1amu Citations

Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S.

EMBO J 16 4174-83 (1997)
Cited: 389 times
EuropePMC logo PMID: 9250661

Abstract

The non-ribosomal synthesis of the cyclic peptide antibiotic gramicidin S is accomplished by two large multifunctional enzymes, the peptide synthetases 1 and 2. The enzyme complex contains five conserved subunits of approximately 60 kDa which carry out ATP-dependent activation of specific amino acids and share extensive regions of sequence similarity with adenylating enzymes such as firefly luciferases and acyl-CoA ligases. We have determined the crystal structure of the N-terminal adenylation subunit in a complex with AMP and L-phenylalanine to 1.9 A resolution. The 556 amino acid residue fragment is folded into two domains with the active site situated at their interface. Each domain of the enzyme has a similar topology to the corresponding domain of unliganded firefly luciferase, but a remarkable relative domain rotation of 94 degrees occurs. This conformation places the absolutely conserved Lys517 in a position to form electrostatic interactions with both ligands. The AMP is bound with the phosphate moiety interacting with Lys517 and the hydroxyl groups of the ribose forming hydrogen bonds with Asp413. The phenylalanine substrate binds in a hydrophobic pocket with the carboxylate group interacting with Lys517 and the alpha-amino group with Asp235. The structure reveals the role of the invariant residues within the superfamily of adenylate-forming enzymes and indicates a conserved mechanism of nucleotide binding and substrate activation.

Reviews - 1amu mentioned but not cited (10)

  1. Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. Gulick AM. ACS Chem Biol 4 811-827 (2009)
  2. Adenylate-forming enzymes. Schmelz S, Naismith JH. Curr Opin Struct Biol 19 666-671 (2009)
  3. Adenylating enzymes in Mycobacterium tuberculosis as drug targets. Duckworth BP, Nelson KM, Aldrich CC. Curr Top Med Chem 12 766-796 (2012)
  4. Structure and noncanonical chemistry of nonribosomal peptide biosynthetic machinery. Condurso HL, Bruner SD. Nat Prod Rep 29 1099-1110 (2012)
  5. Nonribosomal peptide synthetase biosynthetic clusters of ESKAPE pathogens. Gulick AM. Nat Prod Rep 34 981-1009 (2017)
  6. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. Lux MC, Standke LC, Tan DS. J Antibiot (Tokyo) 72 325-349 (2019)
  7. Lipidomic mass spectrometry and its application in neuroscience. Enriquez-Algeciras M, Bhattacharya SK. World J Biol Chem 4 102-110 (2013)
  8. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. Iacovelli R, Bovenberg RAL, Driessen AJM. J Ind Microbiol Biotechnol 48 kuab045 (2021)
  9. Biocatalytic synthesis of peptidic natural products and related analogues. Liu D, Rubin GM, Dhakal D, Chen M, Ding Y. iScience 24 102512 (2021)
  10. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Patel KD, MacDonald MR, Ahmed SF, Singh J, Gulick AM. Nat Prod Rep 40 1550-1582 (2023)

Articles - 1amu mentioned but not cited (54)

  1. NRPSpredictor2--a web server for predicting NRPS adenylation domain specificity. Röttig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O. Nucleic Acids Res 39 W362-7 (2011)
  2. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Rausch C, Weber T, Kohlbacher O, Wohlleben W, Huson DH. Nucleic Acids Res 33 5799-5808 (2005)
  3. NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Ansari MZ, Yadav G, Gokhale RS, Mohanty D. Nucleic Acids Res 32 W405-13 (2004)
  4. Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Drake EJ, Miller BR, Shi C, Tarrasch JT, Sundlov JA, Allen CL, Skiniotis G, Aldrich CC, Gulick AM. Nature 529 235-238 (2016)
  5. Computational structure-based redesign of enzyme activity. Chen CY, Georgiev I, Anderson AC, Donald BR. Proc Natl Acad Sci U S A 106 3764-3769 (2009)
  6. Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. Mitchell CA, Shi C, Aldrich CC, Gulick AM. Biochemistry 51 3252-3263 (2012)
  7. Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis. Arora P, Goyal A, Natarajan VT, Rajakumara E, Verma P, Gupta R, Yousuf M, Trivedi OA, Mohanty D, Tyagi A, Sankaranarayanan R, Gokhale RS. Nat Chem Biol 5 166-173 (2009)
  8. Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes. Fischbach MA, Lai JR, Roche ED, Walsh CT, Liu DR. Proc Natl Acad Sci U S A 104 11951-11956 (2007)
  9. The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles. Georgiev I, Lilien RH, Donald BR. J Comput Chem 29 1527-1542 (2008)
  10. Structural basis of the interaction of MbtH-like proteins, putative regulators of nonribosomal peptide biosynthesis, with adenylating enzymes. Herbst DA, Boll B, Zocher G, Stehle T, Heide L. J Biol Chem 288 1991-2003 (2013)
  11. On the molecular discrimination between adenine and guanine by proteins. Nobeli I, Laskowski RA, Valdar WS, Thornton JM. Nucleic Acids Res 29 4294-4309 (2001)
  12. Directed evolution of the nonribosomal peptide synthetase AdmK generates new andrimid derivatives in vivo. Evans BS, Chen Y, Metcalf WW, Zhao H, Kelleher NL. Chem Biol 18 601-607 (2011)
  13. Algorithm for backrub motions in protein design. Georgiev I, Keedy D, Richardson JS, Richardson DC, Donald BR. Bioinformatics 24 i196-204 (2008)
  14. Anthranilate-activating modules from fungal nonribosomal peptide assembly lines. Ames BD, Walsh CT. Biochemistry 49 3351-3365 (2010)
