1h4l Citations

Structure and regulation of the CDK5-p25(nck5a) complex.

Mol Cell 8 657-69 (2001)
Cited: 147 times
EuropePMC logo PMID: 11583627

Abstract

CDK5 plays an indispensable role in the central nervous system, and its deregulation is involved in neurodegeneration. We report the crystal structure of a complex between CDK5 and p25, a fragment of the p35 activator. Despite its partial structural similarity with the cyclins, p25 displays an unprecedented mechanism for the regulation of a cyclin-dependent kinase. p25 tethers the unphosphorylated T loop of CDK5 in the active conformation. Residue Ser159, equivalent to Thr160 on CDK2, contributes to the specificity of the CDK5-p35 interaction. Its substitution with threonine prevents p35 binding, while the presence of alanine affects neither binding nor kinase activity. Finally, we provide evidence that the CDK5-p25 complex employs a distinct mechanism from the phospho-CDK2-cyclin A complex to establish substrate specificity.

Reviews - 1h4l mentioned but not cited (3)

  1. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors. Peyressatre M, Prével C, Pellerano M, Morris MC. Cancers (Basel) 7 179-237 (2015)
  2. Substrate and docking interactions in serine/threonine protein kinases. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Chem Rev 107 5065-5081 (2007)
  3. Structure-based discovery of cyclin-dependent protein kinase inhibitors. Martin MP, Endicott JA, Noble MEM. Essays Biochem 61 439-452 (2017)

Articles - 1h4l mentioned but not cited (12)

  1. S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide. Qu J, Nakamura T, Cao G, Holland EA, McKercher SR, Lipton SA. Proc Natl Acad Sci U S A 108 14330-14335 (2011)
  2. All-atomic molecular dynamic studies of human CDK8: insight into the A-loop, point mutations and binding with its partner CycC. Xu W, Amire-Brahimi B, Xie XJ, Huang L, Ji JY. Comput Biol Chem 51 1-11 (2014)
  3. Discovery of thienoquinolone derivatives as selective and ATP non-competitive CDK5/p25 inhibitors by structure-based virtual screening. Chatterjee A, Cutler SJ, Doerksen RJ, Khan IA, Williamson JS. Bioorg Med Chem 22 6409-6421 (2014)
  4. Deciphering Key Pharmacological Pathways of Qingdai Acting on Chronic Myeloid Leukemia Using a Network Pharmacology-Based Strategy. Li H, Liu L, Liu C, Zhuang J, Zhou C, Yang J, Gao C, Liu G, Lv Q, Sun C. Med Sci Monit 24 5668-5688 (2018)
  5. Structural and dynamic determinants of ligand binding and regulation of cyclin-dependent kinase 5 by pathological activator p25 and inhibitory peptide CIP. Cardone A, Hassan SA, Albers RW, Sriram RD, Pant HC. J Mol Biol 401 478-492 (2010)
  6. Structural basis for the different stability and activity between the Cdk5 complexes with p35 and p39 activators. Saito T, Yano M, Kawai Y, Asada A, Wada M, Doi H, Hisanaga SI. J Biol Chem 288 32433-32439 (2013)
  7. Ensemble-based modeling and rigidity decomposition of allosteric interaction networks and communication pathways in cyclin-dependent kinases: Differentiating kinase clients of the Hsp90-Cdc37 chaperone. Stetz G, Tse A, Verkhivker GM. PLoS One 12 e0186089 (2017)
  8. Investigation of the flexibility of protein kinases implicated in the pathology of Alzheimer's disease. Mazanetz MP, Laughton CA, Fischer PM. Molecules 19 9134-9159 (2014)
  9. New structural insights into phosphorylation-free mechanism for full cyclin-dependent kinase (CDK)-cyclin activity and substrate recognition. Zheng F, Quiocho FA. J Biol Chem 288 30682-30692 (2013)
  10. Systemic Administration of a Brain Permeable Cdk5 Inhibitor Alters Neurobehavior. Umfress A, Singh S, Ryan KJ, Chakraborti A, Plattner F, Sonawane Y, Mallareddy JR, Acosta EP, Natarajan A, Bibb JA. Front Pharmacol 13 863762 (2022)
