1dmu Citations

Crystal structure of restriction endonuclease BglI bound to its interrupted DNA recognition sequence.

EMBO J 17 5466-76 (1998)
Cited: 87 times
EuropePMC logo PMID: 9736624

Abstract

The crystal structure of the type II restriction endonuclease BglI bound to DNA containing its specific recognition sequence has been determined at 2.2 A resolution. This is the first structure of a restriction endonuclease that recognizes and cleaves an interrupted DNA sequence, producing 3' overhanging ends. BglI is a homodimer that binds its specific DNA sequence with the minor groove facing the protein. Parts of the enzyme reach into both the major and minor grooves to contact the edges of the bases within the recognition half-sites. The arrangement of active site residues is strikingly similar to other restriction endonucleases, but the co-ordination of two calcium ions at the active site gives new insight into the catalytic mechanism. Surprisingly, the core of a BglI subunit displays a striking similarity to subunits of EcoRV and PvuII, but the dimer structure is dramatically different. The BglI-DNA complex demonstrates, for the first time, that a conserved subunit fold can dimerize in more than one way, resulting in different DNA cleavage patterns.

Reviews - 1dmu mentioned but not cited (1)

  1. Structure and function of type II restriction endonucleases. Pingoud A, Jeltsch A. Nucleic Acids Res 29 3705-3727 (2001)

Articles - 1dmu mentioned but not cited (10)

  1. The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, Heidelberg KB, Manning G, Li W, Jaroszewski L, Cieplak P, Miller CS, Li H, Mashiyama ST, Joachimiak MP, van Belle C, Chandonia JM, Soergel DA, Zhai Y, Natarajan K, Lee S, Raphael BJ, Bafna V, Friedman R, Brenner SE, Godzik A, Eisenberg D, Dixon JE, Taylor SS, Strausberg RL, Frazier M, Venter JC. PLoS Biol 5 e16 (2007)
  2. Assessment of the optimization of affinity and specificity at protein-DNA interfaces. Ashworth J, Baker D. Nucleic Acids Res 37 e73 (2009)
  3. Structure of HinP1I endonuclease reveals a striking similarity to the monomeric restriction enzyme MspI. Yang Z, Horton JR, Maunus R, Wilson GG, Roberts RJ, Cheng X. Nucleic Acids Res 33 1892-1901 (2005)
  4. An all-atom knowledge-based energy function for protein-DNA threading, docking decoy discrimination, and prediction of transcription-factor binding profiles. Xu B, Yang Y, Liang H, Zhou Y. Proteins 76 718-730 (2009)
  5. HsdR subunit of the type I restriction-modification enzyme EcoR124I: biophysical characterisation and structural modelling. Obarska-Kosinska A, Taylor JE, Callow P, Orlowski J, Bujnicki JM, Kneale GG. J Mol Biol 376 438-452 (2008)
  6. Differences between Ca2+ and Mg2+ in DNA binding and release by the SfiI restriction endonuclease: implications for DNA looping. Bellamy SR, Kovacheva YS, Zulkipli IH, Halford SE. Nucleic Acids Res 37 5443-5453 (2009)
  7. SitesIdentify: a protein functional site prediction tool. Bray T, Chan P, Bougouffa S, Greaves R, Doig AJ, Warwicker J. BMC Bioinformatics 10 379 (2009)
  8. Protein stability indicates divergent evolution of PD-(D/E)XK type II restriction endonucleases. Fuxreiter M, Simon I. Protein Sci 11 1978-1983 (2002)
  9. Structural and functional insight into the mechanism of an alkaline exonuclease from Laribacter hongkongensis. Yang W, Chen WY, Wang H, Ho JW, Huang JD, Woo PC, Lau SK, Yuen KY, Zhang Q, Zhou W, Bartlam M, Watt RM, Rao Z. Nucleic Acids Res 39 9803-9819 (2011)
  10. Second-Shell Basic Residues Expand the Two-Metal-Ion Architecture of DNA and RNA Processing Enzymes. Genna V, Colombo M, De Vivo M, Marcia M. Structure 26 40-50.e2 (2018)


Reviews citing this publication (7)

