)
  36. Mechanism of Ca(v)1.2 channel modulation by the amino terminus of cardiac beta2-subunits. Herzig S, Khan IF, Gründemann D, Matthes J, Ludwig A, Michels G, Hoppe UC, Chaudhuri D, Schwartz A, Yue DT, Hullin R. FASEB J 21 1527-1538 (2007)
  37. The beta subunit of voltage-gated Ca2+ channels interacts with and regulates the activity of a novel isoform of Pax6. Zhang Y, Yamada Y, Fan M, Bangaru SD, Lin B, Yang J. J Biol Chem 285 2527-2536 (2010)
  38. Adrenergic CaV1.2 Activation via Rad Phosphorylation Converges at α1C I-II Loop. Papa A, Kushner J, Hennessey JA, Katchman AN, Zakharov SI, Chen BX, Yang L, Lu R, Leong S, Diaz J, Liu G, Roybal D, Liao X, Del Rivero Morfin PJ, Colecraft HM, Pitt GS, Clarke O, Topkara V, Ben-Johny M, Marx SO. Circ Res 128 76-88 (2021)
  39. Direct inhibition of P/Q-type voltage-gated Ca2+ channels by Gem does not require a direct Gem/Cavbeta interaction. Fan M, Buraei Z, Luo HR, Levenson-Palmer R, Yang J. Proc Natl Acad Sci U S A 107 14887-14892 (2010)
  40. Interaction of bestrophin-1 and Ca2+ channel β-subunits: identification of new binding domains on the bestrophin-1 C-terminus. Milenkovic VM, Krejcova S, Reichhart N, Wagner A, Strauss O. PLoS One 6 e19364 (2011)
  41. New short splice variants of the human cardiac Cavbeta2 subunit: redefining the major functional motifs implemented in modulation of the Cav1.2 channel. Harry JB, Kobrinsky E, Abernethy DR, Soldatov NM. J Biol Chem 279 46367-46372 (2004)
  42. Differential neuronal targeting of a new and two known calcium channel β4 subunit splice variants correlates with their regulation of gene expression. Etemad S, Obermair GJ, Bindreither D, Benedetti A, Stanika R, Di Biase V, Burtscher V, Koschak A, Kofler R, Geley S, Wille A, Lusser A, Flockerzi V, Flucher BE. J Neurosci 34 1446-1461 (2014)
  43. Unique modulation of L-type Ca2+ channels by short auxiliary beta1d subunit present in cardiac muscle. Cohen RM, Foell JD, Balijepalli RC, Shah V, Hell JW, Kamp TJ. Am J Physiol Heart Circ Physiol 288 H2363-74 (2005)
  44. Bio-inspired voltage-dependent calcium channel blockers. Yang T, He LL, Chen M, Fang K, Colecraft HM. Nat Commun 4 2540 (2013)
  45. Domain cooperativity in the β1a subunit is essential for dihydropyridine receptor voltage sensing in skeletal muscle. Dayal A, Bhat V, Franzini-Armstrong C, Grabner M. Proc Natl Acad Sci U S A 110 7488-7493 (2013)
  46. Homodimerization of the Src homology 3 domain of the calcium channel β-subunit drives dynamin-dependent endocytosis. Miranda-Laferte E, Gonzalez-Gutierrez G, Schmidt S, Zeug A, Ponimaskin EG, Neely A, Hidalgo P. J Biol Chem 286 22203-22210 (2011)
  47. Molecular determinants of the CaVbeta-induced plasma membrane targeting of the CaV1.2 channel. Bourdin B, Marger F, Wall-Lacelle S, Schneider T, Klein H, Sauvé R, Parent L. J Biol Chem 285 22853-22863 (2010)
  48. Orientation of the calcium channel beta relative to the alpha(1)2.2 subunit is critical for its regulation of channel activity. Vitko I, Shcheglovitov A, Baumgart JP, Arias-Olguín II, Murbartián J, Arias JM, Perez-Reyes E. PLoS One 3 e3560 (2008)