  11. ARN25068, a versatile starting point towards triple GSK-3β/FYN/DYRK1A inhibitors to tackle tau-related neurological disorders. Demuro S, Sauvey C, Tripathi SK, Di Martino RMC, Shi D, Ortega JA, Russo D, Balboni B, Giabbai B, Storici P, Girotto S, Abagyan R, Cavalli A. Eur J Med Chem 229 114054 (2022)
  12. Identification of Quinazolinone Analogs Targeting CDK5 Kinase Activity and Glioblastoma Cell Proliferation. Peyressatre M, Arama DP, Laure A, González-Vera JA, Pellerano M, Masurier N, Lisowski V, Morris MC. Front Chem 8 691 (2020)


Reviews citing this publication (33)

  1. Regulation of protein kinases; controlling activity through activation segment conformation. Nolen B, Taylor S, Ghosh G. Mol Cell 15 661-675 (2004)
  2. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Mazanetz MP, Fischer PM. Nat Rev Drug Discov 6 464-479 (2007)
  3. Cyclin-dependent kinases in brain development and disease. Su SC, Tsai LH. Annu Rev Cell Dev Biol 27 465-491 (2011)
  4. Cdk5 deregulation in the pathogenesis of Alzheimer's disease. Cruz JC, Tsai LH. Trends Mol Med 10 452-458 (2004)
  5. Atypical mitogen-activated protein kinases: structure, regulation and functions. Coulombe P, Meloche S. Biochim Biophys Acta 1773 1376-1387 (2007)
  6. Physiological and pathological phosphorylation of tau by Cdk5. Kimura T, Ishiguro K, Hisanaga S. Front Mol Neurosci 7 65 (2014)
  7. Cdk5 activity in the brain - multiple paths of regulation. Shah K, Lahiri DK. J Cell Sci 127 2391-2400 (2014)
  8. Cycling at the interface between neurodevelopment and neurodegeneration. Nguyen MD, Mushynski WE, Julien JP. Cell Death Differ 9 1294-1306 (2002)
  9. Structural insights into the functional diversity of the CDK-cyclin family. Wood DJ, Endicott JA. Open Biol 8 180112 (2018)
  10. Regulation and role of cyclin-dependent kinase activity in neuronal survival and death. Hisanaga S, Endo R. J Neurochem 115 1309-1321 (2010)
  11. Posttranslational modification of the androgen receptor in prostate cancer. van der Steen T, Tindall DJ, Huang H. Int J Mol Sci 14 14833-14859 (2013)
  12. Extraneuronal activities and regulatory mechanisms of the atypical cyclin-dependent kinase Cdk5. Arif A. Biochem Pharmacol 84 985-993 (2012)
  13. Cyclin-dependent kinase homologues of Plasmodium falciparum. Doerig C, Endicott J, Chakrabarti D. Int J Parasitol 32 1575-1585 (2002)
  14. CDK activation by non-cyclin proteins. Nebreda AR. Curr Opin Cell Biol 18 192-198 (2006)
  15. Orphan kinases turn eccentric: a new class of cyclin Y-activated, membrane-targeted CDKs. Mikolcevic P, Rainer J, Geley S. Cell Cycle 11 3758-3768 (2012)
  16. Selectivity and potency of cyclin-dependent kinase inhibitors. Sridhar J, Akula N, Pattabiraman N. AAPS J 8 E204-21 (2006)
  17. Proteus in the world of proteins: conformational changes in protein kinases. Rabiller M, Getlik M, Klüter S, Richters A, Tückmantel S, Simard JR, Rauh D. Arch Pharm (Weinheim) 343 193-206 (2010)
  18. Cdk5 and the non-catalytic arrest of the neuronal cell cycle. Zhang J, Herrup K. Cell Cycle 7 3487-3490 (2008)
  19. Pharmacological targeting of CDK9 in cardiac hypertrophy. Krystof V, Chamrád I, Jorda R, Kohoutek J. Med Res Rev 30 646-666 (2010)
  20. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer. Wen S, Niu Y, Huang H. Asian J Urol 7 203-218 (2020)
  21. CDKs: taking on a role as mediators of dopaminergic loss in Parkinson's disease. Smith PD, O'Hare MJ, Park DS. Trends Mol Med 10 445-451 (2004)
  22. A kinase of many talents: non-neuronal functions of CDK5 in development and disease. Sharma S, Sicinski P. Open Biol 10 190287 (2020)