  1. Nucleases: diversity of structure, function and mechanism. Yang W. Q Rev Biophys 44 1-93 (2011)
  2. Type II restriction endonucleases--a historical perspective and more. Pingoud A, Wilson GG, Wende W. Nucleic Acids Res 42 7489-7527 (2014)
  3. Type II restriction endonucleases: structural, functional and evolutionary relationships. Kovall RA, Matthews BW. Curr Opin Chem Biol 3 578-583 (1999)
  4. Type II restriction endonucleases. Perona JJ. Methods 28 353-364 (2002)
  5. Structure and mechanism of the Red recombination system of bacteriophage λ. Caldwell BJ, Bell CE. Prog Biophys Mol Biol 147 33-46 (2019)
  6. The reaction mechanism of FokI excludes the possibility of targeting zinc finger nucleases to unique DNA sites. Halford SE, Catto LE, Pernstich C, Rusling DA, Sanders KL. Biochem Soc Trans 39 584-588 (2011)
  7. Restriction endonucleases: natural and directed evolution. Gupta R, Capalash N, Sharma P. Appl Microbiol Biotechnol 94 583-599 (2012)

Articles citing this publication (69)

  1. SURVEY AND SUMMARY: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Aravind L, Makarova KS, Koonin EV. Nucleic Acids Res 28 3417-3432 (2000)
  2. Quantifying DNA-protein interactions by double-stranded DNA arrays. Bulyk ML, Gentalen E, Lockhart DJ, Church GM. Nat Biotechnol 17 573-577 (1999)
  3. Structural and evolutionary classification of Type II restriction enzymes based on theoretical and experimental analyses. Orlowski J, Bujnicki JM. Nucleic Acids Res 36 3552-3569 (2008)
  4. Functional sites in protein families uncovered via an objective and automated graph theoretic approach. Wangikar PP, Tendulkar AV, Ramya S, Mali DN, Sarawagi S. J Mol Biol 326 955-978 (2003)
  5. Crystal structure of the archaeal holliday junction resolvase Hjc and implications for DNA recognition. Nishino T, Komori K, Tsuchiya D, Ishino Y, Morikawa K. Structure 9 197-204 (2001)
  6. On the structure and operation of type I DNA restriction enzymes. Davies GP, Martin I, Sturrock SS, Cronshaw A, Murray NE, Dryden DT. J Mol Biol 290 565-579 (1999)
  7. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K. Nucleic Acids Res 40 7016-7045 (2012)
  8. Crystallographic and functional studies of very short patch repair endonuclease. Tsutakawa SE, Muto T, Kawate T, Jingami H, Kunishima N, Ariyoshi M, Kohda D, Nakagawa M, Morikawa K. Mol Cell 3 621-628 (1999)
  9. The structural basis of Holliday junction resolution by T7 endonuclease I. Hadden JM, Déclais AC, Carr SB, Lilley DM, Phillips SE. Nature 449 621-624 (2007)
  10. A view of consecutive binding events from structures of tetrameric endonuclease SfiI bound to DNA. Vanamee ES, Viadiu H, Kucera R, Dorner L, Picone S, Schildkraut I, Aggarwal AK. EMBO J 24 4198-4208 (2005)
  11. MutH complexed with hemi- and unmethylated DNAs: coupling base recognition and DNA cleavage. Lee JY, Chang J, Joseph N, Ghirlando R, Rao DN, Yang W. Mol Cell 20 155-166 (2005)
  12. PvuII endonuclease contains two calcium ions in active sites. Horton JR, Cheng X. J Mol Biol 300 1049-1056 (2000)
  13. Crystal structure of NaeI-an evolutionary bridge between DNA endonuclease and topoisomerase. Huai Q, Colandene JD, Chen Y, Luo F, Zhao Y, Topal MD, Ke H. EMBO J 19 3110-3118 (2000)
  14. Nucleotide flips determine the specificity of the Ecl18kI restriction endonuclease. Bochtler M, Szczepanowski RH, Tamulaitis G, Grazulis S, Czapinska H, Manakova E, Siksnys V. EMBO J 25 2219-2229 (2006)
