1d1z Citations

Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition.

Mol Cell 4 555-61 (1999)
Related entries: 1d4t, 1d4w

Cited: 142 times
EuropePMC logo PMID: 10549287

Abstract

SAP, the product of the gene mutated in X-linked lymphoproliferative syndrome (XLP), consists of a single SH2 domain that has been shown to bind the cytoplasmic tail of the lymphocyte coreceptor SLAM. Here we describe structures that show that SAP binds phosphorylated and nonphosphorylated SLAM peptides in a similar mode, with the tyrosine or phosphotyrosine residue inserted into the phosphotyrosine-binding pocket. We find that specific interactions with residues N-terminal to the tyrosine, in addition to more characteristic C-terminal interactions, stabilize the complexes. A phosphopeptide library screen and analysis of mutations identified in XLP patients confirm that these extended interactions are required for SAP function. Further, we show that SAP and the similar protein EAT-2 recognize the sequence motif TIpYXX(V/I).

Reviews - 1d1z mentioned but not cited (1)

Articles - 1d1z mentioned but not cited (5)

  1. Fully Blind Docking at the Atomic Level for Protein-Peptide Complex Structure Prediction. Yan C, Xu X, Zou X. Structure 24 1842-1853 (2016)
  2. Improved Modeling of Peptide-Protein Binding Through Global Docking and Accelerated Molecular Dynamics Simulations. Wang J, Alekseenko A, Kozakov D, Miao Y. Front Mol Biosci 6 112 (2019)
  3. PaFlexPepDock: parallel ab-initio docking of peptides onto their receptors with full flexibility based on Rosetta. Li H, Lu L, Chen R, Quan L, Xia X, Lü Q. PLoS One 9 e94769 (2014)
  4. Modeling beta-sheet peptide-protein interactions: Rosetta FlexPepDock in CAPRI rounds 38-45. Khramushin A, Marcu O, Alam N, Shimony O, Padhorny D, Brini E, Dill KA, Vajda S, Kozakov D, Schueler-Furman O. Proteins 88 1037-1049 (2020)
  5. CARDIO-PRED: an in silico tool for predicting cardiovascular-disorder associated proteins. Jain P, Thukral N, Gahlot LK, Hasija Y. Syst Synth Biol 9 55-66 (2015)


Reviews citing this publication (46)

  1. Structure and regulation of Src family kinases. Boggon TJ, Eck MJ. Oncogene 23 7918-7927 (2004)
  2. SLAM family receptors and SAP adaptors in immunity. Cannons JL, Tangye SG, Schwartzberg PL. Annu Rev Immunol 29 665-705 (2011)
  3. Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology. Newman PJ, Newman DK. Arterioscler Thromb Vasc Biol 23 953-964 (2003)
  4. On guard--activating NK cell receptors. Lanier LL. Nat Immunol 2 23-27 (2001)
  5. Phosphotyrosine-binding domains in signal transduction. Yaffe MB. Nat Rev Mol Cell Biol 3 177-186 (2002)
  6. The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Engel P, Eck MJ, Terhorst C. Nat Rev Immunol 3 813-821 (2003)
  7. The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3. Kane LP, Weiss A. Immunol Rev 192 7-20 (2003)
  8. SH2 and PTB domains in tyrosine kinase signaling. Schlessinger J, Lemmon MA. Sci STKE 2003 RE12 (2003)
  9. The dual-function CD150 receptor subfamily: the viral attraction. Sidorenko SP, Clark EA. Nat Immunol 4 19-24 (2003)
  10. Immune regulation by SLAM family receptors and SAP-related adaptors. Veillette A. Nat Rev Immunol 6 56-66 (2006)
  11. Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Nichols KE, Ma CS, Cannons JL, Schwartzberg PL, Tangye SG. Immunol Rev 203 180-199 (2005)
