1mxe Citations

Structure of the complex of calmodulin with the target sequence of calmodulin-dependent protein kinase I: studies of the kinase activation mechanism.

Biochemistry 41 14669-79 (2002)
Cited: 71 times
EuropePMC logo PMID: 12475216

Abstract

Calcium-saturated calmodulin (CaM) directly activates CaM-dependent protein kinase I (CaMKI) by binding to a region in the C-terminal regulatory sequence of the enzyme to relieve autoinhibition. The structure of CaM in a high-affinity complex with a 25-residue peptide of CaMKI (residues 294-318) has been determined by X-ray crystallography at 1.7 A resolution. Upon complex formation, the CaMKI peptide adopts an alpha-helical conformation, while changes in the CaM domain linker enable both its N- and C-domains to wrap around the peptide helix. Target peptide residues Trp-303 (interacting with the CaM C-domain) and Met-316 (with the CaM N-domain) define the mode of binding as 1-14. In addition, two basic patches on the peptide form complementary charge interactions with CaM. The CaM-peptide affinity is approximately 1 pM, compared with 30 nM for the CaM-kinase complex, indicating that activation of autoinhibited CaMKI by CaM requires a costly energetic disruption of the interactions between the CaM-binding sequence and the rest of the enzyme. We present biochemical and structural evidence indicating the involvement of both CaM domains in the activation process: while the C-domain exhibits tight binding toward the regulatory sequence, the N-domain is necessary for activation. Our crystal structure also enables us to identify the full CaM-binding sequence. Residues Lys-296 and Phe-298 from the target peptide interact directly with CaM, demonstrating overlap between the autoinhibitory and CaM-binding sequences. Thus, the kinase activation mechanism involves the binding of CaM to residues associated with the inhibitory pseudosubstrate sequence.

Articles - 1mxe mentioned but not cited (16)

  1. Structural basis for calcium sensing by GCaMP2. Wang Q, Shui B, Kotlikoff MI, Sondermann H. Structure 16 1817-1827 (2008)
  2. Transient, sparsely populated compact states of apo and calcium-loaded calmodulin probed by paramagnetic relaxation enhancement: interplay of conformational selection and induced fit. Anthis NJ, Doucleff M, Clore GM. J Am Chem Soc 133 18966-18974 (2011)
  3. The NMDA receptor NR1 C1 region bound to calmodulin: structural insights into functional differences between homologous domains. Ataman ZA, Gakhar L, Sorensen BR, Hell JW, Shea MA. Structure 15 1603-1617 (2007)
  4. Structure of the complex of a mitotic kinesin with its calcium binding regulator. Vinogradova MV, Malanina GG, Reddy AS, Fletterick RJ. Proc Natl Acad Sci U S A 106 8175-8179 (2009)
  5. Fast methionine-based solution structure determination of calcium-calmodulin complexes. Gifford JL, Ishida H, Vogel HJ. J Biomol NMR 50 71-81 (2011)
  6. Calmodulin wraps around its binding domain in the plasma membrane Ca2+ pump anchored by a novel 18-1 motif. Juranic N, Atanasova E, Filoteo AG, Macura S, Prendergast FG, Penniston JT, Strehler EE. J Biol Chem 285 4015-4024 (2010)
  7. Contrast-matched small-angle X-ray scattering from a heavy-atom-labeled protein in structure determination: application to a lead-substituted calmodulin-peptide complex. Grishaev A, Anthis NJ, Clore GM. J Am Chem Soc 134 14686-14689 (2012)
  8. Structural characterization of the interaction of human lactoferrin with calmodulin. Gifford JL, Ishida H, Vogel HJ. PLoS One 7 e51026 (2012)
  9. Retention of conformational entropy upon calmodulin binding to target peptides is driven by transient salt bridges. Smith DM, Straatsma TP, Squier TC. Biophys J 103 1576-1584 (2012)
  10. Conformational frustration in calmodulin-target recognition. Tripathi S, Wang Q, Zhang P, Hoffman L, Waxham MN, Cheung MS. J Mol Recognit 28 74-86 (2015)
  11. Crystal structures of human CaMKIα reveal insights into the regulation mechanism of CaMKI. Zha M, Zhong C, Ou Y, Han L, Wang J, Ding J. PLoS One 7 e44828 (2012)
  12. Secondary structure, a missing component of sequence-based minimotif definitions. Sargeant DP, Gryk MR, Maciejewski MW, Thapar V, Kundeti V, Rajasekaran S, Romero P, Dunker K, Li SC, Kaneko T, Schiller MR. PLoS One 7 e49957 (2012)
  13. Relative Cosolute Size Influences the Kinetics of Protein-Protein Interactions. Hoffman L, Wang X, Sanabria H, Cheung MS, Putkey JA, Waxham MN. Biophys J 109 510-520 (2015)
  14. Coarse-Grained Modeling and Molecular Dynamics Simulations of Ca2+-Calmodulin. Nde J, Zhang P, Ezerski JC, Lu W, Knapp K, Wolynes PG, Cheung MS. Front Mol Biosci 8 661322 (2021)
  15. Assessing local structural perturbations in proteins. Lema MA, Echave J. BMC Bioinformatics 6 226 (2005)
  16. Prediction of four kinds of simple supersecondary structures in protein by using chemical shifts. Yonge F. ScientificWorldJournal 2014 978503 (2014)