  15. Module evolution and substrate specificity of fungal nonribosomal peptide synthetases involved in siderophore biosynthesis. Bushley KE, Ripoll DR, Turgeon BG. BMC Evol Biol 8 328 (2008)
  16. Classification of the adenylation and acyl-transferase activity of NRPS and PKS systems using ensembles of substrate specific hidden Markov models. Khayatt BI, Overmars L, Siezen RJ, Francke C. PLoS One 8 e62136 (2013)
  17. Structural Biology of Nonribosomal Peptide Synthetases. Miller BR, Gulick AM. Methods Mol Biol 1401 3-29 (2016)
  18. Role of MbtH-like proteins in the adenylation of tyrosine during aminocoumarin and vancomycin biosynthesis. Boll B, Taubitz T, Heide L. J Biol Chem 286 36281-36290 (2011)
  19. Structure of a eukaryotic nonribosomal peptide synthetase adenylation domain that activates a large hydroxamate amino acid in siderophore biosynthesis. Lee TV, Johnson LJ, Johnson RD, Koulman A, Lane GA, Lott JS, Arcus VL. J Biol Chem 285 2415-2427 (2010)
  20. Antimicrobial peptide resistance of Vibrio cholerae results from an LPS modification pathway related to nonribosomal peptide synthetases. Henderson JC, Fage CD, Cannon JR, Brodbelt JS, Keatinge-Clay AT, Trent MS. ACS Chem Biol 9 2382-2392 (2014)
  21. Colibactin assembly line enzymes use S-adenosylmethionine to build a cyclopropane ring. Zha L, Jiang Y, Henke MT, Wilson MR, Wang JX, Kelleher NL, Balskus EP. Nat Chem Biol 13 1063-1065 (2017)
  22. Substrate specificity of the nonribosomal peptide synthetase PvdD from Pseudomonas aeruginosa. Ackerley DF, Caradoc-Davies TT, Lamont IL. J Bacteriol 185 2848-2855 (2003)
  23. Analysis of the linker region joining the adenylation and carrier protein domains of the modular nonribosomal peptide synthetases. Miller BR, Sundlov JA, Drake EJ, Makin TA, Gulick AM. Proteins 82 2691-2702 (2014)
  24. The crystal structure of the adenylation enzyme VinN reveals a unique β-amino acid recognition mechanism. Miyanaga A, Cieślak J, Shinohara Y, Kudo F, Eguchi T. J Biol Chem 289 31448-31457 (2014)
  25. Structures of Mycobacterium tuberculosis FadD10 protein reveal a new type of adenylate-forming enzyme. Liu Z, Ioerger TR, Wang F, Sacchettini JC. J Biol Chem 288 18473-18483 (2013)
  26. Exploiting ligand conformation in selective inhibition of non-ribosomal peptide synthetase amino acid adenylation with designed macrocyclic small molecules. Cisar JS, Ferreras JA, Soni RK, Quadri LE, Tan DS. J Am Chem Soc 129 7752-7753 (2007)
  27. Engineering of Glarea lozoyensis for exclusive production of the pneumocandin B0 precursor of the antifungal drug caspofungin acetate. Chen L, Yue Q, Li Y, Niu X, Xiang M, Wang W, Bills GF, Liu X, An Z. Appl Environ Microbiol 81 1550-1558 (2015)
  28. Harnessing fungal nonribosomal cyclodepsipeptide synthetases for mechanistic insights and tailored engineering. Steiniger C, Hoffmann S, Mainz A, Kaiser M, Voigt K, Meyer V, Süssmuth RD. Chem Sci 8 7834-7843 (2017)
  29. A Highly Conserved Basidiomycete Peptide Synthetase Produces a Trimeric Hydroxamate Siderophore. Brandenburger E, Gressler M, Leonhardt R, Lackner G, Habel A, Hertweck C, Brock M, Hoffmeister D. Appl Environ Microbiol 83 e01478-17 (2017)
  30. A database of domain definitions for proteins with complex interdomain geometry. Majumdar I, Kinch LN, Grishin NV. PLoS One 4 e5084 (2009)
  31. A male-derived nonribosomal peptide pheromone controls female schistosome development. Chen R, Wang J, Gradinaru I, Vu HS, Geboers S, Naidoo J, Ready JM, Williams NS, DeBerardinis RJ, Ross EM, Collins JJ. Cell 185 1506-1520.e17 (2022)
  32. Adaptation of an L-proline adenylation domain to use 4-propyl-L-proline in the evolution of lincosamide biosynthesis. Kadlčík S, Kučera T, Chalupská D, Gažák R, Koběrská M, Ulanová D, Kopecký J, Kutejová E, Najmanová L, Janata J. PLoS One 8 e84902 (2013)
  33. The Broad Aryl Acid Specificity of the Amide Bond Synthetase McbA Suggests Potential for the Biocatalytic Synthesis of Amides. Petchey M, Cuetos A, Rowlinson B, Dannevald S, Frese A, Sutton PW, Lovelock S, Lloyd RC, Fairlamb IJS, Grogan G. Angew Chem Int Ed Engl 57 11584-11588 (2018)
  34. Insight into Structure-Function Relationships and Inhibition of the Fatty Acyl-AMP Ligase (FadD32) Orthologs from Mycobacteria. Guillet V, Galandrin S, Maveyraud L, Ladevèze S, Mariaule V, Bon C, Eynard N, Daffé M, Marrakchi H, Mourey L. J Biol Chem 291 7973-7989 (2016)
  35. Genome scale prediction of substrate specificity for acyl adenylate superfamily of enzymes based on active site residue profiles. Khurana P, Gokhale RS, Mohanty D. BMC Bioinformatics 11 57 (2010)
  36. The 2.1 A crystal structure of an acyl-CoA synthetase from Methanosarcina acetivorans reveals an alternate acyl-binding pocket for small branched acyl substrates. Shah MB, Ingram-Smith C, Cooper LL, Qu J, Meng Y, Smith KS, Gulick AM. Proteins 77 685-698 (2009)
  37. Gene editing enables rapid engineering of complex antibiotic assembly lines. Thong WL, Zhang Y, Zhuo Y, Robins KJ, Fyans JK, Herbert AJ, Law BJC, Micklefield J. Nat Commun 12 6872 (2021)
  38. The production in vivo of microcin E492 with antibacterial activity depends on salmochelin and EntF. Mercado G, Tello M, Marín M, Monasterio O, Lagos R. J Bacteriol 190 5464-5471 (2008)