  49. The role of a voltage-dependent Ca2+ channel intracellular linker: a structure-function analysis. Almagor L, Chomsky-Hecht O, Ben-Mocha A, Hendin-Barak D, Dascal N, Hirsch JA. J Neurosci 32 7602-7613 (2012)
  50. The structural biology of voltage-gated calcium channel function and regulation. Van Petegem F, Minor DL. Biochem Soc Trans 34 887-893 (2006)
  51. The Ca2+ channel beta4c subunit interacts with heterochromatin protein 1 via a PXVXL binding motif. Xu X, Lee YJ, Holm JB, Terry MD, Oswald RE, Horne WA. J Biol Chem 286 9677-9687 (2011)
  52. The N-terminal domain tethers the voltage-gated calcium channel β2e-subunit to the plasma membrane via electrostatic and hydrophobic interactions. Miranda-Laferte E, Ewers D, Guzman RE, Jordan N, Schmidt S, Hidalgo P. J Biol Chem 289 10387-10398 (2014)
  53. The importance of occupancy rather than affinity of CaV(beta) subunits for the calcium channel I-II linker in relation to calcium channel function. Butcher AJ, Leroy J, Richards MW, Pratt WS, Dolphin AC. J Physiol 574 387-398 (2006)
  54. Calmodulin-dependent gating of Ca(v)1.2 calcium channels in the absence of Ca(v)beta subunits. Ravindran A, Lao QZ, Harry JB, Abrahimi P, Kobrinsky E, Soldatov NM. Proc Natl Acad Sci U S A 105 8154-8159 (2008)
  55. Targeting the CaVα-CaVβ interaction yields an antagonist of the N-type CaV2.2 channel with broad antinociceptive efficacy. Khanna R, Yu J, Yang X, Moutal A, Chefdeville A, Gokhale V, Shuja Z, Chew LA, Bellampalli SS, Luo S, François-Moutal L, Serafini MJ, Ha T, Perez-Miller S, Park KD, Patwardhan AM, Streicher JM, Colecraft HM, Khanna M. Pain 160 1644-1661 (2019)
  56. Direct interaction of CaVβ with actin up-regulates L-type calcium currents in HL-1 cardiomyocytes. Stölting G, de Oliveira RC, Guzman RE, Miranda-Laferte E, Conrad R, Jordan N, Schmidt S, Hendriks J, Gensch T, Hidalgo P. J Biol Chem 290 4561-4572 (2015)
  57. Dynamic interactions between L-type voltage-sensitive calcium channel Cav1.2 subunits and ahnak in osteoblastic cells. Shao Y, Czymmek KJ, Jones PA, Fomin VP, Akanbi K, Duncan RL, Farach-Carson MC. Am J Physiol Cell Physiol 296 C1067-78 (2009)
  58. Facilitation versus depression in cultured hippocampal neurons determined by targeting of Ca2+ channel Cavbeta4 versus Cavbeta2 subunits to synaptic terminals. Xie M, Li X, Han J, Vogt DL, Wittemann S, Mark MD, Herlitze S. J Cell Biol 178 489-502 (2007)
  59. Negatively charged residues in the N-terminal of the AID helix confer slow voltage dependent inactivation gating to CaV1.2. Dafi O, Berrou L, Dodier Y, Raybaud A, Sauvé R, Parent L. Biophys J 87 3181-3192 (2004)
  60. Regulation of high-voltage-activated Ca2+ channel function, trafficking, and membrane stability by auxiliary subunits. Felix R, Calderón-Rivera A, Andrade A. Wiley Interdiscip Rev Membr Transp Signal 2 207-220 (2013)
  61. Stable incorporation versus dynamic exchange of β subunits in a native Ca2+ channel complex. Campiglio M, Di Biase V, Tuluc P, Flucher BE. J Cell Sci 126 2092-2101 (2013)