  23. Structural characterization of the cyclin-dependent protein kinase family. Endicott JA, Noble ME. Biochem Soc Trans 41 1008-1016 (2013)
  24. CDK5: Key Regulator of Apoptosis and Cell Survival. Roufayel R, Murshid N. Biomedicines 7 E88 (2019)
  25. CDK5 in oncology: recent advances and future prospects. Lenjisa JL, Tadesse S, Khair NZ, Kumarasiri M, Yu M, Albrecht H, Milne R, Wang S. Future Med Chem 9 1939-1962 (2017)
  26. The Role of CDK5 in Tumours and Tumour Microenvironments. Do PA, Lee CH. Cancers (Basel) 13 E101 (2020)
  27. Cyclin-dependent kinases and rare developmental disorders. Colas P. Orphanet J Rare Dis 15 203 (2020)
  28. The role of cyclin-dependent kinase 5 in neuropathic pain. Gomez K, Vallecillo TGM, Moutal A, Perez-Miller S, Delgado-Lezama R, Felix R, Khanna R. Pain 161 2674-2689 (2020)
  29. Discovery of compounds that will prevent tau pathology. Kosik KS, Ahn J, Stein R, Yeh LA. J Mol Neurosci 19 261-266 (2002)
  30. The neuronal cyclin-dependent kinase 5 activator p35Nck5a and Cdk5 activity in monocytic cells. Studzinski GP, Harrison JS. Leuk Lymphoma 44 235-240 (2003)
  31. Post-translational modifications of CDK5 and their biological roles in cancer. Gao GB, Sun Y, Fang RD, Wang Y, Wang Y, He QY. Mol Biomed 2 22 (2021)
  32. Therapeutic strategies for tauopathies and drug repurposing as a potential approach. Islam M, Shen F, Regmi D, Du D. Biochem Pharmacol 198 114979 (2022)
  33. Discovery of small molecule degraders for modulating cell cycle. Wang L, Yang Z, Li G, Liu Y, Ai C, Rao Y. Front Med 17 823-854 (2023)

Articles citing this publication (99)

  1. GSK-3-selective inhibitors derived from Tyrian purple indirubins. Meijer L, Skaltsounis AL, Magiatis P, Polychronopoulos P, Knockaert M, Leost M, Ryan XP, Vonica CA, Brivanlou A, Dajani R, Crovace C, Tarricone C, Musacchio A, Roe SM, Pearl L, Greengard P. Chem Biol 10 1255-1266 (2003)
  2. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Kornev AP, Haste NM, Taylor SS, Eyck LF. Proc Natl Acad Sci U S A 103 17783-17788 (2006)
  3. p27 binds cyclin-CDK complexes through a sequential mechanism involving binding-induced protein folding. Lacy ER, Filippov I, Lewis WS, Otieno S, Xiao L, Weiss S, Hengst L, Kriwacki RW. Nat Struct Mol Biol 11 358-364 (2004)
  4. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. Baumli S, Lolli G, Lowe ED, Troiani S, Rusconi L, Bullock AN, Debreczeni JE, Knapp S, Johnson LN. EMBO J 27 1907-1918 (2008)
  5. An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ. Banks AS, McAllister FE, Camporez JP, Zushin PJ, Jurczak MJ, Laznik-Bogoslavski D, Shulman GI, Gygi SP, Spiegelman BM. Nature 517 391-395 (2015)
  6. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Chou KC, Wei DQ, Zhong WZ. Biochem Biophys Res Commun 308 148-151 (2003)
  7. Cyclin E constrains Cdk5 activity to regulate synaptic plasticity and memory formation. Odajima J, Wills ZP, Ndassa YM, Terunuma M, Kretschmannova K, Deeb TZ, Geng Y, Gawrzak S, Quadros IM, Newman J, Das M, Jecrois ME, Yu Q, Li N, Bienvenu F, Moss SJ, Greenberg ME, Marto JA, Sicinski P. Dev Cell 21 655-668 (2011)
  8. The cyclin-dependent kinase 5 activators p35 and p39 interact with the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II and alpha-actinin-1 in a calcium-dependent manner. Dhavan R, Greer PL, Morabito MA, Orlando LR, Tsai LH. J Neurosci 22 7879-7891 (2002)
  9. The structure of CDK8/CycC implicates specificity in the CDK/cyclin family and reveals interaction with a deep pocket binder. Schneider EV, Böttcher J, Blaesse M, Neumann L, Huber R, Maskos K. J Mol Biol 412 251-266 (2011)