  39. Biosynthesis, Mechanism of Action, and Inhibition of the Enterotoxin Tilimycin Produced by the Opportunistic Pathogen Klebsiella oxytoca. Alexander EM, Kreitler DF, Guidolin V, Hurben AK, Drake E, Villalta PW, Balbo S, Gulick AM, Aldrich CC. ACS Infect Dis 6 1976-1997 (2020)
  40. Genetic engineering activates biosynthesis of aromatic fumaric acid amides in the human pathogen Aspergillus fumigatus. Kalb D, Heinekamp T, Lackner G, Scharf DH, Dahse HM, Brakhage AA, Hoffmeister D. Appl Environ Microbiol 81 1594-1600 (2015)
  41. Exploring the adenylation domain repertoire of nonribosomal peptide synthetases using an ensemble of sequence-search methods. Agüero-Chapin G, Molina-Ruiz R, Maldonado E, de la Riva G, Sánchez-Rodríguez A, Vasconcelos V, Antunes A. PLoS One 8 e65926 (2013)
  42. PatchSurfers: Two methods for local molecular property-based binding ligand prediction. Shin WH, Bures MG, Kihara D. Methods 93 41-50 (2016)
  43. Specific disulfide cross-linking to constrict the mobile carrier domain of nonribosomal peptide synthetases. Tarry MJ, Schmeing TM. Protein Eng Des Sel 28 163-170 (2015)
  44. Design, synthesis, and biological evaluation of α-hydroxyacyl-AMS inhibitors of amino acid adenylation enzymes. Davis TD, Mohandas P, Chiriac MI, Bythrow GV, Quadri LE, Tan DS. Bioorg Med Chem Lett 26 5340-5345 (2016)
  45. Structures of teixobactin-producing nonribosomal peptide synthetase condensation and adenylation domains. Tan K, Zhou M, Jedrzejczak RP, Wu R, Higuera RA, Borek D, Babnigg G, Joachimiak A. Curr Res Struct Biol 2 14-24 (2020)
  46. In silico analysis of class I adenylate-forming enzymes reveals family and group-specific conservations. Clark L, Leatherby D, Krilich E, Ropelewski AJ, Perozich J. PLoS One 13 e0203218 (2018)
  47. Discovery and biosynthesis of macrophasetins from the plant pathogen fungus Macrophomina phaseolina. Yu C, Chen L, Gao YL, Liu J, Li PL, Zhang ML, Li Q, Zhang HD, Tang MC, Li L. Front Microbiol 13 1056392 (2022)
  48. Functional and structural characterization of IdnL7, an adenylation enzyme involved in incednine biosynthesis. Cieślak J, Miyanaga A, Takaishi M, Kudo F, Eguchi T. Acta Crystallogr F Struct Biol Commun 75 299-306 (2019)
  49. Bioinformatic Analysis Reveals both Oversampled and Underexplored Biosynthetic Diversity in Nonribosomal Peptides. Jian BS, Chiou SL, Hsu CC, Ho J, Wu YW, Chu J. ACS Chem Biol 18 476-483 (2023)
  50. Knowledge-guided data mining on the standardized architecture of NRPS: Subtypes, novel motifs, and sequence entanglements. He R, Zhang J, Shao Y, Gu S, Song C, Qian L, Yin WB, Li Z. PLoS Comput Biol 19 e1011100 (2023)
  51. Repurposing conformational changes in ANL superfamily enzymes to rapidly generate biosensors for organic and amino acids. Wang J, Xue N, Pan W, Tu R, Li S, Zhang Y, Mao Y, Liu Y, Cheng H, Guo Y, Yuan W, Ni X, Wang M. Nat Commun 14 6680 (2023)
  52. Resurrecting ancestral antibiotics: unveiling the origins of modern lipid II targeting glycopeptides. Hansen MH, Adamek M, Iftime D, Petras D, Schuseil F, Grond S, Stegmann E, Cryle MJ, Ziemert N. Nat Commun 14 7842 (2023)
  53. Small NRPS-like enzymes in Aspergillus sections Flavi and Circumdati selectively form substituted pyrazinone metabolites. Lebar MD, Mack BM, Carter-Wientjes CH, Wei Q, Mattison CP, Cary JW. Front Fungal Biol 3 1029195 (2022)
  54. Structural and functional insights into δ-poly-L-ornithine polymer biosynthesis from Acinetobacter baumannii. Patel KD, Gulick AM. Commun Biol 6 982 (2023)


Reviews citing this publication (68)

  1. Biosynthesis of nonribosomal peptides1. Finking R, Marahiel MA. Annu Rev Microbiol 58 453-488 (2004)
  2. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Bender CL, Alarcón-Chaidez F, Gross DC. Microbiol Mol Biol Rev 63 266-292 (1999)
  3. Nonribosomal Peptide Synthesis-Principles and Prospects. Süssmuth RD, Mainz A. Angew Chem Int Ed Engl 56 3770-3821 (2017)
  4. Siderophores in fungal physiology and virulence. Haas H, Eisendle M, Turgeon BG. Annu Rev Phytopathol 46 149-187 (2008)
  5. Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification. Black PN, DiRusso CC. Microbiol Mol Biol Rev 67 454-72, table of contents (2003)
  6. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Hur GH, Vickery CR, Burkart MD. Nat Prod Rep 29 1074-1098 (2012)
  7. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Felnagle EA, Jackson EE, Chan YA, Podevels AM, Berti AD, McMahon MD, Thomas MG. Mol Pharm 5 191-211 (2008)
  8. How do peptide synthetases generate structural diversity? Konz D, Marahiel MA. Chem Biol 6 R39-48 (1999)
  9. Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Grünewald J, Marahiel MA. Microbiol Mol Biol Rev 70 121-146 (2006)
  10. Directed Evolution of Protein Catalysts. Zeymer C, Hilvert D. Annu Rev Biochem 87 131-157 (2018)
  11. Structural insights into nonribosomal peptide enzymatic assembly lines. Koglin A, Walsh CT. Nat Prod Rep 26 987-1000 (2009)
  12. The structural biology of biosynthetic megaenzymes. Weissman KJ. Nat Chem Biol 11 660-670 (2015)
  13. Recent advances in engineering nonribosomal peptide assembly lines. Winn M, Fyans JK, Zhuo Y, Micklefield J. Nat Prod Rep 33 317-347 (2016)
  14. Geometry of nonbonded interactions involving planar groups in proteins. Chakrabarti P, Bhattacharyya R. Prog Biophys Mol Biol 95 83-137 (2007)