  62. The CaVβ Subunit Protects the I-II Loop of the Voltage-gated Calcium Channel CaV2.2 from Proteasomal Degradation but Not Oligoubiquitination. Page KM, Rothwell SW, Dolphin AC. J Biol Chem 291 20402-20416 (2016)
  63. The alpha(1S) III-IV loop influences 1,4-dihydropyridine receptor gating but is not directly involved in excitation-contraction coupling interactions with the type 1 ryanodine receptor. Bannister RA, Grabner M, Beam KG. J Biol Chem 283 23217-23223 (2008)
  64. Two PEST-like motifs regulate Ca2+/calpain-mediated cleavage of the CaVbeta3 subunit and provide important determinants for neuronal Ca2+ channel activity. Sandoval A, Oviedo N, Tadmouri A, Avila T, De Waard M, Felix R. Eur J Neurosci 23 2311-2320 (2006)
  65. New Determinant for the CaVbeta2 subunit modulation of the CaV1.2 calcium channel. Lao QZ, Kobrinsky E, Harry JB, Ravindran A, Soldatov NM. J Biol Chem 283 15577-15588 (2008)
  66. Stapled Voltage-Gated Calcium Channel (CaV) α-Interaction Domain (AID) Peptides Act As Selective Protein-Protein Interaction Inhibitors of CaV Function. Findeisen F, Campiglio M, Jo H, Abderemane-Ali F, Rumpf CH, Pope L, Rossen ND, Flucher BE, DeGrado WF, Minor DL. ACS Chem Neurosci 8 1313-1326 (2017)
  67. The Caenorhabditis elegans voltage-gated calcium channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuromuscular junction morphology. Caylor RC, Jin Y, Ackley BD. Neural Dev 8 10 (2013)
  68. A Selectivity Filter Gate Controls Voltage-Gated Calcium Channel Calcium-Dependent Inactivation. Abderemane-Ali F, Findeisen F, Rossen ND, Minor DL. Neuron 101 1134-1149.e3 (2019)
  69. Analysis of the Rem2 - voltage dependant calcium channel beta subunit interaction and Rem2 interaction with phosphorylated phosphatidylinositide lipids. Correll RN, Botzet GJ, Satin J, Andres DA, Finlin BS. Cell Signal 20 400-408 (2008)
  70. The C-terminal residues in the alpha-interacting domain (AID) helix anchor CaV beta subunit interaction and modulation of CaV2.3 channels. Berrou L, Dodier Y, Raybaud A, Tousignant A, Dafi O, Pelletier JN, Parent L. J Biol Chem 280 494-505 (2005)
  71. Organization of calcium channel beta1a subunits in triad junctions in skeletal muscle. Leuranguer V, Papadopoulos S, Beam KG. J Biol Chem 281 3521-3527 (2006)
  72. RGK GTPase-dependent CaV2.1 Ca2+ channel inhibition is independent of CaVbeta-subunit-induced current potentiation. Leyris JP, Gondeau C, Charnet A, Delattre C, Rousset M, Cens T, Charnet P. FASEB J 23 2627-2638 (2009)
  73. Skeletal muscle excitation-contraction coupling is independent of a conserved heptad repeat motif in the C-terminus of the DHPRbeta(1a) subunit. Dayal A, Schredelseker J, Franzini-Armstrong C, Grabner M. Cell Calcium 47 500-506 (2010)
  74. The guanylate kinase domain of the beta-subunit of voltage-gated calcium channels suffices to modulate gating. Gonzalez-Gutierrez G, Miranda-Laferte E, Nothmann D, Schmidt S, Neely A, Hidalgo P. Proc Natl Acad Sci U S A 105 14198-14203 (2008)
  75. Calcium Channelopathies: Structural Insights into Disorders of the Muscle Excitation-Contraction Complex. Pancaroglu R, Van Petegem F. Annu Rev Genet 52 373-396 (2018)