Reviews citing this publication (8)

  1. Dynamic personalities of proteins. Henzler-Wildman K, Kern D. Nature 450 964-972 (2007)
  2. Plasma membrane phosphoinositide organization by protein electrostatics. McLaughlin S, Murray D. Nature 438 605-611 (2005)
  3. Calmodulin's flexibility allows for promiscuity in its interactions with target proteins and peptides. Yamniuk AP, Vogel HJ. Mol Biotechnol 27 33-57 (2004)
  4. Structural diversity of calmodulin binding to its target sites. Tidow H, Nissen P. FEBS J 280 5551-5565 (2013)
  5. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Berchtold MW, Villalobo A. Biochim Biophys Acta 1843 398-435 (2014)
  6. Promiscuity as a functional trait: intrinsically disordered regions as central players of interactomes. Cumberworth A, Lamour G, Babu MM, Gsponer J. Biochem J 454 361-369 (2013)
  7. α-Helix mimetics: outwards and upwards. Jayatunga MK, Thompson S, Hamilton AD. Bioorg Med Chem Lett 24 717-724 (2014)
  8. Time-resolved solid state NMR of biomolecular processes with millisecond time resolution. Jeon J, Blake Wilson C, Yau WM, Thurber KR, Tycko R. J Magn Reson 342 107285 (2022)

Articles citing this publication (47)