  15. The structural role of the carrier protein--active controller or passive carrier. Crosby J, Crump MP. Nat Prod Rep 29 1111-1137 (2012)
  16. Firefly luminescence: a historical perspective and recent developments. Fraga H. Photochem Photobiol Sci 7 146-158 (2008)
  17. Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis. Keating TA, Walsh CT. Curr Opin Chem Biol 3 598-606 (1999)
  18. Molecular enigma of multicolor bioluminescence of firefly luciferase. Hosseinkhani S. Cell Mol Life Sci 68 1167-1182 (2011)
  19. Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. DiRusso CC, Black PN, Weimar JD. Prog Lipid Res 38 129-197 (1999)
  20. Protein-protein interactions in multienzyme megasynthetases. Weissman KJ, Müller R. Chembiochem 9 826-848 (2008)
  21. The nonribosomal synthesis of diketopiperazines in tRNA-dependent cyclodipeptide synthase pathways. Belin P, Moutiez M, Lautru S, Seguin J, Pernodet JL, Gondry M. Nat Prod Rep 29 961-979 (2012)
  22. Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis. Marahiel MA. J Pept Sci 15 799-807 (2009)
  23. Structure and function of "metalloantibiotics". Ming LJ. Med Res Rev 23 697-762 (2003)
  24. Versatile polyketide enzymatic machinery for the biosynthesis of complex mycobacterial lipids. Gokhale RS, Saxena P, Chopra T, Mohanty D. Nat Prod Rep 24 267-277 (2007)
  25. Protein templates for the biosynthesis of peptide antibiotics. Marahiel MA. Chem Biol 4 561-567 (1997)
  26. Structural aspects of non-ribosomal peptide biosynthesis. Challis GL, Naismith JH. Curr Opin Struct Biol 14 748-756 (2004)
  27. A structural model for multimodular NRPS assembly lines. Marahiel MA. Nat Prod Rep 33 136-140 (2016)
  28. Learning from nature's drug factories: nonribosomal synthesis of macrocyclic peptides. Sieber SA, Marahiel MA. J Bacteriol 185 7036-7043 (2003)
  29. Exploring the domain structure of modular nonribosomal peptide synthetases. Weber T, Marahiel MA. Structure 9 R3-9 (2001)
  30. Fungal cyclooligomer depsipeptides: from classical biochemistry to combinatorial biosynthesis. Süssmuth R, Müller J, von Döhren H, Molnár I. Nat Prod Rep 28 99-124 (2011)
  31. Anticancer Activities of Surfactin and Potential Application of Nanotechnology Assisted Surfactin Delivery. Wu YS, Ngai SC, Goh BH, Chan KG, Lee LH, Chuah LH. Front Pharmacol 8 761 (2017)
  32. The chemical biology of branched-chain lipid metabolism. Mukherji M, Schofield CJ, Wierzbicki AS, Jansen GA, Wanders RJ, Lloyd MD. Prog Lipid Res 42 359-376 (2003)
  33. Origins and significance of ergot alkaloid diversity in fungi. Panaccione DG. FEMS Microbiol Lett 251 9-17 (2005)
  34. Bioinformatic perspectives on NRPS/PKS megasynthases: advances and challenges. Jenke-Kodama H, Dittmann E. Nat Prod Rep 26 874-883 (2009)
  35. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi. Cacho RA, Tang Y, Chooi YH. Front Microbiol 5 774 (2014)
  36. The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis. Izoré T, Cryle MJ. Nat Prod Rep 35 1120-1139 (2018)
  37. Proteins of the penicillin biosynthesis pathway. Schofield CJ, Baldwin JE, Byford MF, Clifton I, Hajdu J, Hensgens C, Roach P. Curr Opin Struct Biol 7 857-864 (1997)
  38. Biosynthesis of natural products on modular peptide synthetases. Doekel S, Marahiel MA. Metab Eng 3 64-77 (2001)
  39. Biosynthetic systems for nonribosomal peptide antibiotic assembly. Mootz HD, Marahiel MA. Curr Opin Chem Biol 1 543-551 (1997)
  40. Interrupted adenylation domains: unique bifunctional enzymes involved in nonribosomal peptide biosynthesis. Labby KJ, Watsula SG, Garneau-Tsodikova S. Nat Prod Rep 32 641-653 (2015)
  41. Streptomyces genetics: a genomic perspective. Paradkar A, Trefzer A, Chakraburtty R, Stassi D. Crit Rev Biotechnol 23 1-27 (2003)
  42. Design and application of multimodular peptide synthetases. Mootz HD, Marahiel MA. Curr Opin Biotechnol 10 341-348 (1999)
  43. Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Brown AS, Calcott MJ, Owen JG, Ackerley DF. Nat Prod Rep 35 1210-1228 (2018)
  44. Ribosome-independent biosynthesis of biologically active peptides: Application of synthetic biology to generate structural diversity. Giessen TW, Marahiel MA. FEBS Lett 586 2065-2075 (2012)
  45. New Structural Data Reveal the Motion of Carrier Proteins in Nonribosomal Peptide Synthesis. Kittilä T, Mollo A, Charkoudian LK, Cryle MJ. Angew Chem Int Ed Engl 55 9834-9840 (2016)
  46. Trapping interactions between catalytic domains and carrier proteins of modular biosynthetic enzymes with chemical probes. Gulick AM, Aldrich CC. Nat Prod Rep 35 1156-1184 (2018)
  47. The expansion of mechanistic and organismic diversity associated with non-ribosomal peptides. Moffitt MC, Neilan BA. FEMS Microbiol Lett 191 159-167 (2000)
  48. Small molecule inhibition of microbial natural product biosynthesis-an emerging antibiotic strategy. Cisar JS, Tan DS. Chem Soc Rev 37 1320-1329 (2008)
  49. Biosynthetic engineering of nonribosomal peptide synthetases. Kries H. J Pept Sci 22 564-570 (2016)
  50. Evolution and taxonomic distribution of nonribosomal peptide and polyketide synthases. Amoutzias GD, Van de Peer Y, Mossialos D. Future Microbiol 3 361-370 (2008)
  51. Mechanisms of β-amino acid incorporation in polyketide macrolactam biosynthesis. Miyanaga A, Kudo F, Eguchi T. Curr Opin Chem Biol 35 58-64 (2016)