  12. X-linked lymphoproliferative disease: a progressive immunodeficiency. Morra M, Howie D, Grande MS, Sayos J, Wang N, Wu C, Engel P, Terhorst C. Annu Rev Immunol 19 657-682 (2001)
  13. Roles of CD48 in regulating immunity and tolerance. McArdel SL, Terhorst C, Sharpe AH. Clin Immunol 164 10-20 (2016)
  14. Face off--the interplay between activating and inhibitory immune receptors. Lanier LL. Curr Opin Immunol 13 326-331 (2001)
  15. Na(+),K (+)-ATPase as a docking station: protein-protein complexes of the Na(+),K (+)-ATPase. Reinhard L, Tidow H, Clausen MJ, Nissen P. Cell Mol Life Sci 70 205-222 (2013)
  16. Interaction domains: from simple binding events to complex cellular behavior. Pawson T, Raina M, Nash P. FEBS Lett 513 2-10 (2002)
  17. Lymphocytes with a complex: adapter proteins in antigen receptor signaling. Tomlinson MG, Lin J, Weiss A. Immunol Today 21 584-591 (2000)
  18. The SLAM family of immune-cell receptors. Veillette A, Latour S. Curr Opin Immunol 15 277-285 (2003)
  19. SLAM family receptors and the SLAM-associated protein (SAP) modulate T cell functions. Detre C, Keszei M, Romero X, Tsokos GC, Terhorst C. Semin Immunopathol 32 157-171 (2010)
  20. The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. Liu BA, Engelmann BW, Nash PD. FEBS Lett 586 2597-2605 (2012)
  21. NK cell regulation by SLAM family receptors and SAP-related adapters. Veillette A. Immunol Rev 214 22-34 (2006)
  22. Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Wagner MJ, Stacey MM, Liu BA, Pawson T. Cold Spring Harb Perspect Biol 5 a008987 (2013)
  23. Ras-MAP kinase signaling pathways and control of cell proliferation: relevance to cancer therapy. Shapiro P. Crit Rev Clin Lab Sci 39 285-330 (2002)
  24. Molecular and immunological basis of X-linked lymphoproliferative disease. Latour S, Veillette A. Immunol Rev 192 212-224 (2003)
  25. Regulation of cytokine receptor signaling by SOCS1. Ilangumaran S, Rottapel R. Immunol Rev 192 196-211 (2003)
  26. Adapters in lymphocyte signalling. Leo A, Schraven B. Curr Opin Immunol 13 307-316 (2001)
  27. Responses to Microbial Challenges by SLAMF Receptors. van Driel BJ, Liao G, Engel P, Terhorst C. Front Immunol 7 4 (2016)
  28. X-linked lymphoproliferative disease: clinical, diagnostic and molecular perspective. Gaspar HB, Sharifi R, Gilmour KC, Thrasher AJ. Br J Haematol 119 585-595 (2002)
  29. The SAP family of adaptors in immune regulation. Latour S, Veillette A. Semin Immunol 16 409-419 (2004)
  30. X-Linked Lymphoproliferative Disease Type 1: A Clinical and Molecular Perspective. Panchal N, Booth C, Cannons JL, Schwartzberg PL. Front Immunol 9 666 (2018)
  31. The SLAM family receptors: Potential therapeutic targets for inflammatory and autoimmune diseases. Dragovich MA, Mor A. Autoimmun Rev 17 674-682 (2018)
  32. Designing specific protein-protein interactions using computation, experimental library screening, or integrated methods. Chen TS, Keating AE. Protein Sci 21 949-963 (2012)
  33. The FHA domain in DNA repair and checkpoint signaling. Durocher D, Smerdon SJ, Yaffe MB, Jackson SP. Cold Spring Harb Symp Quant Biol 65 423-431 (2000)
  34. Fine-tuning of immune responses by SLAM-related receptors. Bhat R, Eissmann P, Endt J, Hoffmann S, Watzl C. J Leukoc Biol 79 417-424 (2006)