  15. DNA cleavage by the EcoRV restriction endonuclease: roles of divalent metal ions in specificity and catalysis. Baldwin GS, Sessions RB, Erskine SG, Halford SE. J Mol Biol 288 87-103 (1999)
  16. Crystal structure of the beta beta alpha-Me type II restriction endonuclease Hpy99I with target DNA. Sokolowska M, Czapinska H, Bochtler M. Nucleic Acids Res 37 3799-3810 (2009)
  17. One recognition sequence, seven restriction enzymes, five reaction mechanisms. Gowers DM, Bellamy SR, Halford SE. Nucleic Acids Res 32 3469-3479 (2004)
  18. Metal ions bound at the active site of the junction-resolving enzyme T7 endonuclease I. Hadden JM, Déclais AC, Phillips SE, Lilley DM. EMBO J 21 3505-3515 (2002)
  19. Alternative arrangements of catalytic residues at the active sites of restriction enzymes. Tamulaitis G, Solonin AS, Siksnys V. FEBS Lett 518 17-22 (2002)
  20. Restriction enzyme BsoBI-DNA complex: a tunnel for recognition of degenerate DNA sequences and potential histidine catalysis. van der Woerd MJ, Pelletier JJ, Xu S, Friedman AM. Structure 9 133-144 (2001)
  21. Alternative geometries of DNA looping: an analysis using the SfiI endonuclease. Watson MA, Gowers DM, Halford SE. J Mol Biol 298 461-475 (2000)
  22. An asymmetric complex of restriction endonuclease MspI on its palindromic DNA recognition site. Xu QS, Kucera RB, Roberts RJ, Guo HC. Structure 12 1741-1747 (2004)
  23. On the possibilities and limitations of rational protein design to expand the specificity of restriction enzymes: a case study employing EcoRV as the target. Lanio T, Jeltsch A, Pingoud A. Protein Eng 13 275-281 (2000)
  24. DNA bending by M.EcoKI methyltransferase is coupled to nucleotide flipping. Su TJ, Tock MR, Egelhaaf SU, Poon WC, Dryden DT. Nucleic Acids Res 33 3235-3244 (2005)
  25. DNA cleavage by the EcoRV restriction endonuclease: pH dependence and proton transfers in catalysis. Stanford NP, Halford SE, Baldwin GS. J Mol Biol 288 105-116 (1999)
  26. Monomeric restriction endonuclease BcnI in the apo form and in an asymmetric complex with target DNA. Sokolowska M, Kaus-Drobek M, Czapinska H, Tamulaitis G, Szczepanowski RH, Urbanke C, Siksnys V, Bochtler M. J Mol Biol 369 722-734 (2007)
  27. Restriction endonuclease MvaI is a monomer that recognizes its target sequence asymmetrically. Kaus-Drobek M, Czapinska H, Sokołowska M, Tamulaitis G, Szczepanowski RH, Urbanke C, Siksnys V, Bochtler M. Nucleic Acids Res 35 2035-2046 (2007)
  28. The complex between a four-way DNA junction and T7 endonuclease I. Déclais AC, Fogg JM, Freeman AD, Coste F, Hadden JM, Phillips SE, Lilley DM. EMBO J 22 1398-1409 (2003)
  29. Rational engineering of type II restriction endonuclease DNA binding and cleavage specificity. Morgan RD, Luyten YA. Nucleic Acids Res 37 5222-5233 (2009)
  30. The active site of the junction-resolving enzyme T7 endonuclease I. Déclais AC, Hadden J, Phillips SE, Lilley DM. J Mol Biol 307 1145-1158 (2001)
  31. Dynamic evidence for metal ion catalysis in the reaction mediated by a flap endonuclease. Tock MR, Frary E, Sayers JR, Grasby JA. EMBO J 22 995-1004 (2003)
  32. I-Ssp6803I: the first homing endonuclease from the PD-(D/E)XK superfamily exhibits an unusual mode of DNA recognition. Orlowski J, Boniecki M, Bujnicki JM. Bioinformatics 23 527-530 (2007)
  33. Calcium inhibition of ribonuclease H1 two-metal ion catalysis. Rosta E, Yang W, Hummer G. J Am Chem Soc 136 3137-3144 (2014)
  34. Crystal structures of type II restriction endonuclease EcoO109I and its complex with cognate DNA. Hashimoto H, Shimizu T, Imasaki T, Kato M, Shichijo N, Kita K, Sato M. J Biol Chem 280 5605-5610 (2005)