  52. Refining and expanding nonribosomal peptide synthetase function and mechanism. McErlean M, Overbay J, Van Lanen S. J Ind Microbiol Biotechnol 46 493-513 (2019)
  53. Adenylation Domains in Nonribosomal Peptide Engineering. Stanišić A, Kries H. Chembiochem 20 1347-1356 (2019)
  54. Structural basis of the nonribosomal codes for nonproteinogenic amino acid selective adenylation enzymes in the biosynthesis of natural products. Kudo F, Miyanaga A, Eguchi T. J Ind Microbiol Biotechnol 46 515-536 (2019)
  55. Repurposing Modular Polyketide Synthases and Non-ribosomal Peptide Synthetases for Novel Chemical Biosynthesis. Hwang S, Lee N, Cho S, Palsson B, Cho BK. Front Mol Biosci 7 87 (2020)
  56. δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS): discovery and perspectives. Tahlan K, Moore MA, Jensen SE. J Ind Microbiol Biotechnol 44 517-524 (2017)
  57. Biosynthesis of active pharmaceuticals: β-lactam biosynthesis in filamentous fungi. Van Den Berg M, Gidijala L, Kiela J, Bovenberg R, Vander Keli I. Biotechnol Genet Eng Rev 27 1-32 (2010)
  58. Biosynthesis of depsipeptides, or Depsi: The peptides with varied generations. Alonzo DA, Schmeing TM. Protein Sci 29 2316-2347 (2020)
  59. Protein engineering towards natural product synthesis and diversification. Zabala AO, Cacho RA, Tang Y. J Ind Microbiol Biotechnol 39 227-241 (2012)
  60. Structural studies of natural product biosynthetic proteins. Townsend CA. Chem Biol 4 721-730 (1997)
  61. Flying under the radar: The non-canonical biochemistry and molecular biology of petrobactin from Bacillus anthracis. Hagan AK, Carlson PE, Hanna PC. Mol Microbiol 102 196-206 (2016)
  62. Nonribosomal Peptide Synthesis Definitely Working Out of the Rules. Duban M, Cociancich S, Leclère V. Microorganisms 10 577 (2022)
  63. Rational biosynthetic approaches for the production of new-to-nature compounds in fungi. Boecker S, Zobel S, Meyer V, Süssmuth RD. Fungal Genet Biol 89 89-101 (2016)
  64. Advances in linking polyketides and non-ribosomal peptides to their biosynthetic gene clusters in Fusarium. Nielsen MR, Sondergaard TE, Giese H, Sørensen JL. Curr Genet 65 1263-1280 (2019)
  65. Biosynthesis and incorporation of an alkylproline-derivative (APD) precursor into complex natural products. Janata J, Kamenik Z, Gazak R, Kadlcik S, Najmanova L. Nat Prod Rep 35 257-289 (2018)
  66. Exploiting racemases. Femmer C, Bechtold M, Roberts TM, Panke S. Appl Microbiol Biotechnol 100 7423-7436 (2016)
  67. Advances in the adenylation domain: discovery of diverse non-ribosomal peptides. Xu D, Zhang Z, Yao L, Wu L, Zhu Y, Zhao M, Xu H. Appl Microbiol Biotechnol 107 4187-4197 (2023)
  68. Modular NRPSs are monomeric. Smith S. Chem Biol 9 955-956 (2002)

Articles citing this publication (257)

  1. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Stachelhaus T, Mootz HD, Marahiel MA. Chem Biol 6 493-505 (1999)
  2. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Staswick PE, Tiryaki I. Plant Cell 16 2117-2127 (2004)
  3. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Challis GL, Ravel J, Townsend CA. Chem Biol 7 211-224 (2000)
  4. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Staswick PE, Tiryaki I, Rowe ML. Plant Cell 14 1405-1415 (2002)
  5. Structural basis for the spectral difference in luciferase bioluminescence. Nakatsu T, Ichiyama S, Hiratake J, Saldanha A, Kobashi N, Sakata K, Kato H. Nature 440 372-376 (2006)
  6. Crystal structure of the termination module of a nonribosomal peptide synthetase. Tanovic A, Samel SA, Essen LO, Marahiel MA. Science 321 659-663 (2008)
  7. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Böhnert HU, Fudal I, Dioh W, Tharreau D, Notteghem JL, Lebrun MH. Plant Cell 16 2499-2513 (2004)
  8. Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. May JJ, Kessler N, Marahiel MA, Stubbs MT. Proc Natl Acad Sci U S A 99 12120-12125 (2002)
  9. The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. Du L, Sánchez C, Chen M, Edwards DJ, Shen B. Chem Biol 7 623-642 (2000)
  10. Arabidopsis contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism. Shockey JM, Fulda MS, Browse JA. Plant Physiol 129 1710-1722 (2002)
  11. The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. Mootz HD, Marahiel MA. J Bacteriol 179 6843-6850 (1997)
  12. The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. Molnár I, Schupp T, Ono M, Zirkle R, Milnamow M, Nowak-Thompson B, Engel N, Toupet C, Stratmann A, Cyr DD, Gorlach J, Mayo JM, Hu A, Goff S, Schmid J, Ligon JM. Chem Biol 7 97-109 (2000)
  13. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. Huang DT, Paydar A, Zhuang M, Waddell MB, Holton JM, Schulman BA. Mol Cell 17 341-350 (2005)
  14. Leinamycin biosynthesis revealing unprecedented architectural complexity for a hybrid polyketide synthase and nonribosomal peptide synthetase. Tang GL, Cheng YQ, Shen B. Chem Biol 11 33-45 (2004)
  15. Structural basis for the inhibition of firefly luciferase by a general anesthetic. Franks NP, Jenkins A, Conti E, Lieb WR, Brick P. Biophys J 75 2205-2211 (1998)
  16. Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. Mikalsen B, Boison G, Skulberg OM, Fastner J, Davies W, Gabrielsen TM, Rudi K, Jakobsen KS. J Bacteriol 185 2774-2785 (2003)