  10. Cdk5 suppresses the neuronal cell cycle by disrupting the E2F1-DP1 complex. Zhang J, Li H, Yabut O, Fitzpatrick H, D'Arcangelo G, Herrup K. J Neurosci 30 5219-5228 (2010)
  11. The crystal structure of human CDK7 and its protein recognition properties. Lolli G, Lowe ED, Brown NR, Johnson LN. Structure 12 2067-2079 (2004)
  12. The structure of CDK4/cyclin D3 has implications for models of CDK activation. Takaki T, Echalier A, Brown NR, Hunt T, Endicott JA, Noble ME. Proc Natl Acad Sci U S A 106 4171-4176 (2009)
  13. A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas. Tam LW, Wilson NF, Lefebvre PA. J Cell Biol 176 819-829 (2007)
  14. Cyclin Y, a novel membrane-associated cyclin, interacts with PFTK1. Jiang M, Gao Y, Yang T, Zhu X, Chen J. FEBS Lett 583 2171-2178 (2009)
  15. Synthesis and target identification of hymenialdisine analogs. Wan Y, Hur W, Cho CY, Liu Y, Adrian FJ, Lozach O, Bach S, Mayer T, Fabbro D, Meijer L, Gray NS. Chem Biol 11 247-259 (2004)
  16. A peptide derived from cyclin-dependent kinase activator (p35) specifically inhibits Cdk5 activity and phosphorylation of tau protein in transfected cells. Zheng YL, Li BS, Amin ND, Albers W, Pant HC. Eur J Biochem 269 4427-4434 (2002)
  17. 3D structure modeling of cytochrome P450 2C19 and its implication for personalized drug design. Wang JF, Wei DQ, Li L, Zheng SY, Li YX, Chou KC. Biochem Biophys Res Commun 355 513-519 (2007)
  18. Insights from investigating the interaction of oseltamivir (Tamiflu) with neuraminidase of the 2009 H1N1 swine flu virus. Wang SQ, Du QS, Huang RB, Zhang DW, Chou KC. Biochem Biophys Res Commun 386 432-436 (2009)
  19. Increased ezrin expression and activation by CDK5 coincident with acquisition of the senescent phenotype. Yang HS, Hinds PW. Mol Cell 11 1163-1176 (2003)
  20. Structures of P. falciparum PfPK5 test the CDK regulation paradigm and suggest mechanisms of small molecule inhibition. Holton S, Merckx A, Burgess D, Doerig C, Noble M, Endicott J. Structure 11 1329-1337 (2003)
  21. Suppression of calpain-dependent cleavage of the CDK5 activator p35 to p25 by site-specific phosphorylation. Kamei H, Saito T, Ozawa M, Fujita Y, Asada A, Bibb JA, Saido TC, Sorimachi H, Hisanaga S. J Biol Chem 282 1687-1694 (2007)
  22. Molecular basis for the specificity of p27 toward cyclin-dependent kinases that regulate cell division. Lacy ER, Wang Y, Post J, Nourse A, Webb W, Mapelli M, Musacchio A, Siuzdak G, Kriwacki RW. J Mol Biol 349 764-773 (2005)
  23. Insights from modeling the 3D structure of H5N1 influenza virus neuraminidase and its binding interactions with ligands. Wei DQ, Du QS, Sun H, Chou KC. Biochem Biophys Res Commun 344 1048-1055 (2006)
  24. Evolved to be active: sulfate ions define substrate recognition sites of CK2alpha and emphasise its exceptional role within the CMGC family of eukaryotic protein kinases. Niefind K, Yde CW, Ermakova I, Issinger OG. J Mol Biol 370 427-438 (2007)
  25. Abl deregulates Cdk5 kinase activity and subcellular localization in Drosophila neurodegeneration. Lin H, Lin TY, Juang JL. Cell Death Differ 14 607-615 (2007)
  26. Defining Cdk5 ligand chemical space with small molecule inhibitors of tau phosphorylation. Ahn JS, Radhakrishnan ML, Mapelli M, Choi S, Tidor B, Cuny GD, Musacchio A, Yeh LA, Kosik KS. Chem Biol 12 811-823 (2005)
  27. Identification of nuclear import mechanisms for the neuronal Cdk5 activator. Fu X, Choi YK, Qu D, Yu Y, Cheung NS, Qi RZ. J Biol Chem 281 39014-39021 (2006)
  28. CDK5 activator protein p25 preferentially binds and activates GSK3β. Chow HM, Guo D, Zhou JC, Zhang GY, Li HF, Herrup K, Zhang J. Proc Natl Acad Sci U S A 111 E4887-95 (2014)
  29. Characterization of a new family of cyclin-dependent kinase activators. Dinarina A, Perez LH, Davila A, Schwab M, Hunt T, Nebreda AR. Biochem J 386 349-355 (2005)