  35. The crystal structure of the rare-cutting restriction enzyme SdaI reveals unexpected domain architecture. Tamulaitiene G, Jakubauskas A, Urbanke C, Huber R, Grazulis S, Siksnys V. Structure 14 1389-1400 (2006)
  36. A homology model of restriction endonuclease SfiI in complex with DNA. Chmiel AA, Bujnicki JM, Skowronek KJ. BMC Struct Biol 5 2 (2005)
  37. A switch in the mechanism of communication between the two DNA-binding sites in the SfiI restriction endonuclease. Bellamy SR, Milsom SE, Kovacheva YS, Sessions RB, Halford SE. J Mol Biol 373 1169-1183 (2007)
  38. Conformational changes and cleavage by the homing endonuclease I-PpoI: a critical role for a leucine residue in the active site. Galburt EA, Chadsey MS, Jurica MS, Chevalier BS, Erho D, Tang W, Monnat RJ, Stoddard BL. J Mol Biol 300 877-887 (2000)
  39. I-NjaI, a nuclear intron-encoded homing endonuclease from Naegleria, generates a pentanucleotide 3' cleavage-overhang within a 19 base-pair partially symmetric DNA recognition site. Elde M, Haugen P, Willassen NP, Johansen S. Eur J Biochem 259 281-288 (1999)
  40. Inference of relationships in the 'twilight zone' of homology using a combination of bioinformatics and site-directed mutagenesis: a case study of restriction endonucleases Bsp6I and PvuII. Pawlak SD, Radlinska M, Chmiel AA, Bujnicki JM, Skowronek KJ. Nucleic Acids Res 33 661-671 (2005)
  41. SfiI endonuclease activity is strongly influenced by the non-specific sequence in the middle of its recognition site. Williams SA, Halford SE. Nucleic Acids Res 29 1476-1483 (2001)
  42. Ca(2+)-mediated site-specific DNA cleavage and suppression of promiscuous activity of KpnI restriction endonuclease. Chandrashekaran S, Saravanan M, Radha DR, Nagaraja V. J Biol Chem 279 49736-49740 (2004)
  43. Effects of divalent metal ions on the activity and conformation of native and 3-fluorotyrosine-PvuII endonucleases. Dupureur CM, Hallman LM. Eur J Biochem 261 261-268 (1999)
  44. Structural recognition between a four-way DNA junction and a resolving enzyme. Déclais AC, Liu J, Freeman AD, Lilley DM. J Mol Biol 359 1261-1276 (2006)
  45. Two crystal forms of the restriction enzyme MspI-DNA complex show the same novel structure. Xu QS, Roberts RJ, Guo HC. Protein Sci 14 2590-2600 (2005)
  46. Cloning, expression, and purification of a thermostable nonhomodimeric restriction enzyme, BslI. Hsieh PC, Xiao JP, O'loane D, Xu SY. J Bacteriol 182 949-955 (2000)
  47. Recognition of native DNA methylation by the PvuII restriction endonuclease. Rice MR, Blumenthal RM. Nucleic Acids Res 28 3143-3150 (2000)
  48. Structural analysis of a mutational hot-spot in the EcoRV restriction endonuclease: a catalytic role for a main chain carbonyl group. Thomas MP, Brady RL, Halford SE, Sessions RB, Baldwin GS. Nucleic Acids Res 27 3438-3445 (1999)
  49. Structure of the Q237W mutant of HhaI DNA methyltransferase: an insight into protein-protein interactions. Dong A, Zhou L, Zhang X, Stickel S, Roberts RJ, Cheng X. Biol Chem 385 373-379 (2004)
  50. Catalytic efficiency and sequence selectivity of a restriction endonuclease modulated by a distal manganese ion binding site. Sam MD, Horton NC, Nissan TA, Perona JJ. J Mol Biol 306 851-861 (2001)
  51. Mechanistic insights from the structures of HincII bound to cognate DNA cleaved from addition of Mg2+ and Mn2+. Etzkorn C, Horton NC. J Mol Biol 343 833-849 (2004)