  35. A spectrum of mutations in SH2D1A that causes X-linked lymphoproliferative disease and other Epstein-Barr virus-associated illnesses. Sumegi J, Seemayer TA, Huang D, Davis JR, Morra M, Gross TG, Yin L, Romco G, Klein E, Terhorst C, Lanyi A. Leuk Lymphoma 43 1189-1201 (2002)
  36. The gene defective in X-linked lymphoproliferative disease controls T cell dependent immune surveillance against Epstein-Barr virus. Howie D, Sayos J, Terhorst C, Morra M. Curr Opin Immunol 12 474-478 (2000)
  37. New functions for the sialic acid-binding adhesion molecule CD22, a member of the growing family of Siglecs. Nitschke L, Floyd H, Crocker PR. Scand J Immunol 53 227-234 (2001)
  38. X-linked lymphoproliferative disease (XLP): a model of impaired anti-viral, anti-tumor and humoral immune responses. Bassiri H, Janice Yeo WC, Rothman J, Koretzky GA, Nichols KE. Immunol Res 42 145-159 (2008)
  39. The role of SLAM family receptors in immune cell signaling. Ostrakhovitch EA, Li SS. Biochem Cell Biol 84 832-843 (2006)
  40. SH2 Domain Binding: Diverse FLVRs of Partnership. Jaber Chehayeb R, Boggon TJ. Front Endocrinol (Lausanne) 11 575220 (2020)
  41. SLAMF6 in health and disease: Implications for therapeutic targeting. Yigit B, Wang N, Herzog RW, Terhorst C. Clin Immunol 204 3-13 (2019)
  42. X-linked lymphoproliferative syndrome. Nelson DL, Terhorst C. Clin Exp Immunol 122 291-295 (2000)
  43. Diacylglycerol Kinase alpha in X Linked Lymphoproliferative Disease Type 1. Velnati S, Centonze S, Girivetto F, Baldanzi G. Int J Mol Sci 22 5816 (2021)
  44. SAP discovery: the sword edges--beneficial and harmful. Sawada S, Takei M, Ishiwata T. Autoimmun Rev 6 444-449 (2007)
  45. X-linked lymphoproliferative disease: genetic lesions and clinical consequences. MacGinnitie AJ, Geha R. Curr Allergy Asthma Rep 2 361-367 (2002)
  46. SH2 Domains: Folding, Binding and Therapeutical Approaches. Diop A, Santorelli D, Malagrinò F, Nardella C, Pennacchietti V, Pagano L, Marcocci L, Pietrangeli P, Gianni S, Toto A. Int J Mol Sci 23 15944 (2022)

Articles citing this publication (90)

  1. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. J Immunol 173 945-954 (2004)
  2. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M. J Biol Chem 281 8981-8990 (2006)
  3. SAP couples Fyn to SLAM immune receptors. Chan B, Lanyi A, Song HK, Griesbach J, Simarro-Grande M, Poy F, Howie D, Sumegi J, Terhorst C, Eck MJ. Nat Cell Biol 5 155-160 (2003)
  4. Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation. Latour S, Roncagalli R, Chen R, Bakinowski M, Shi X, Schwartzberg PL, Davidson D, Veillette A. Nat Cell Biol 5 149-154 (2003)
  5. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Liu BA, Jablonowski K, Raina M, Arcé M, Pawson T, Nash PD. Mol Cell 22 851-868 (2006)
  6. Functional requirement for SAP in 2B4-mediated activation of human natural killer cells as revealed by the X-linked lymphoproliferative syndrome. Tangye SG, Phillips JH, Lanier LL, Nichols KE. J Immunol 165 2932-2936 (2000)
  7. The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1. Liao YC, Si L, deVere White RW, Lo SH. J Cell Biol 176 43-49 (2007)
  8. The receptor Ly108 functions as a SAP adaptor-dependent on-off switch for T cell help to B cells and NKT cell development. Kageyama R, Cannons JL, Zhao F, Yusuf I, Lao C, Locci M, Schwartzberg PL, Crotty S. Immunity 36 986-1002 (2012)