  30. Structure of the Pho85-Pho80 CDK-cyclin complex of the phosphate-responsive signal transduction pathway. Huang K, Ferrin-O'Connell I, Zhang W, Leonard GA, O'Shea EK, Quiocho FA. Mol Cell 28 614-623 (2007)
  31. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with a loss-of-function mutation in CDK5. Magen D, Ofir A, Berger L, Goldsher D, Eran A, Katib N, Nijem Y, Vlodavsky E, Tzur S, Behar DM, Fellig Y, Mandel H. Hum Genet 134 305-314 (2015)
  32. Identification of the N-terminal functional domains of Cdk5 by molecular truncation and computer modeling. Zhang J, Luan CH, Chou KC, Johnson GV. Proteins 48 447-453 (2002)
  33. Phosphorylation of the homer-binding domain of group I metabotropic glutamate receptors by cyclin-dependent kinase 5. Orlando LR, Ayala R, Kett LR, Curley AA, Duffner J, Bragg DC, Tsai LH, Dunah AW, Young AB. J Neurochem 110 557-569 (2009)
  34. Molecular motions of human cyclin-dependent kinase 2. Barrett CP, Noble ME. J Biol Chem 280 13993-14005 (2005)
  35. Structure of the mediator subunit cyclin C and its implications for CDK8 function. Hoeppner S, Baumli S, Cramer P. J Mol Biol 350 833-842 (2005)
  36. Molecular model of cyclin-dependent kinase 5 complexed with roscovitine. Filgueira de Azevedo W, Gaspar RT, Canduri F, Camera JC, Freitas da Silveira NJ. Biochem Biophys Res Commun 297 1154-1158 (2002)
  37. Modeling the tertiary structure of human cathepsin-E. Chou KC. Biochem Biophys Res Commun 331 56-60 (2005)
  38. A specific interaction between muskelin and the cyclin-dependent kinase 5 activator p39 promotes peripheral localization of muskelin. Ledee DR, Gao CY, Seth R, Fariss RN, Tripathi BK, Zelenka PS. J Biol Chem 280 21376-21383 (2005)
  39. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP. Wang JF, Wei DQ, Lin Y, Wang YH, Du HL, Li YX, Chou KC. Biochem Biophys Res Commun 359 323-329 (2007)
  40. A precisely positioned MED12 activation helix stimulates CDK8 kinase activity. Klatt F, Leitner A, Kim IV, Ho-Xuan H, Schneider EV, Langhammer F, Weinmann R, Müller MR, Huber R, Meister G, Kuhn CD. Proc Natl Acad Sci U S A 117 2894-2905 (2020)
  41. ERK MAP kinase activation in spinal cord regulates phosphorylation of Cdk5 at serine 159 and contributes to peripheral inflammation induced pain/hypersensitivity. Zhang X, Zhang H, Shao H, Xue Q, Yu B. PLoS One 9 e87788 (2014)
  42. Activation of latent cyclin-dependent kinase 5 (Cdk5)-p35 complexes by membrane dissociation. Zhu YS, Saito T, Asada A, Maekawa S, Hisanaga S. J Neurochem 94 1535-1545 (2005)
  43. Phosphorylation of cyclin-dependent kinase 5 (Cdk5) at Tyr-15 is inhibited by Cdk5 activators and does not contribute to the activation of Cdk5. Kobayashi H, Saito T, Sato K, Furusawa K, Hosokawa T, Tsutsumi K, Asada A, Kamada S, Ohshima T, Hisanaga S. J Biol Chem 289 19627-19636 (2014)
  44. p10, the N-terminal domain of p35, protects against CDK5/p25-induced neurotoxicity. Zhang L, Liu W, Szumlinski KK, Lew J. Proc Natl Acad Sci U S A 109 20041-20046 (2012)
  45. Insights from investigating the interactions of adamantane-based drugs with the M2 proton channel from the H1N1 swine virus. Wang JF, Wei DQ, Chou KC. Biochem Biophys Res Commun 388 413-417 (2009)
  46. Structural basis of divergent cyclin-dependent kinase activation by Spy1/RINGO proteins. McGrath DA, Fifield BA, Marceau AH, Tripathi S, Porter LA, Rubin SM. EMBO J 36 2251-2262 (2017)
  47. Biochemical characterization of Cdk2-Speedy/Ringo A2. Cheng A, Gerry S, Kaldis P, Solomon MJ. BMC Biochem 6 19 (2005)