  76. Calcium channels of schistosomes: unresolved questions and unexpected answers. Salvador-Recatalà V, Greenberg RM. Wiley Interdiscip Rev Membr Transp Signal 1 85-93 (2012)
  77. Determinants of the voltage dependence of G protein modulation within calcium channel beta subunits. Dresviannikov AV, Page KM, Leroy J, Pratt WS, Dolphin AC. Pflugers Arch 457 743-756 (2009)
  78. Disruption of the Key Ca2+ Binding Site in the Selectivity Filter of Neuronal Voltage-Gated Calcium Channels Inhibits Channel Trafficking. Meyer JO, Dahimene S, Page KM, Ferron L, Kadurin I, Ellaway JIJ, Zhao P, Patel T, Rothwell SW, Lin P, Pratt WS, Dolphin AC. Cell Rep 29 22-33.e5 (2019)
  79. Inhibition of synaptic transmission and G protein modulation by synthetic CaV2.2 Ca²+ channel peptides. Bucci G, Mochida S, Stephens GJ. J Physiol 589 3085-3101 (2011)
  80. Molecular Basis of the Membrane Interaction of the β2e Subunit of Voltage-Gated Ca(2+) Channels. Kim DI, Kang M, Kim S, Lee J, Park Y, Chang I, Suh BC. Biophys J 109 922-935 (2015)
  81. Oligomerization of Cavbeta subunits is an essential correlate of Ca2+ channel activity. Lao QZ, Kobrinsky E, Liu Z, Soldatov NM. FASEB J 24 5013-5023 (2010)
  82. Solution structure of the N-terminal A domain of the human voltage-gated Ca2+channel beta4a subunit. Vendel AC, Rithner CD, Lyons BA, Horne WA. Protein Sci 15 378-383 (2006)
  83. A quartet of leucine residues in the guanylate kinase domain of CaVβ determines the plasma membrane density of the CaV2.3 channel. Shakeri B, Bourdin B, Demers-Giroux PO, Sauvé R, Parent L. J Biol Chem 287 32835-32847 (2012)
  84. Modified sympathetic nerve system activity with overexpression of the voltage-dependent calcium channel beta3 subunit. Murakami M, Ohba T, Xu F, Satoh E, Miyoshi I, Suzuki T, Takahashi Y, Takahashi E, Watanabe H, Ono K, Sasano H, Kasai N, Ito H, Iijima T. J Biol Chem 283 24554-24560 (2008)
  85. Potentiation of high voltage-activated calcium channels by 4-aminopyridine depends on subunit composition. Li L, Li DP, Chen SR, Chen J, Hu H, Pan HL. Mol Pharmacol 86 760-772 (2014)
  86. Effect of Ca(v)beta subunits on structural organization of Ca(v)1.2 calcium channels. Kobrinsky E, Abrahimi P, Duong SQ, Thomas S, Harry JB, Patel C, Lao QZ, Soldatov NM. PLoS One 4 e5587 (2009)
  87. Functional dissection of the intramolecular Src homology 3-guanylate kinase domain coupling in voltage-gated Ca2+ channel beta-subunits. Chen YH, He LL, Buchanan DR, Zhang Y, Fitzmaurice A, Yang J. FEBS Lett 583 1969-1975 (2009)
  88. Single-channel monitoring of reversible L-type Ca(2+) channel Ca(V)α(1)-Ca(V)β subunit interaction. Jangsangthong W, Kuzmenkina E, Böhnke AK, Herzig S. Biophys J 101 2661-2670 (2011)
  89. Design of mutant beta2 subunits as decoy molecules to reduce the expression of functional Ca2+ channels in cardiac cells. Télémaque S, Sonkusare S, Grain T, Rhee SW, Stimers JR, Rusch NJ, Marsh JD. J Pharmacol Exp Ther 325 37-46 (2008)
  90. Molecular characterization and functional expression of the Apis mellifera voltage-dependent Ca2+ channels. Cens T, Rousset M, Collet C, Charreton M, Garnery L, Le Conte Y, Le Conte Y, Chahine M, Sandoz JC, Charnet P. Insect Biochem Mol Biol 58 12-27 (2015)