  9. Selective loss of type I interferon-induced STAT4 activation caused by a minisatellite insertion in mouse Stat2. Farrar JD, Smith JD, Murphy TL, Leung S, Stark GR, Murphy KM. Nat Immunol 1 65-69 (2000)
  10. A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain. Wojcik J, Hantschel O, Grebien F, Kaupe I, Bennett KL, Barkinge J, Jones RB, Koide A, Superti-Furga G, Koide S. Nat Struct Mol Biol 17 519-527 (2010)
  11. Cloning, characterization, and phylogenetic analysis of siglec-9, a new member of the CD33-related group of siglecs. Evidence for co-evolution with sialic acid synthesis pathways. Angata T, Varki A. J Biol Chem 275 22127-22135 (2000)
  12. High-throughput phosphotyrosine profiling using SH2 domains. Machida K, Thompson CM, Dierck K, Jablonowski K, Kärkkäinen S, Liu B, Zhang H, Nash PD, Newman DK, Nollau P, Pawson T, Renkema GH, Saksela K, Schiller MR, Shin DG, Mayer BJ. Mol Cell 26 899-915 (2007)
  13. Patients with X-linked lymphoproliferative disease have a defect in 2B4 receptor-mediated NK cell cytotoxicity. Nakajima H, Cella M, Bouchon A, Grierson HL, Lewis J, Duckett CS, Cohen JI, Colonna M. Eur J Immunol 30 3309-3318 (2000)
  14. Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells. Morra M, Lu J, Poy F, Martin M, Sayos J, Calpe S, Gullo C, Howie D, Rietdijk S, Thompson A, Coyle AJ, Denny C, Yaffe MB, Engel P, Eck MJ, Terhorst C. EMBO J 20 5840-5852 (2001)
  15. Structural basis of recognition of interferon-α receptor by tyrosine kinase 2. Wallweber HJ, Tam C, Franke Y, Starovasnik MA, Lupardus PJ. Nat Struct Mol Biol 21 443-448 (2014)
  16. SH2 domains recognize contextual peptide sequence information to determine selectivity. Liu BA, Jablonowski K, Shah EE, Engelmann BW, Jones RB, Nash PD. Mol Cell Proteomics 9 2391-2404 (2010)
  17. CD6 regulates T-cell responses through activation-dependent recruitment of the positive regulator SLP-76. Hassan NJ, Simmonds SJ, Clarkson NG, Hanrahan S, Puklavec MJ, Bomb M, Barclay AN, Brown MH. Mol Cell Biol 26 6727-6738 (2006)
  18. Targeted disruption of the 2B4 gene in mice reveals an in vivo role of 2B4 (CD244) in the rejection of B16 melanoma cells. Vaidya SV, Stepp SE, McNerney ME, Lee JK, Bennett M, Lee KM, Stewart CL, Kumar V, Mathew PA. J Immunol 174 800-807 (2005)
  19. A "three-pronged" binding mechanism for the SAP/SH2D1A SH2 domain: structural basis and relevance to the XLP syndrome. Hwang PM, Li C, Morra M, Lillywhite J, Muhandiram DR, Gertler F, Terhorst C, Kay LE, Pawson T, Forman-Kay JD, Li SC. EMBO J 21 314-323 (2002)
  20. Potential pathways for regulation of NK and T cell responses: differential X-linked lymphoproliferative syndrome gene product SAP interactions with SLAM and 2B4. Sayós J, Nguyen KB, Wu C, Stepp SE, Howie D, Schatzle JD, Kumar V, Biron CA, Terhorst C. Int Immunol 12 1749-1757 (2000)
  21. Loops govern SH2 domain specificity by controlling access to binding pockets. Kaneko T, Huang H, Zhao B, Li L, Liu H, Voss CK, Wu C, Schiller MR, Li SS. Sci Signal 3 ra34 (2010)
  22. Dual functional roles for the X-linked lymphoproliferative syndrome gene product SAP/SH2D1A in signaling through the signaling lymphocyte activation molecule (SLAM) family of immune receptors. Li C, Iosef C, Jia CY, Han VK, Li SS. J Biol Chem 278 3852-3859 (2003)