  48. Structure and inhibitor specificity of the PCTAIRE-family kinase CDK16. Dixon-Clarke SE, Shehata SN, Krojer T, Sharpe TD, von Delft F, Sakamoto K, Bullock AN. Biochem J 474 699-713 (2017)
  49. Tamoxifen inhibits CDK5 kinase activity by interacting with p35/p25 and modulates the pattern of tau phosphorylation. Corbel C, Zhang B, Le Parc A, Baratte B, Colas P, Couturier C, Kosik KS, Landrieu I, Le Tilly V, Bach S. Chem Biol 22 472-482 (2015)
  50. Drosophila lacking the Cdk5 activator, p35, display defective axon guidance, age-dependent behavioral deficits and reduced lifespan. Connell-Crowley L, Vo D, Luke L, Giniger E. Mech Dev 124 341-349 (2007)
  51. At the Fulcrum in Health and Disease: Cdk5 and the Balancing Acts of Neuronal Structure and Physiology. McLinden KA, Trunova S, Giniger E. Brain Disord Ther 2012 001 (2012)
  52. Recognition of Cdk2 by Cdk7. Lolli G, Johnson LN. Proteins 67 1048-1059 (2007)
  53. Small-molecule screening of PC3 prostate cancer cells identifies tilorone dihydrochloride to selectively inhibit cell growth based on cyclin-dependent kinase 5 expression. Wissing MD, Dadon T, Kim E, Piontek KB, Shim JS, Kaelber NS, Liu JO, Kachhap SK, Nelkin BD. Oncol Rep 32 419-424 (2014)
  54. Structure-activity relationship study of 2,4-diaminothiazoles as Cdk5/p25 kinase inhibitors. Laha JK, Zhang X, Qiao L, Liu M, Chatterjee S, Robinson S, Kosik KS, Cuny GD. Bioorg Med Chem Lett 21 2098-2101 (2011)
  55. CDK versus GSK-3 inhibition: a purple haze no longer? Fischer PM. Chem Biol 10 1144-1146 (2003)
  56. ODF1 phosphorylation by Cdk5/p35 enhances ODF1-OIP1 interaction. Rosales JL, Sarker K, Ho N, Broniewska M, Wong P, Cheng M, van der Hoorn FA, Lee KY. Cell Physiol Biochem 20 311-318 (2007)
  57. Structure-activity relationships of 3,4-dihydro-1H-quinazolin-2-one derivatives as potential CDK5 inhibitors. Rzasa RM, Kaller MR, Liu G, Magal E, Nguyen TT, Osslund TD, Powers D, Santora VJ, Viswanadhan VN, Wang HL, Xiong X, Zhong W, Norman MH. Bioorg Med Chem 15 6574-6595 (2007)
  58. Structural features underlying selective inhibition of GSK3β by dibromocantharelline: implications for rational drug design. Zhang N, Zhong R, Yan H, Jiang Y. Chem Biol Drug Des 77 199-205 (2011)
  59. Synthesis and structure-activity relationship of 4-(1,3-benzothiazol-2-yl)-thiophene-2-sulfonamides as cyclin-dependent kinase 5 (cdk5)/p25 inhibitors. Malmström J, Viklund J, Slivo C, Costa A, Maudet M, Sandelin C, Hiller G, Olsson LL, Aagaard A, Geschwindner S, Xue Y, Vasänge M. Bioorg Med Chem Lett 22 5919-5923 (2012)
  60. An in silico approach for the discovery of CDK5/p25 interaction inhibitors. Zhang B, Corbel C, Guéritte F, Couturier C, Bach S, Tan VB. Biotechnol J 6 871-881 (2011)
  61. Two Degradation Pathways of the p35 Cdk5 (Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination. Takasugi T, Minegishi S, Asada A, Saito T, Kawahara H, Hisanaga S. J Biol Chem 291 4649-4657 (2016)
  62. Autophosphorylation-induced degradation of the Pho85 cyclin Pcl5 is essential for response to amino acid limitation. Aviram S, Simon E, Gildor T, Glaser F, Kornitzer D. Mol Cell Biol 28 6858-6869 (2008)
  63. Design, synthesis, and testing of an 6-O-linked series of benzimidazole based inhibitors of CDK5/p25. Jain P, Flaherty PT, Yi S, Chopra I, Bleasdell G, Lipay J, Ferandin Y, Meijer L, Madura JD. Bioorg Med Chem 19 359-373 (2011)
  64. Highly solvatochromic and tunable fluorophores based on a 4,5-quinolimide scaffold: novel CDK5 probes. González-Vera JA, Fueyo-González F, Alkorta I, Peyressatre M, Morris MC, Herranz R. Chem Commun (Camb) 52 9652-9655 (2016)
  65. Molecular dynamics simulations on the inhibition of cyclin-dependent kinases 2 and 5 in the presence of activators. Zhang B, Tan VB, Lim KM, Tay TE. J Comput Aided Mol Des 20 395-404 (2006)