  1. The role of conformational entropy in molecular recognition by calmodulin. Marlow MS, Dogan J, Frederick KK, Valentine KG, Wand AJ. Nat Chem Biol 6 352-358 (2010)
  2. A closed compact structure of native Ca(2+)-calmodulin. Fallon JL, Quiocho FA. Structure 11 1303-1307 (2003)
  3. Structural insights into the functional interaction of KChIP1 with Shal-type K(+) channels. Zhou W, Qian Y, Kunjilwar K, Pfaffinger PJ, Choe S. Neuron 41 573-586 (2004)
  4. Complex of calmodulin with a ryanodine receptor target reveals a novel, flexible binding mode. Maximciuc AA, Putkey JA, Shamoo Y, Mackenzie KR. Structure 14 1547-1556 (2006)
  5. Identification of the calmodulin binding domain of connexin 43. Zhou Y, Yang W, Lurtz MM, Ye Y, Huang Y, Lee HW, Chen Y, Louis CF, Yang JJ. J Biol Chem 282 35005-35017 (2007)
  6. Structural basis for simultaneous binding of two carboxy-terminal peptides of plant glutamate decarboxylase to calmodulin. Yap KL, Yuan T, Mal TK, Vogel HJ, Ikura M. J Mol Biol 328 193-204 (2003)
  7. Structure and intrinsic disorder in protein autoinhibition. Trudeau T, Nassar R, Cumberworth A, Wong ET, Woollard G, Gsponer J. Structure 21 332-341 (2013)
  8. Distinct properties of Ca2+-calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel. Lau SY, Procko E, Gaudet R. J Gen Physiol 140 541-555 (2012)
  9. Computational design of calmodulin mutants with up to 900-fold increase in binding specificity. Yosef E, Politi R, Choi MH, Shifman JM. J Mol Biol 385 1470-1480 (2009)
  10. The plant plasma membrane Ca2+ pump ACA8 contains overlapping as well as physically separated autoinhibitory and calmodulin-binding domains. Baekgaard L, Luoni L, De Michelis MI, Palmgren MG. J Biol Chem 281 1058-1065 (2006)
  11. Calmodulin mediates the Ca2+-dependent regulation of Cx44 gap junctions. Zhou Y, Yang W, Lurtz MM, Chen Y, Jiang J, Huang Y, Louis CF, Yang JJ. Biophys J 96 2832-2848 (2009)
  12. Structure of the regulatory apparatus of a calcium-dependent protein kinase (CDPK): a novel mode of calmodulin-target recognition. Chandran V, Stollar EJ, Lindorff-Larsen K, Harper JF, Chazin WJ, Dobson CM, Luisi BF, Christodoulou J. J Mol Biol 357 400-410 (2006)
  13. An efficient algorithm for multistate protein design based on FASTER. Allen BD, Mayo SL. J Comput Chem 31 904-916 (2010)
  14. Interaction between the C-terminal region of human myelin basic protein and calmodulin: analysis of complex formation and solution structure. Majava V, Petoukhov MV, Hayashi N, Pirilä P, Svergun DI, Kursula P. BMC Struct Biol 8 10 (2008)
  15. Domain swapping and different oligomeric States for the complex between calmodulin and the calmodulin-binding domain of calcineurin a. Majava V, Kursula P. PLoS One 4 e5402 (2009)
  16. Structure of the calmodulin alphaII-spectrin complex provides insight into the regulation of cell plasticity. Simonovic M, Zhang Z, Cianci CD, Steitz TA, Morrow JS. J Biol Chem 281 34333-34340 (2006)
  17. Energetics of calmodulin domain interactions with the calmodulin binding domain of CaMKII. Evans TI, Shea MA. Proteins 76 47-61 (2009)
  18. Calculation of proteins' total side-chain torsional entropy and its influence on protein-ligand interactions. DuBay KH, Geissler PL. J Mol Biol 391 484-497 (2009)
  19. The IQD gene family in soybean: structure, phylogeny, evolution and expression. Feng L, Chen Z, Ma H, Chen X, Li Y, Wang Y, Xiang Y. PLoS One 9 e110896 (2014)
  20. Calmodulin regulates Ca2+-sensing receptor-mediated Ca2+ signaling and its cell surface expression. Huang Y, Zhou Y, Wong HC, Castiblanco A, Chen Y, Brown EM, Yang JJ. J Biol Chem 285 35919-35931 (2010)
  21. Cytoplasmic localization of calcium/calmodulin-dependent protein kinase I-alpha depends on a nuclear export signal in its regulatory domain. Stedman DR, Uboha NV, Stedman TT, Nairn AC, Picciotto MR. FEBS Lett 566 275-280 (2004)
  22. Genome-wide analysis of the IQD gene family in maize. Cai R, Zhang C, Zhao Y, Zhu K, Wang Y, Jiang H, Xiang Y, Cheng B. Mol Genet Genomics 291 543-558 (2016)
  23. A molecular dynamics study and free energy analysis of complexes between the Mlc1p protein and two IQ motif peptides. Ganoth A, Friedman R, Nachliel E, Gutman M. Biophys J 91 2436-2450 (2006)
  24. Characterization of calmodulin binding domains in TRPV2 and TRPV5 C-tails. Holakovska B, Grycova L, Bily J, Teisinger J. Amino Acids 40 741-748 (2011)
  25. Genome-wide analysis of the Chinese cabbage IQD gene family and the response of BrIQD5 in drought resistance. Yuan J, Liu T, Yu Z, Li Y, Ren H, Hou X, Li Y. Plant Mol Biol 99 603-620 (2019)