  23. High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. Alam N, Goldstein O, Xia B, Porter KA, Kozakov D, Schueler-Furman O. PLoS Comput Biol 13 e1005905 (2017)
  24. Defective B cell responses in the absence of SH2D1A. Morra M, Barrington RA, Abadia-Molina AC, Okamoto S, Julien A, Gullo C, Kalsy A, Edwards MJ, Chen G, Spolski R, Leonard WJ, Huber BT, Borrow P, Biron CA, Satoskar AR, Carroll MC, Terhorst C. Proc Natl Acad Sci U S A 102 4819-4823 (2005)
  25. Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and a Crk-derived phosphopeptide. Donaldson LW, Gish G, Pawson T, Kay LE, Forman-Kay JD. Proc Natl Acad Sci U S A 99 14053-14058 (2002)
  26. A specific intermolecular association between the regulatory domains of a Tec family kinase. Brazin KN, Fulton DB, Andreotti AH. J Mol Biol 302 607-623 (2000)
  27. Importance and mechanism of 'switch' function of SAP family adapters. Veillette A, Dong Z, Pérez-Quintero LA, Zhong MC, Cruz-Munoz ME. Immunol Rev 232 229-239 (2009)
  28. SAP is required for Th cell function and for immunity to influenza. Kamperschroer C, Dibble JP, Meents DL, Schwartzberg PL, Swain SL. J Immunol 177 5317-5327 (2006)
  29. Unmasking determinants of specificity in the human kinome. Creixell P, Palmeri A, Miller CJ, Lou HJ, Santini CC, Nielsen M, Turk BE, Linding R. Cell 163 187-201 (2015)
  30. PSD-95 is a negative regulator of the tyrosine kinase Src in the NMDA receptor complex. Kalia LV, Pitcher GM, Pelkey KA, Salter MW. EMBO J 25 4971-4982 (2006)
  31. A signal adaptor SLAM-associated protein regulates spontaneous autoimmunity and Fas-dependent lymphoproliferation in MRL-Faslpr lupus mice. Komori H, Furukawa H, Mori S, Ito MR, Terada M, Zhang MC, Ishii N, Sakuma N, Nose M, Ono M. J Immunol 176 395-400 (2006)
  32. The X-linked lymphoproliferative disease gene product SAP associates with PAK-interacting exchange factor and participates in T cell activation. Gu C, Tangye SG, Sun X, Luo Y, Lin Z, Wu J. Proc Natl Acad Sci U S A 103 14447-14452 (2006)
  33. Structural basis for phosphotyrosine recognition by suppressor of cytokine signaling-3. Bergamin E, Wu J, Hubbard SR. Structure 14 1285-1292 (2006)
  34. Long-range intra-protein communication can be transmitted by correlated side-chain fluctuations alone. Dubay KH, Bothma JP, Geissler PL. PLoS Comput Biol 7 e1002168 (2011)
  35. The X-linked lymphoproliferative syndrome gene product SH2D1A associates with p62dok (Dok1) and activates NF-kappa B. Sylla BS, Murphy K, Cahir-McFarland E, Lane WS, Mosialos G, Kieff E. Proc Natl Acad Sci U S A 97 7470-7475 (2000)
  36. Biophysical and structural considerations for protein sequence evolution. Grahnen JA, Nandakumar P, Kubelka J, Liberles DA. BMC Evol Biol 11 361 (2011)
  37. Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Kaneko T, Joshi R, Feller SM, Li SS. Cell Commun Signal 10 32 (2012)
  38. SOCS-1 localizes to the microtubule organizing complex-associated 20S proteasome. Vuong BQ, Arenzana TL, Showalter BM, Losman J, Chen XP, Mostecki J, Banks AS, Limnander A, Fernandez N, Rothman PB. Mol Cell Biol 24 9092-9101 (2004)
  39. Genome wide analysis of pathogenic SH2 domain mutations. Lappalainen I, Thusberg J, Shen B, Vihinen M. Proteins 72 779-792 (2008)