  66. A mitotic CDK5-PP4 phospho-signaling cascade primes 53BP1 for DNA repair in G1. Zheng XF, Acharya SS, Choe KN, Nikhil K, Adelmant G, Satapathy SR, Sharma S, Viccaro K, Rana S, Natarajan A, Sicinski P, Marto JA, Shah K, Chowdhury D. Nat Commun 10 4252 (2019)
  67. An inhibitor's-eye view of the ATP-binding site of CDKs in different regulatory states. Echalier A, Hole AJ, Lolli G, Endicott JA, Noble ME. ACS Chem Biol 9 1251-1256 (2014)
  68. Cyclin-dependent kinase 5 with phosphorylation of tyrosine 15 residue is enriched in striatal matrix compartment in adult mice. Morigaki R, Sako W, Okita S, Kasahara J, Yokoyama H, Nagahiro S, Kaji R, Goto S. Neuroscience 189 25-31 (2011)
  69. Sumoylation of p35 modulates p35/cyclin-dependent kinase (Cdk) 5 complex activity. Büchner A, Krumova P, Ganesan S, Bähr M, Eckermann K, Weishaupt JH. Neuromolecular Med 17 12-23 (2015)
  70. Detection and characterization of nonspecific, sparsely populated binding modes in the early stages of complexation. Cardone A, Bornstein A, Pant HC, Brady M, Sriram R, Hassan SA. J Comput Chem 36 983-995 (2015)
  71. L63, the Drosophila PFTAIRE, interacts with two novel proteins unrelated to cyclins. Rascle A, Stowers RS, Garza D, Lepesant JA, Hogness DS. Mech Dev 120 617-628 (2003)
  72. A phospho-tyrosine-based signaling module using SPOP, CSK, and LYN controls TLR-induced IRF activity. Tawaratsumida K, Redecke V, Wu R, Kuriakose J, Bouchard JJ, Mittag T, Lohman BK, Mishra A, High AA, Häcker H. Sci Adv 8 eabq0084 (2022)
  73. CDK5 interacts with Slo and affects its surface expression and kinetics through direct phosphorylation. Bai JP, Surguchev A, Joshi P, Gross L, Navaratnam D. Am J Physiol Cell Physiol 302 C766-80 (2012)
  74. The CDK5 activator, p39, binds specifically to myosin essential light chain. Ledee DR, Tripathi BK, Zelenka PS. Biochem Biophys Res Commun 354 1034-1039 (2007)
  75. The interaction of Munc 18 (p67) with the p10 domain of p35 protects in vivo Cdk5/p35 activity from inhibition by TFP5, a peptide derived from p35. Amin ND, Zheng Y, Bk B, Shukla V, Skuntz S, Grant P, Steiner J, Bhaskar M, Pant HC. Mol Biol Cell 27 3221-3232 (2016)
  76. Amino acid sequence conservation of the algesic fragment of myelin basic protein is required for its interaction with CDK5 and function in pain. Chernov AV, Remacle AG, Hullugundi SK, Cieplak P, Angert M, Dolkas J, Shubayev VI, Strongin AY. FEBS J 285 3485-3502 (2018)
  77. Computational study of the inhibitory mechanism of the kinase CDK5 hyperactivity by peptide p5 and derivation of a pharmacophore. Cardone A, Brady M, Sriram R, Pant HC, Hassan SA. J Comput Aided Mol Des 30 513-521 (2016)
  78. Explaining the inhibition of cyclin-dependent kinase 5 by peptides derived from p25 with molecular dynamics simulations and MM-PBSA. Tan VB, Zhang B, Lim KM, Tay TE. J Mol Model 16 1-8 (2010)
  79. The Cyclin-Dependent Kinase 5 Inhibitor Peptide Inhibits Herpes Simplex Virus Type 1 Replication. Man A, Slevin M, Petcu E, Fraefel C. Sci Rep 9 1260 (2019)
  80. A dinoflagellate CDK5-like cyclin-dependent kinase. Bertomeu T, Rivoal J, Morse D. Biol Cell 99 531-540 (2007)
  81. Drosophila cdk5 is needed for locomotive behavior and NMJ elaboration, but seems dispensable for synaptic transmission. Kissler AE, Pettersson N, Frölich A, Sigrist SJ, Suter B. Dev Neurobiol 69 365-377 (2009)
  82. Molecular basis of differential selectivity of cyclobutyl-substituted imidazole inhibitors against CDKs: insights for rational drug design. Rath SL, Senapati S. PLoS One 8 e73836 (2013)
  83. Phosphorylation of the cyclin CaPcl5 modulates both cyclin stability and specific recognition of the substrate. Simon E, Gildor T, Kornitzer D. J Mol Biol 425 3151-3165 (2013)