  91. The alpha1S N-terminus is not essential for bi-directional coupling with RyR1. Bannister RA, Beam KG. Biochem Biophys Res Commun 336 134-141 (2005)
  92. The calcium channel beta2 (CACNB2) subunit repertoire in teleosts. Ebert AM, McAnelly CA, Srinivasan A, Mueller RL, Garrity DB, Garrity DM. BMC Mol Biol 9 38 (2008)
  93. A novel molecular inactivation determinant of voltage-gated CaV1.2 L-type Ca2+ channel. Livneh A, Cohen R, Atlas D. Neuroscience 139 1275-1287 (2006)
  94. Gene splicing of an invertebrate beta subunit (LCavβ) in the N-terminal and HOOK domains and its regulation of LCav1 and LCav2 calcium channels. Dawson TF, Boone AN, Senatore A, Piticaru J, Thiyagalingam S, Jackson D, Davison A, Spafford JD. PLoS One 9 e92941 (2014)
  95. L-type calcium channel activity in osteoblast cells is regulated by the actin cytoskeleton independent of protein trafficking. Li F, Wang W, Gu M, Gyoneva S, Zhang J, Huang S, Traynelis SF, Cai H, Guggino SE, Zhang X. J Bone Miner Metab 29 515-525 (2011)
  96. Rad and Rem are non-canonical G-proteins with respect to the regulatory role of guanine nucleotide binding in Ca(V)1.2 channel regulation. Chang DD, Colecraft HM. J Physiol 593 5075-5090 (2015)
  97. Three-dimensional localization of the α and β subunits and of the II-III loop in the skeletal muscle L-type Ca2+ channel. Szpyt J, Lorenzon N, Perez CF, Norris E, Allen PD, Beam KG, Samsó M. J Biol Chem 287 43853-43861 (2012)
  98. Reconstitution of β-adrenergic regulation of CaV1.2: Rad-dependent and Rad-independent protein kinase A mechanisms. Katz M, Subramaniam S, Chomsky-Hecht O, Tsemakhovich V, Flockerzi V, Klussmann E, Hirsch JA, Weiss S, Dascal N. Proc Natl Acad Sci U S A 118 e2100021118 (2021)
  99. A short polybasic segment between the two conserved domains of the β2a-subunit modulates the rate of inactivation of R-type calcium channel. Miranda-Laferte E, Schmidt S, Jara AC, Neely A, Hidalgo P. J Biol Chem 287 32588-32597 (2012)
  100. Mutations of nonconserved residues within the calcium channel alpha1-interaction domain inhibit beta-subunit potentiation. Gonzalez-Gutierrez G, Miranda-Laferte E, Naranjo D, Hidalgo P, Neely A. J Gen Physiol 132 383-395 (2008)
  101. The HOOK region of voltage-gated Ca2+ channel β subunits senses and transmits PIP2 signals to the gate. Park CG, Park Y, Suh BC. J Gen Physiol 149 261-276 (2017)
  102. BARP suppresses voltage-gated calcium channel activity and Ca2+-evoked exocytosis. Béguin P, Nagashima K, Mahalakshmi RN, Vigot R, Matsunaga A, Miki T, Ng MY, Ng YJ, Lim CH, Tay HS, Hwang LA, Firsov D, Tang BL, Inagaki N, Mori Y, Seino S, Launey T, Hunziker W. J Cell Biol 205 233-249 (2014)
  103. Characterization of the first honeybee Ca²⁺ channel subunit reveals two novel species- and splicing-specific modes of regulation of channel inactivation. Cens T, Rousset M, Collet C, Raymond V, Démares F, Quintavalle A, Bellis M, Le Conte Y, Chahine M, Charnet P. Pflugers Arch 465 985-996 (2013)