  52. Synthesis and characterization of the diastereomers Lambda- and Delta-[Ru(bpy)2(m-bpy-L-Arg-Gly-L-Asn-L-Ala-L-His-L-Glu-L-Arg)]Cl2 1H NMR studies on their interactions with the deoxynucleotide duplex d[(5'-GCGCTTAAGCGC-3')2] and d[(5'-CGCGATCGCG-3')2]. Myari A, Hadjiliadis N, Garoufis A. J Inorg Biochem 99 616-626 (2005)
  53. Unusual evolutionary history of the tRNA splicing endonuclease EndA: relationship to the LAGLIDADG and PD-(D/E)XK deoxyribonucleases. Bujnicki JM, Rychlewski L. Protein Sci 10 656-660 (2001)
  54. Functional circularity of legitimate Qbeta replicase templates. Ugarov VI, Chetverin AB. J Mol Biol 379 414-427 (2008)
  55. Metal-binding sites at the active site of restriction endonuclease BamHI can conform to a one-ion mechanism. Mones L, Simon I, Fuxreiter M. Biol Chem 388 73-78 (2007)
  56. Re-visiting protein-centric two-tier classification of existing DNA-protein complexes. Malhotra S, Sowdhamini R. BMC Bioinformatics 13 165 (2012)
  57. Efficient methodology for the cyclization of linear peptide libraries via intramolecular S-alkylation using Multipin solid phase peptide synthesis. Roberts KD, Lambert JN, Ede NJ, Bray AM. J Pept Sci 12 525-532 (2006)
  58. Identification of a base-specific contact between the restriction endonuclease SsoII and its recognition sequence by photocross-linking. Kubareva EA, Thole H, Karyagina AS, Oretskaya TS, Pingoud A, Pingoud V. Nucleic Acids Res 28 1085-1091 (2000)
  59. Endonuclease domain of non-LTR retrotransposons: loss-of-function mutants and modeling of the R2Bm endonuclease. Govindaraju A, Cortez JD, Reveal B, Christensen SM. Nucleic Acids Res 44 3276-3287 (2016)
  60. Exploring the catalytic center of TaqI endonuclease: rescuing catalytic activity by double mutations and Mn2+. Cao W, Lu J. Biochim Biophys Acta 1546 253-260 (2001)
  61. Functional consequence of plasmid DNA modified site-specifically with 7-deaza-deoxyadenosine at a single, programmable site. Ang WH, Lippard SJ. Chem Commun (Camb) 5820-5822 (2009)
  62. Metal ion binding in the active site of the junction-resolving enzyme T7 endonuclease I in the presence and in the absence of DNA. Freeman AD, Déclais AC, Lilley DM. J Mol Biol 333 59-73 (2003)
  63. Heteropolymeric triplex-based genomic assay to detect pathogens or single-nucleotide polymorphisms in human genomic samples. Daksis JI, Erikson GH. PLoS One 2 e305 (2007)
  64. Major soluble proteome changes in Deinococcus deserti over the earliest stages following gamma-ray irradiation. Dedieu A, Sahinovic E, Guérin P, Blanchard L, Fochesato S, Meunier B, de Groot A, Armengaud J. Proteome Sci 11 3 (2013)
  65. Mutational analyses of restriction endonuclease-HindIII mutant E86K with higher activity and altered specificity. Tang D, Ando S, Takasaki Y, Tadano J. Protein Eng 13 283-289 (2000)
  66. Rational engineering of sequence specificity in R.MwoI restriction endonuclease. Skowronek K, Boniecki MJ, Kluge B, Bujnicki JM. Nucleic Acids Res 40 8579-8592 (2012)
  67. Mechanisms of catalytic action and chemical modifications of endonucleases WEN1 and WEN2 from wheat seedlings. Fedoreyeva LI, Vanyushin BF. Biochemistry (Mosc) 78 41-52 (2013)
  68. Structure of HhaI endonuclease with cognate DNA at an atomic resolution of 1.0 Å. Horton JR, Yang J, Zhang X, Petronzio T, Fomenkov A, Wilson GG, Roberts RJ, Cheng X. Nucleic Acids Res 48 1466-1478 (2020)
  69. Unique 31P spectral response to the formation of a specific restriction enzyme-DNA complex. Dupureur CM. Nucleosides Nucleotides Nucleic Acids 25 747-764 (2006)


Related citations provided by authors (1)