  84. Machine Learning-Based Virtual Screening for the Identification of Cdk5 Inhibitors. Di Stefano M, Galati S, Ortore G, Caligiuri I, Rizzolio F, Ceni C, Bertini S, Bononi G, Granchi C, Macchia M, Poli G, Tuccinardi T. Int J Mol Sci 23 10653 (2022)
  85. Mechanism of CDK5 activation revealed by steered molecular dynamics simulations and energy calculations. Zhang B, Su ZC, Tay TE, Tan VB. J Mol Model 16 1159-1168 (2010)
  86. Network-based modelling and percolation analysis of conformational dynamics and activation in the CDK2 and CDK4 proteins: dynamic and energetic polarization of the kinase lobes may determine divergence of the regulatory mechanisms. Verkhivker GM. Mol Biosyst 13 2235-2253 (2017)
  87. Novel rare variations in genes that regulate developmental change in N-methyl-d-aspartate receptor in patients with schizophrenia. Yoshikawa A, Nishimura F, Inai A, Eriguchi Y, Nishioka M, Takaya A, Tochigi M, Kawamura Y, Umekage T, Kato K, Sasaki T, Kasai K, Kakiuchi C. Hum Genome Var 5 17056 (2018)
  88. A Cdk5-derived peptide inhibits Cdk5/p25 activity and improves neurodegenerative phenotypes. Pao PC, Seo J, Lee A, Kritskiy O, Patnaik D, Penney J, Raju RM, Geigenmuller U, Silva MC, Lucente DE, Gusella JF, Dickerson BC, Loon A, Yu MX, Bula M, Yu M, Haggarty SJ, Tsai LH. Proc Natl Acad Sci U S A 120 e2217864120 (2023)
  89. CDK5 is present in sea urchin and starfish eggs and embryos and can interact with p35, cyclin E and cyclin B3. Lozano JC, Schatt P, Vergé V, Gobinet J, Villey V, Peaucellier G. Mol Reprod Dev 77 449-461 (2010)
  90. Effects of p35 Mutations Associated with Mental Retardation on the Cellular Function of p35-CDK5. Takada S, Mizuno K, Saito T, Asada A, Giese KP, Hisanaga S. PLoS One 10 e0140821 (2015)
  91. Identification and characterization of a novel phosphoregulatory site on cyclin-dependent kinase 5. Roach BL, Ngo JM, Limso C, Oloja KB, Bhandari D. Biochem Biophys Res Commun 504 753-758 (2018)
  92. Binding Mechanism of Inhibitors to CDK5/p25 Complex: Free Energy Calculation and Ranking Aggregation Analysis. Wu Q, Kang H, Tian C, Huang Q, Zhu R. Mol Inform 32 251-260 (2013)
  93. Expression, purification and characterization of inactive and active forms of ERK2 from insect expression system. Yan K, Merritt H, Crawford K, Pardee G, Cheng JM, Widger S, Hekmat-Nejad M, Zaror I, Sim J. Protein Expr Purif 110 172-179 (2015)
  94. Involvement of cyclin-dependent kinase 5 in 2,5-hexanedione-induced neuropathy. Wang QS, Zhang CL, Hou LY, Zhao XL, Yang XW, Xie KQ. Toxicology 248 1-7 (2008)
  95. Molecular dynamic simulations give insight into the mechanism of binding between 2-aminothiazole inhibitors and CDK5. Wang W, Cao X, Zhu X, Gu Y. J Mol Model 19 2635-2645 (2013)
  96. Protocols for Characterization of Cdk5 Kinase Activity. Terse A, Amin N, Hall B, Bhaskar M, B K B, Utreras E, Pareek TK, Pant H, Kulkarni AB. Curr Protoc 1 e276 (2021)
  97. Cyclin-dependent kinase 5 negatively regulates antiviral immune response by disrupting myeloid differentiation primary response protein 88 self-association. Ren JP, Cong HL, Gao LJ, Jiang DF, Li XT, Wang Y, Wang JQ, Tang TS. Virulence 14 2223394 (2023)
  98. Marine-Derived Compounds for CDK5 Inhibition in Cancer: Integrating Multi-Stage Virtual Screening, MM/GBSA Analysis and Molecular Dynamics Investigations. Shoaib TH, Almogaddam MA, Andijani YS, Saib SA, Almaghrabi NM, Elyas AF, Azzouni RY, Awad EA, Mohamed SGA, Mohamed GA, Ibrahim SRM, Hussein HGA, Osman W, Ashour A, Sherif AE, Alzain AA. Metabolites 13 1090 (2023)
  99. Overview: cyclin-dependent kinases. Biotechnol J 2 920 (2007)