  17. Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity. Reverchon S, Rouanet C, Expert D, Nasser W. J Bacteriol 184 654-665 (2002)
  18. Arabidopsis contains a large superfamily of acyl-activating enzymes. Phylogenetic and biochemical analysis reveals a new class of acyl-coenzyme a synthetases. Shockey JM, Fulda MS, Browse J. Plant Physiol 132 1065-1076 (2003)
  19. Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. Ehling-Schulz M, Fricker M, Grallert H, Rieck P, Wagner M, Scherer S. BMC Microbiol 6 20 (2006)
  20. Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Samel SA, Schoenafinger G, Knappe TA, Marahiel MA, Essen LO. Structure 15 781-792 (2007)
  21. Biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana. Eley KL, Halo LM, Song Z, Powles H, Cox RJ, Bailey AM, Lazarus CM, Simpson TJ. Chembiochem 8 289-297 (2007)
  22. SBSPKS: structure based sequence analysis of polyketide synthases. Anand S, Prasad MV, Yadav G, Kumar N, Shehara J, Ansari MZ, Mohanty D. Nucleic Acids Res 38 W487-96 (2010)
  23. Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains. Sundlov JA, Shi C, Wilson DJ, Aldrich CC, Gulick AM. Chem Biol 19 188-198 (2012)
  24. Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases. Weber T, Baumgartner R, Renner C, Marahiel MA, Holak TA. Structure 8 407-418 (2000)
  25. Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes. Minowa Y, Araki M, Kanehisa M. J Mol Biol 368 1500-1517 (2007)
  26. Structural characterization of a 140 degrees domain movement in the two-step reaction catalyzed by 4-chlorobenzoate:CoA ligase. Reger AS, Wu R, Dunaway-Mariano D, Gulick AM. Biochemistry 47 8016-8025 (2008)
  27. Ebony, a novel nonribosomal peptide synthetase for beta-alanine conjugation with biogenic amines in Drosophila. Richardt A, Kemme T, Wagner S, Schwarzer D, Marahiel MA, Hovemann BT. J Biol Chem 278 41160-41166 (2003)
  28. Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. Balibar CJ, Vaillancourt FH, Walsh CT. Chem Biol 12 1189-1200 (2005)
  29. Structural basis for the selectivity of the external thioesterase of the surfactin synthetase. Koglin A, Löhr F, Bernhard F, Rogov VV, Frueh DP, Strieter ER, Mofid MR, Güntert P, Wagner G, Walsh CT, Marahiel MA, Dötsch V. Nature 454 907-911 (2008)
  30. A method for prediction of the locations of linker regions within large multifunctional proteins, and application to a type I polyketide synthase. Udwary DW, Merski M, Townsend CA. J Mol Biol 323 585-598 (2002)
  31. Terrequinone A biosynthesis through L-tryptophan oxidation, dimerization and bisprenylation. Balibar CJ, Howard-Jones AR, Walsh CT. Nat Chem Biol 3 584-592 (2007)
  32. The substrate specificity-determining amino acid code of 4-coumarate:CoA ligase. Schneider K, Hövel K, Witzel K, Hamberger B, Schomburg D, Kombrink E, Stuible HP. Proc Natl Acad Sci U S A 100 8601-8606 (2003)
  33. Authentic heterologous expression of the tenellin iterative polyketide synthase nonribosomal peptide synthetase requires coexpression with an enoyl reductase. Halo LM, Marshall JW, Yakasai AA, Song Z, Butts CP, Crump MP, Heneghan M, Bailey AM, Simpson TJ, Lazarus CM, Cox RJ. Chembiochem 9 585-594 (2008)
  34. Construction of hybrid peptide synthetases by module and domain fusions. Mootz HD, Schwarzer D, Marahiel MA. Proc Natl Acad Sci U S A 97 5848-5853 (2000)
  35. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Reimer JM, Aloise MN, Harrison PM, Schmeing TM. Nature 529 239-242 (2016)
  36. Biochemical and crystallographic analysis of substrate binding and conformational changes in acetyl-CoA synthetase. Reger AS, Carney JM, Gulick AM. Biochemistry 46 6536-6546 (2007)
  37. Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Xu Y, Orozco R, Kithsiri Wijeratne EM, Espinosa-Artiles P, Leslie Gunatilaka AA, Patricia Stock S, Molnár I. Fungal Genet Biol 46 353-364 (2009)
  38. Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus. Kevany BM, Rasko DA, Thomas MG. Appl Environ Microbiol 75 1144-1155 (2009)
  39. Functional role of fatty acyl-coenzyme A synthetase in the transmembrane movement and activation of exogenous long-chain fatty acids. Amino acid residues within the ATP/AMP signature motif of Escherichia coli FadD are required for enzyme activity and fatty acid transport. Weimar JD, DiRusso CC, Delio R, Black PN. J Biol Chem 277 29369-29376 (2002)
  40. Identification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of Pseudomonas syringae pv. tomato DC3000. Berti AD, Greve NJ, Christensen QH, Thomas MG. J Bacteriol 189 6312-6323 (2007)
  41. Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. Konz D, Doekel S, Marahiel MA. J Bacteriol 181 133-140 (1999)
  42. Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine. Mossialos D, Ochsner U, Baysse C, Chablain P, Pirnay JP, Koedam N, Budzikiewicz H, Fernández DU, Schäfer M, Ravel J, Cornelis P. Mol Microbiol 45 1673-1685 (2002)
  43. Structure of the EntB multidomain nonribosomal peptide synthetase and functional analysis of its interaction with the EntE adenylation domain. Drake EJ, Nicolai DA, Gulick AM. Chem Biol 13 409-419 (2006)
  44. The EntF and EntE adenylation domains of Escherichia coli enterobactin synthetase: sequestration and selectivity in acyl-AMP transfers to thiolation domain cosubstrates. Ehmann DE, Shaw-Reid CA, Losey HC, Walsh CT. Proc Natl Acad Sci U S A 97 2509-2514 (2000)