  40. Signaling lymphocytic activation molecule (SLAM) regulates T cellular cytotoxicity. Henning G, Kraft MS, Derfuss T, Pirzer R, de Saint-Basile G, Aversa G, Fleckenstein B, Meinl E. Eur J Immunol 31 2741-2750 (2001)
  41. Inhibition of diacylglycerol kinase α restores restimulation-induced cell death and reduces immunopathology in XLP-1. Ruffo E, Malacarne V, Larsen SE, Das R, Patrussi L, Wülfing C, Biskup C, Kapnick SM, Verbist K, Tedrick P, Schwartzberg PL, Baldari CT, Rubio I, Nichols KE, Snow AL, Baldanzi G, Graziani A. Sci Transl Med 8 321ra7 (2016)
  42. Genome-wide prediction of SH2 domain targets using structural information and the FoldX algorithm. Sánchez IE, Beltrao P, Stricher F, Schymkowitz J, Ferkinghoff-Borg J, Rousseau F, Serrano L. PLoS Comput Biol 4 e1000052 (2008)
  43. Sequence, structure and energetic determinants of phosphopeptide selectivity of SH2 domains. Sheinerman FB, Al-Lazikani B, Honig B. J Mol Biol 334 823-841 (2003)
  44. Calculation of proteins' total side-chain torsional entropy and its influence on protein-ligand interactions. DuBay KH, Geissler PL. J Mol Biol 391 484-497 (2009)
  45. Structural basis for specificity switching of the Src SH2 domain. Kimber MS, Nachman J, Cunningham AM, Gish GD, Pawson T, Pai EF. Mol Cell 5 1043-1049 (2000)
  46. SAP-Dependent and -Independent Regulation of Innate T Cell Development Involving SLAMF Receptors. De Calisto J, Wang N, Wang G, Yigit B, Engel P, Terhorst C. Front Immunol 5 186 (2014)
  47. Side-chain dynamics of the SAP SH2 domain correlate with a binding hot spot and a region with conformational plasticity. Finerty PJ, Muhandiram R, Forman-Kay JD. J Mol Biol 322 605-620 (2002)
  48. Solution structure of tandem SH2 domains from Spt6 protein and their binding to the phosphorylated RNA polymerase II C-terminal domain. Liu J, Zhang J, Gong Q, Xiong P, Huang H, Wu B, Lu G, Wu J, Shi Y. J Biol Chem 286 29218-29226 (2011)
  49. Distinct interactions of the X-linked lymphoproliferative syndrome gene product SAP with cytoplasmic domains of members of the CD2 receptor family. Lewis J, Eiben LJ, Nelson DL, Cohen JI, Nichols KE, Ochs HD, Notarangelo LD, Duckett CS. Clin Immunol 100 15-23 (2001)
  50. Association between SAP and FynT: Inducible SH3 domain-mediated interaction controlled by engagement of the SLAM receptor. Chen R, Latour S, Shi X, Veillette A. Mol Cell Biol 26 5559-5568 (2006)
  51. Cloning of two new splice variants of Siglec-10 and mapping of the interaction between Siglec-10 and SHP-1. Kitzig F, Martinez-Barriocanal A, López-Botet M, Sayós J. Biochem Biophys Res Commun 296 355-362 (2002)
  52. Identification and characterization of two related murine genes, Eat2a and Eat2b, encoding single SH2-domain adapters. Calpe S, Erdos E, Liao G, Wang N, Rietdijk S, Simarro M, Scholtz B, Mooney J, Lee CH, Shin MS, Rajnavölgyi E, Schatzle J, Morse HC, Terhorst C, Lanyi A. Immunogenetics 58 15-25 (2006)
  53. Simultaneous binding of two peptidyl ligands by a SRC homology 2 domain. Zhang Y, Zhang J, Yuan C, Hard RL, Park IH, Li C, Bell C, Pei D. Biochemistry 50 7637-7646 (2011)
  54. Fine specificity and molecular competition in SLAM family receptor signalling. Wilson TJ, Garner LI, Metcalfe C, King E, Margraf S, Brown MH. PLoS One 9 e92184 (2014)
  55. How does SHIP1/2 balance PtdIns(3,4)P2 and does it signal independently of its phosphatase activity? Xie J, Erneux C, Pirson I. Bioessays 35 733-743 (2013)