  104. Delivery of ion channel genes to treat cardiovascular diseases. Marsh JD, Telemaque S, Rhee SW, Stimers JR, Rusch NJ. Trans Am Clin Climatol Assoc 119 171-82; discussion 182-3 (2008)
  105. Inhibition of protein kinase C (PKC) response of voltage-gated calcium (Cav)2.2 channels expressed in Xenopus oocytes by Cavβ subunits. Rajagopal S, Fields BL, Burton BK, On C, Reeder AA, Kamatchi GL. Neuroscience 280 1-9 (2014)
  106. 14-3-3τ promotes surface expression of Cav2.2 (α1B) Ca2+ channels. Liu F, Zhou Q, Zhou J, Sun H, Wang Y, Zou X, Feng L, Hou Z, Zhou A, Zhou Y, Li Y. J Biol Chem 290 2689-2698 (2015)
  107. Bimolecular fluorescence complementation and targeted biotinylation provide insight into the topology of the skeletal muscle Ca ( 2+) channel β1a subunit. Sheridan DC, Moua O, Lorenzon NM, Beam KG. Channels (Austin) 6 26-40 (2012)
  108. Comment Blocking the L-type Ca2+ channel with a gem: a paradigm for a more specific Ca2+ channel blocker. Balijepalli RC, Foell JD, Kamp TJ. Circ Res 95 337-339 (2004)
  109. EMC chaperone-CaV structure reveals an ion channel assembly intermediate. Chen Z, Mondal A, Abderemane-Ali F, Jang S, Niranjan S, Montaño JL, Zaro BW, Minor DL. Nature 619 410-419 (2023)
  110. Enzyme closure and nucleotide binding structurally lock guanylate kinase. Delalande O, Sacquin-Mora S, Baaden M. Biophys J 101 1440-1449 (2011)
  111. Solution NMR and calorimetric analysis of Rem2 binding to the Ca2+ channel β4 subunit: a low affinity interaction is required for inhibition of Cav2.1 Ca2+ currents. Xu X, Zhang F, Zamponi GW, Horne WA. FASEB J 29 1794-1804 (2015)
  112. Structural and biophysical analyses of the skeletal dihydropyridine receptor β subunit β1a reveal critical roles of domain interactions for stability. Norris NC, Joseph S, Aditya S, Karunasekara Y, Board PG, Dulhunty AF, Oakley AJ, Casarotto MG. J Biol Chem 292 8401-8411 (2017)
  113. The N terminus of a schistosome beta subunit regulates inactivation and current density of a Cav2 channel. Salvador-Recatalà V, Greenberg RM. J Biol Chem 285 35878-35888 (2010)
  114. A Tripartite Interaction Among the Calcium Channel α1- and β-Subunits and F-Actin Increases the Readily Releasable Pool of Vesicles and Its Recovery After Depletion. Guzman GA, Guzman RE, Jordan N, Hidalgo P. Front Cell Neurosci 13 125 (2019)
  115. Genetic modifiers to the PLN L39X mutation in a patient with DCM and sustained ventricular tachycardia? Sanoudou D, Kolokathis F, Arvanitis D, Al-Shafai K, Krishnamoorthy N, Buchan RJ, Walsh R, Tsiapras D, Barton PJ, Cook SA, Kremastinos D, Yacoub M. Glob Cardiol Sci Pract 2015 29 (2015)
  116. Structural flexibility of CaV1.2 and CaV2.2 I-II proximal linker fragments in solution. Almagor L, Avinery R, Hirsch JA, Beck R. Biophys J 104 2392-2400 (2013)
  117. The calcium channel beta4a subunit: a scaffolding protein between voltage-gated calcium channel and presynaptic vesicle-release machinery? Weiss N. J Neurosci 26 6117-6118 (2006)
  118. Conserved biophysical features of the CaV2 presynaptic Ca2+ channel homologue from the early-diverging animal Trichoplax adhaerens. Gauberg J, Abdallah S, Elkhatib W, Harracksingh AN, Piekut T, Stanley EF, Senatore A. J Biol Chem 295 18553-18578 (2020)