  45. Mutational analysis of the C-domain in nonribosomal peptide synthesis. Bergendahl V, Linne U, Marahiel MA. Eur J Biochem 269 620-629 (2002)
  46. Characterization of the Ustilago maydis sid2 gene, encoding a multidomain peptide synthetase in the ferrichrome biosynthetic gene cluster. Yuan WM, Gentil GD, Budde AD, Leong SA. J Bacteriol 183 4040-4051 (2001)
  47. Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. Sandmann A, Sasse F, Müller R. Chem Biol 11 1071-1079 (2004)
  48. Reversible N epsilon-lysine acetylation regulates the activity of acyl-CoA synthetases involved in anaerobic benzoate catabolism in Rhodopseudomonas palustris. Crosby HA, Heiniger EK, Harwood CS, Escalante-Semerena JC. Mol Microbiol 76 874-888 (2010)
  49. Structure and biosynthesis of myxochromides S1-3 in Stigmatella aurantiaca: evidence for an iterative bacterial type I polyketide synthase and for module skipping in nonribosomal peptide biosynthesis. Wenzel SC, Kunze B, Höfle G, Silakowski B, Scharfe M, Blöcker H, Müller R. Chembiochem 6 375-385 (2005)
  50. Inhibition of the D-alanine:D-alanyl carrier protein ligase from Bacillus subtilis increases the bacterium's susceptibility to antibiotics that target the cell wall. May JJ, Finking R, Wiegeshoff F, Weber TT, Bandur N, Koert U, Marahiel MA. FEBS J 272 2993-3003 (2005)
  51. The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis. Scholz-Schroeder BK, Hutchison ML, Grgurina I, Gross DC. Mol Plant Microbe Interact 14 336-348 (2001)
  52. A novel ensemble-based scoring and search algorithm for protein redesign and its application to modify the substrate specificity of the gramicidin synthetase a phenylalanine adenylation enzyme. Lilien RH, Stevens BW, Anderson AC, Donald BR. J Comput Biol 12 740-761 (2005)
  53. Mutational analysis of 4-coumarate:CoA ligase identifies functionally important amino acids and verifies its close relationship to other adenylate-forming enzymes. Stuible H, Büttner D, Ehlting J, Hahlbrock K, Kombrink E. FEBS Lett 467 117-122 (2000)
  54. The sypA, sypS, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D. Scholz-Schroeder BK, Soule JD, Gross DC. Mol Plant Microbe Interact 16 271-280 (2003)
  55. Molecular determinants for ATP-binding in proteins: a data mining and quantum chemical analysis. Mao L, Wang Y, Liu Y, Hu X. J Mol Biol 336 787-807 (2004)
  56. Enzymatic extender unit generation for in vitro polyketide synthase reactions: structural and functional showcasing of Streptomyces coelicolor MatB. Hughes AJ, Keatinge-Clay A. Chem Biol 18 165-176 (2011)
  57. NRPSsp: non-ribosomal peptide synthase substrate predictor. Prieto C, García-Estrada C, Lorenzana D, Martín JF. Bioinformatics 28 426-427 (2012)
  58. Crystal structures of a Populus tomentosa 4-coumarate:CoA ligase shed light on its enzymatic mechanisms. Hu Y, Gai Y, Yin L, Wang X, Feng C, Feng L, Li D, Jiang XN, Wang DC. Plant Cell 22 3093-3104 (2010)
  59. Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Choi SK, Park SY, Kim R, Lee CH, Kim JF, Park SH. Biochem Biophys Res Commun 365 89-95 (2008)
  60. Deciphering the biosynthetic codes for the potent anti-SARS-CoV cyclodepsipeptide valinomycin in Streptomyces tsusimaensis ATCC 15141. Cheng YQ. Chembiochem 7 471-477 (2006)
  61. Molecular and biochemical studies of chondramide formation-highly cytotoxic natural products from Chondromyces crocatus Cm c5. Rachid S, Krug D, Kunze B, Kochems I, Scharfe M, Zabriskie TM, Blöcker H, Müller R. Chem Biol 13 667-681 (2006)
  62. Structural snapshots for the conformation-dependent catalysis by human medium-chain acyl-coenzyme A synthetase ACSM2A. Kochan G, Pilka ES, von Delft F, Oppermann U, Yue WW. J Mol Biol 388 997-1008 (2009)
  63. Genomic island TnSmu2 of Streptococcus mutans harbors a nonribosomal peptide synthetase-polyketide synthase gene cluster responsible for the biosynthesis of pigments involved in oxygen and H2O2 tolerance. Wu C, Cichewicz R, Li Y, Liu J, Roe B, Ferretti J, Merritt J, Qi F. Appl Environ Microbiol 76 5815-5826 (2010)
  64. X-Ray Crystallography and Electron Microscopy of Cross- and Multi-Module Nonribosomal Peptide Synthetase Proteins Reveal a Flexible Architecture. Tarry MJ, Haque AS, Bui KH, Schmeing TM. Structure 25 783-793.e4 (2017)
  65. Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite. Höfer I, Crüsemann M, Radzom M, Geers B, Flachshaar D, Cai X, Zeeck A, Piel J. Chem Biol 18 381-391 (2011)
  66. Mechanism-based inhibitors of MenE, an acyl-CoA synthetase involved in bacterial menaquinone biosynthesis. Lu X, Zhang H, Tonge PJ, Tan DS. Bioorg Med Chem Lett 18 5963-5966 (2008)
  67. Reprogramming nonribosomal peptide synthetases for "clickable" amino acids. Kries H, Wachtel R, Pabst A, Wanner B, Niquille D, Hilvert D. Angew Chem Int Ed Engl 53 10105-10108 (2014)
  68. Introduction of a non-natural amino acid into a nonribosomal peptide antibiotic by modification of adenylation domain specificity. Thirlway J, Lewis R, Nunns L, Al Nakeeb M, Styles M, Struck AW, Smith CP, Micklefield J. Angew Chem Int Ed Engl 51 7181-7184 (2012)
  69. Dead-end elimination with backbone flexibility. Georgiev I, Donald BR. Bioinformatics 23 i185-94 (2007)
  70. Dipeptide formation on engineered hybrid peptide synthetases. Doekel S, Marahiel MA. Chem Biol 7 373-384 (2000)