  56. CH/pi hydrogen bonds determine the selectivity of the Src homology 2 domain to tyrosine phosphotyrosyl peptides: an ab initio fragment molecular orbital study. Ozawa T, Okazaki K. J Comput Chem 29 2656-2666 (2008)
  57. SLAMF6 clustering is required to augment T cell activation. Dragovich MA, Adam K, Strazza M, Tocheva AS, Peled M, Mor A. PLoS One 14 e0218109 (2019)
  58. Semi-supervised prediction of SH2-peptide interactions from imbalanced high-throughput data. Kundu K, Costa F, Huber M, Reth M, Backofen R. PLoS One 8 e62732 (2013)
  59. Specificity and regulation of phosphotyrosine signaling through SH2 domains. Marasco M, Carlomagno T. J Struct Biol X 4 100026 (2020)
  60. Characterization of Ly108 in the thymus: evidence for distinct properties of a novel form of Ly108. Dutta M, Schwartzberg PL. J Immunol 188 3031-3041 (2012)
  61. Missense mutations in SH2D1A identified in patients with X-linked lymphoproliferative disease differentially affect the expression and function of SAP. Hare NJ, Ma CS, Alvaro F, Nichols KE, Tangye SG. Int Immunol 18 1055-1065 (2006)
  62. Prediction of binding sites of peptide recognition domains: an application on Grb2 and SAP SH2 domains. McLaughlin WA, Hou T, Wang W. J Mol Biol 357 1322-1334 (2006)
  63. Using genome-wide measurements for computational prediction of SH2-peptide interactions. Wunderlich Z, Mirny LA. Nucleic Acids Res 37 4629-4641 (2009)
  64. SLAM-associated protein as a potential negative regulator in Trk signaling. Lo KY, Chin WH, Ng YP, Cheng AW, Cheung ZH, Ip NY. J Biol Chem 280 41744-41752 (2005)
  65. Structural characterization of disease-causing mutations on SAP and the functional impact on the SLAM peptide: a molecular dynamics approach. Chandrasekaran P, Rajasekaran R. Mol Biosyst 10 1869-1880 (2014)
  66. Dissection of the energetic coupling across the Src SH2 domain-tyrosyl phosphopeptide interface. Lubman OY, Waksman G. J Mol Biol 316 291-304 (2002)
  67. Motif decomposition of the phosphotyrosine proteome reveals a new N-terminal binding motif for SHIP2. Miller ML, Hanke S, Hinsby AM, Friis C, Brunak S, Mann M, Blom N. Mol Cell Proteomics 7 181-192 (2008)
  68. Phosphoinositide, phosphopeptide and pyridone interactions of the Abl SH2 domain. Tokonzaba E, Capelluto DG, Kutateladze TG, Overduin M. Chem Biol Drug Des 67 230-237 (2006)
  69. Critical Role for SLAM/SAP Signaling in the Thymic Developmental Programming of IL-17- and IFN-γ-Producing γδ T Cells. Dienz O, DeVault VL, Musial SC, Mistri SK, Mei L, Baraev A, Dragon JA, Krementsov D, Veillette A, Boyson JE. J Immunol 204 1521-1534 (2020)
  70. Differential recognition of syk-binding sites by each of the two phosphotyrosine-binding pockets of the Vav SH2 domain. Chen CH, Piraner D, Gorenstein NM, Geahlen RL, Beth Post C. Biopolymers 99 897-907 (2013)
  71. Fatal hemophagocytic lymphohistiocytosis associated with Epstein-Barr virus infection in a patient with a novel mutation in the signaling lymphocytic activation molecule-associated protein. Halasa NB, Whitlock JA, McCurley TL, Smith JA, Zhu Q, Ochs H, Dermody TS, Crowe JE. Clin Infect Dis 37 e136-41 (2003)
  72. Investigating homology between proteins using energetic profiles. Wrabl JO, Hilser VJ. PLoS Comput Biol 6 e1000722 (2010)