  26. Allosteric effects of the antipsychotic drug trifluoperazine on the energetics of calcium binding by calmodulin. Feldkamp MD, O'Donnell SE, Yu L, Shea MA. Proteins 78 2265-2282 (2010)
  27. Calcium triggers reversal of calmodulin on nested anti-parallel sites in the IQ motif of the neuronal voltage-dependent sodium channel NaV1.2. Hovey L, Fowler CA, Mahling R, Lin Z, Miller MS, Marx DC, Yoder JB, Kim EH, Tefft KM, Waite BC, Feldkamp MD, Yu L, Shea MA. Biophys Chem 224 1-19 (2017)
  28. A Microfluidic Platform for Real-Time Detection and Quantification of Protein-Ligand Interactions. Herling TW, O'Connell DJ, Bauer MC, Persson J, Weininger U, Knowles TP, Linse S. Biophys J 110 1957-1966 (2016)
  29. Crystal structure of the Ca²⁺/calmodulin-dependent protein kinase kinase in complex with the inhibitor STO-609. Kukimoto-Niino M, Yoshikawa S, Takagi T, Ohsawa N, Tomabechi Y, Terada T, Shirouzu M, Suzuki A, Lee S, Yamauchi T, Okada-Iwabu M, Iwabu M, Kadowaki T, Minokoshi Y, Yokoyama S. J Biol Chem 286 22570-22579 (2011)
  30. Spectroscopic characterization of the calmodulin-binding and autoinhibitory domains of calcium/calmodulin-dependent protein kinase I. Yuan T, Gomes AV, Barnes JA, Hunter HN, Vogel HJ. Arch Biochem Biophys 421 192-206 (2004)
  31. Effect of cationic flaxseed protein hydrolysate fractions on the in vitro structure and activity of calmodulin-dependent endothelial nitric oxide synthase. Omoni AO, Aluko RE. Mol Nutr Food Res 50 958-966 (2006)
  32. Interaction of calmodulin with the phosphofructokinase target sequence. Martin SR, Biekofsky RR, Skinner MA, Guerrini R, Salvadori S, Feeney J, Bayley PM. FEBS Lett 577 284-288 (2004)
  33. Thermodynamics of binding by calmodulin correlates with target peptide α-helical propensity. Dunlap TB, Kirk JM, Pena EA, Yoder MS, Creamer TP. Proteins 81 607-612 (2013)
  34. Interactions of calmodulin with death-associated protein kinase peptides: experimental and modeling studies. Kuczera K, Kursula P. J Biomol Struct Dyn 30 45-61 (2012)
  35. Millisecond Time-Resolved Solid-State NMR Reveals a Two-Stage Molecular Mechanism for Formation of Complexes between Calmodulin and a Target Peptide from Myosin Light Chain Kinase. Jeon J, Yau WM, Tycko R. J Am Chem Soc 142 21220-21232 (2020)
  36. Binding orientation and specificity of calmodulin to rat olfactory cyclic nucleotide-gated ion channel. Irene D, Huang JW, Chung TY, Li FY, Tzen JT, Lin TH, Chyan CL. J Biomol Struct Dyn 31 414-425 (2013)
  37. Calcium-calmodulin kinase I cooperatively regulates nucleocytoplasmic shuttling of CCTα by accessing a nuclear export signal. Agassandian M, Chen BB, Pulijala R, Kaercher L, Glasser JR, Mallampalli RK. Mol Biol Cell 23 2755-2769 (2012)
  38. Investigating the disorder-order transition of calmodulin binding domain upon binding calmodulin using molecular dynamics simulation. Zhang Y, Tan H, Chen G, Jia Z. J Mol Recognit 23 360-368 (2010)
  39. Prediction of three dimensional structure of calmodulin. Chen K, Ruan J, Kurgan LA. Protein J 25 57-70 (2006)
  40. Structural characterization of Ca2+/CaM in complex with the phosphorylase kinase PhK5 peptide. Cook AG, Johnson LN, McDonnell JM. FEBS J 272 1511-1522 (2005)
  41. Structural characterization of a novel Ca2+-binding protein from Entamoeba histolytica: structural basis for the observed functional differences with its isoform. Mustafi SM, Mutalik RB, Jain R, Chandra K, Bhattacharya A, Chary KV. J Biol Inorg Chem 14 471-483 (2009)
  42. A new calmodulin-binding motif for inositol 1,4,5-trisphosphate 3-kinase regulation. Franco-Echevarría E, Baños-Sanz JI, Monterroso B, Round A, Sanz-Aparicio J, González B. Biochem J 463 319-328 (2014)
  43. Modeling the mutational effects on calmodulin structure: prediction of alteration in the amino acid interactions. Rashid A, Khurshid R, Begum M, Gul-e-Raana, Latif M, Salim A. Biochem Biophys Res Commun 317 363-369 (2004)
  44. Molecular dynamics study of a calmodulin-like protein with an IQ peptide: spontaneous refolding of the protein around the peptide. Ganoth A, Nachliel E, Friedman R, Gutman M. Proteins 64 133-146 (2006)
  45. The Recognition of Calmodulin to the Target Sequence of Calcineurin-A Novel Binding Mode. Chyan CL, Irene D, Lin SM. Molecules 22 E1584 (2017)
  46. Visualizing Heterogeneous Protein Conformations with Multi-Tilt Nanoparticle-Aided Cryo-Electron Microscopy Sampling. Kim C, Kim Y, Lee SJ, Yun SR, Choi J, Kim SO, Yang Y, Ihee H. Nano Lett 23 3334-3343 (2023)
  47. Resonance assignments and secondary structure of calmodulin in complex with its target sequence in rat olfactory cyclic nucleotide-gated ion channel. Irene D, Sung FH, Huang JW, Lin TH, Chen YC, Chyan CL. Biomol NMR Assign 8 97-102 (2014)