  119. Divergent Ca2+/calmodulin feedback regulation of CaV1 and CaV2 voltage-gated calcium channels evolved in the common ancestor of Placozoa and Bilateria. Gauberg J, Elkhatib W, Smith CL, Singh A, Senatore A. J Biol Chem 298 101741 (2022)
  120. Intramolecular ex vivo Fluorescence Resonance Energy Transfer (FRET) of Dihydropyridine Receptor (DHPR) β1a Subunit Reveals Conformational Change Induced by RYR1 in Mouse Skeletal Myotubes. Bhattacharya D, Mehle A, Kamp TJ, Balijepalli RC. PLoS One 10 e0131399 (2015)
  121. CaV1.1 Calcium Channel Signaling Complexes in Excitation-Contraction Coupling: Insights from Channelopathies. Campiglio M, Dyrda A, Tuinte WE, Török E. Handb Exp Pharmacol 279 3-39 (2023)
  122. Forskolin Regulates L-Type Calcium Channel through Interaction between Actinin 4 and β3 Subunit in Osteoblasts. Zhang X, Li F, Guo L, Hei H, Tian L, Peng W, Cai H. PLoS One 10 e0124274 (2015)
  123. Molecular basis of the PIP2-dependent regulation of CaV2.2 channel and its modulation by CaV β subunits. Park CG, Yu W, Suh BC. Elife 11 e69500 (2022)
  124. Selective posttranslational inhibition of CaVβ1-associated voltage-dependent calcium channels with a functionalized nanobody. Morgenstern TJ, Nirwan N, Hernández-Ochoa EO, Bibollet H, Choudhury P, Laloudakis YD, Ben Johny M, Bannister RA, Schneider MF, Minor DL, Colecraft HM. Nat Commun 13 7556 (2022)
  125. The HOOK region of β subunits controls gating of voltage-gated Ca2+ channels by electrostatically interacting with plasma membrane. Park CG, Suh BC. Channels (Austin) 11 467-475 (2017)
  126. The distal C terminus of the dihydropyridine receptor β1a subunit is essential for tetrad formation in skeletal muscle. Dayal A, Perni S, Franzini-Armstrong C, Beam KG, Grabner M. Proc Natl Acad Sci U S A 119 e2201136119 (2022)
  127. The α2δ Calcium Channel Subunit Accessorily and Independently Affects the Biological Function of Ditylenchus destructor. Chen X, An M, Ye S, Yang Z, Ding Z. Int J Mol Sci 23 12999 (2022)
  128. ¹H, ¹³C, and ¹⁵N backbone resonance assignments of the 37 kDa voltage-gated Ca²⁺ channel β4 subunit core SH3-GK domains. Xu X, Horne WA. Biomol NMR Assign 8 217-220 (2014)
  129. A CACNA1C variant associated with cardiac arrhythmias provides mechanistic insights in the calmodulation of L-type Ca2+ channels. Zhao J, Segura E, Marsolais M, Parent L. J Biol Chem 298 102632 (2022)
  130. Cavβ surface charged residues contribute to the regulation of neuronal calcium channels. Tran-Van-Minh A, De Waard M, Weiss N. Mol Brain 15 3 (2022)
  131. Increased CaV1.2 late current by a CACNA1C p.R412M variant causes an atypical Timothy syndrome without syndactyly. Ozawa J, Ohno S, Melgari D, Wang Q, Fukuyama M, Toyoda F, Makiyama T, Yoshinaga M, Suzuki H, Saitoh A, Ai T, Horie M. Sci Rep 12 18984 (2022)
  132. Peptides derived from high voltage-gated calcium channel β subunit reduce blood pressure in rats. Kim HK, Jun J, Kim TW, Youn DH. Korean J Physiol Pharmacol 27 481-491 (2023)


Related citations provided by authors (1)