  73. Novel functions of CCM1 delimit the relationship of PTB/PH domains. Zhang J, Dubey P, Padarti A, Zhang A, Patel R, Patel V, Cistola D, Badr A. Biochim Biophys Acta Proteins Proteom 1865 1274-1286 (2017)
  74. REvolver: modeling sequence evolution under domain constraints. Koestler T, von Haeseler A, Ebersberger I. Mol Biol Evol 29 2133-2145 (2012)
  75. The GTPase-activating protein p120RasGAP has an evolutionarily conserved "FLVR-unique" SH2 domain. Jaber Chehayeb R, Wang J, Stiegler AL, Boggon TJ. J Biol Chem 295 10511-10521 (2020)
  76. FRETting about the affinity of bimolecular protein-protein interactions. Lin T, Scott BL, Hoppe AD, Chakravarty S. Protein Sci 27 1850-1856 (2018)
  77. SAP and Lessons Learned from a Primary Immunodeficiency. Cannons JL, Schwartzberg PL. J Immunol 199 1531-1533 (2017)
  78. SAP modulates B cell functions in a genetic background-dependent manner. Detre C, Yigit B, Keszei M, Castro W, Magelky EM, Terhorst C. Immunol Lett 153 15-21 (2013)
  79. Fast side chain replacement in proteins using a coarse-grained approach for evaluating the effects of mutation during evolution. Grahnen JA, Kubelka J, Liberles DA. J Mol Evol 73 23-33 (2011)
  80. Identification of a new isoform of the murine Sh2d1a gene and its functional implications. Wu L, Lu P, Ma W, Chu C, Xu H, Qi H. Sci China Life Sci 57 81-87 (2014)
  81. Properties that rank protein:protein docking poses with high accuracy. Simões ICM, Coimbra JTS, Neves RPP, Costa IPD, Ramos MJ, Fernandes PA. Phys Chem Chem Phys 20 20927-20942 (2018)
  82. The SAP family: a new class of adaptor-like molecules that regulates immune cell functions. Veillette A. Sci STKE 2002 pe8 (2002)
  83. The adaptor protein SAP directly associates with PECAM-1 and regulates PECAM-1-mediated-cell adhesion in T-like cell lines. Proust R, Crouin C, Gandji LY, Bertoglio J, Gesbert F. Mol Immunol 58 206-213 (2014)
  84. Towards mimicking short linear peptide motifs: identification of new mixed α,β-peptidomimetic ligands for SLAM-Associated Protein (SAP) by confocal on-bead screening. Hintersteiner M, Knox AJ, Mudd G, Auer M. J Chem Biol 5 63-79 (2012)
  85. Insights into structure and function of SHIP2-SH2: homology modeling, docking, and molecular dynamics study. Saqib U, Siddiqi MI. J Chem Biol 4 149-158 (2011)
  86. Microscopic insight into thermodynamics of conformational changes of SAP-SLAM complex in signal transduction cascade. Samanta S, Mukherjee S. J Chem Phys 146 165103 (2017)
  87. The SH2 domain and kinase activity of JAK2 target JAK2 to centrosome and regulate cell growth and centrosome amplification. Shahi A, Kahle J, Hopkins C, Diakonova M. PLoS One 17 e0261098 (2022)
  88. Deciphering complex dynamics of water counteraction around secondary structural elements of allosteric protein complex: Case study of SAP-SLAM system in signal transduction cascade. Samanta S, Mukherjee S. J Chem Phys 148 045102 (2018)
  89. Identification of a novel nonsense mutation in SH2D1A in a patient with X-linked lymphoproliferative syndrome type 1: a case report. Lyu X, Guo Z, Li Y, Fan R, Song Y. BMC Med Genet 19 60 (2018)
  90. The Src-Family Kinases SRC and BLK Contribute to the CLDN6-Adhesion Signaling. Ichikawa-Tomikawa N, Sugimoto K, Kashiwagi K, Chiba H. Cells 12 1696 (2023)


Related citations provided by authors (1)