  71. Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction. Charusanti P, Fong NL, Nagarajan H, Pereira AR, Li HJ, Abate EA, Su Y, Gerwick WH, Palsson BO. PLoS One 7 e33727 (2012)
  72. AcsD catalyzes enantioselective citrate desymmetrization in siderophore biosynthesis. Schmelz S, Kadi N, McMahon SA, Song L, Oves-Costales D, Oke M, Liu H, Johnson KA, Carter LG, Botting CH, White MF, Challis GL, Naismith JH. Nat Chem Biol 5 174-182 (2009)
  73. Antitubercular nucleosides that inhibit siderophore biosynthesis: SAR of the glycosyl domain. Somu RV, Wilson DJ, Bennett EM, Boshoff HI, Celia L, Beck BJ, Barry CE, Aldrich CC. J Med Chem 49 7623-7635 (2006)
  74. Diversity of microcystin genotypes among populations of the filamentous cyanobacteria Planktothrix rubescens and Planktothrix agardhii. Kurmayer R, Gumpenberger M. Mol Ecol 15 3849-3861 (2006)
  75. Mechanism of 4-chlorobenzoate:coenzyme a ligase catalysis. Wu R, Cao J, Lu X, Reger AS, Gulick AM, Dunaway-Mariano D. Biochemistry 47 8026-8039 (2008)
  76. The dual function of the Mycobacterium tuberculosis FadD32 required for mycolic acid biosynthesis. Léger M, Gavalda S, Guillet V, van der Rest B, Slama N, Montrozier H, Mourey L, Quémard A, Daffé M, Marrakchi H. Chem Biol 16 510-519 (2009)
  77. Nonribosomal peptide biosynthesis: point mutations and module skipping lead to chemical diversity. Wenzel SC, Meiser P, Binz TM, Mahmud T, Müller R. Angew Chem Int Ed Engl 45 2296-2301 (2006)
  78. A subdomain swap strategy for reengineering nonribosomal peptides. Kries H, Niquille DL, Hilvert D. Chem Biol 22 640-648 (2015)
  79. Functional modeling and phylogenetic distribution of putative cylindrospermopsin biosynthesis enzymes. Kellmann R, Mills T, Neilan BA. J Mol Evol 62 267-280 (2006)
  80. A one-pot chemoenzymatic synthesis for the universal precursor of antidiabetes and antiviral bis-indolylquinones. Schneider P, Weber M, Rosenberger K, Hoffmeister D. Chem Biol 14 635-644 (2007)
  81. Aminoacyl adenylate substrate analogues for the inhibition of adenylation domains of nonribosomal peptide synthetases. Finking R, Neumüller A, Solsbacher J, Konz D, Kretzschmar G, Schweitzer M, Krumm T, Marahiel MA. Chembiochem 4 903-906 (2003)
  82. Directed evolution of a gatekeeper domain in nonribosomal peptide synthesis. Villiers B, Hollfelder F. Chem Biol 18 1290-1299 (2011)
  83. Genetic variation of adenylation domains of the anabaenopeptin synthesis operon and evolution of substrate promiscuity. Christiansen G, Philmus B, Hemscheidt T, Kurmayer R. J Bacteriol 193 3822-3831 (2011)
  84. Nonribosomal biosynthesis of backbone-modified peptides. Niquille DL, Hansen DA, Mori T, Fercher D, Kries H, Hilvert D. Nat Chem 10 282-287 (2018)
  85. Biosynthesis of the unique amino acid side chain of butirosin: possible protective-group chemistry in an acyl carrier protein-mediated pathway. Li Y, Llewellyn NM, Giri R, Huang F, Spencer JB. Chem Biol 12 665-675 (2005)
  86. Identification of 4-coumarate:coenzyme A ligase (4CL) substrate recognition domains. Ehlting J, Shin JJ, Douglas CJ. Plant J 27 455-465 (2001)
  87. Biochemical and structural characterization of the paralogous benzoate CoA ligases from Burkholderia xenovorans LB400: defining the entry point into the novel benzoate oxidation (box) pathway. Bains J, Boulanger MJ. J Mol Biol 373 965-977 (2007)
  88. The mechanism of domain alternation in the acyl-adenylate forming ligase superfamily member 4-chlorobenzoate: coenzyme A ligase. Wu R, Reger AS, Lu X, Gulick AM, Dunaway-Mariano D. Biochemistry 48 4115-4125 (2009)
  89. Evidence for positive selection acting on microcystin synthetase adenylation domains in three cyanobacterial genera. Tooming-Klunderud A, Fewer DP, Rohrlack T, Jokela J, Rouhiainen L, Sivonen K, Kristensen T, Jakobsen KS. BMC Evol Biol 8 256 (2008)
  90. Crystal structure of Bacillus cereus D-alanyl carrier protein ligase (DltA) in complex with ATP. Osman KT, Du L, He Y, Luo Y. J Mol Biol 388 345-355 (2009)
  91. Mapping the limits of substrate specificity of the adenylation domain of TycA. Villiers BR, Hollfelder F. Chembiochem 10 671-682 (2009)
  92. Molecular basis of the functional divergence of fatty acyl-AMP ligase biosynthetic enzymes of Mycobacterium tuberculosis. Goyal A, Verma P, Anandhakrishnan M, Gokhale RS, Sankaranarayanan R. J Mol Biol 416 221-238 (2012)
  93. Non-ribosomal propeptide precursor in nocardicin A biosynthesis predicted from adenylation domain specificity dependent on the MbtH family protein NocI. Davidsen JM, Bartley DM, Townsend CA. J Am Chem Soc 135 1749-1759 (2013)
  94. Analysis of a nonribosomal peptide synthetase gene from Alternaria brassicae and flanking genomic sequences. Guillemette T, Sellam A, Simoneau P. Curr Genet 45 214-224 (2004)
  95. Stable analogues of OSB-AMP: potent inhibitors of MenE, the o-succinylbenzoate-CoA synthetase from bacterial menaquinone biosynthesis. Lu X, Zhou R, Sharma I, Li X, Kumar G, Swaminathan S, Tonge PJ, Tan DS. Chembiochem 13 129-136 (2012)
  96. A non-canonical NRPS is involved in the synthesis of fungisporin and related hydrophobic cyclic tetrapeptides in Penicillium chrysogenum. Ali H, Ries MI, Lankhorst PP, van der Hoeven RA, Schouten OL, Noga M, Hankemeier T, van Peij NN, Bovenberg RA, Vreeken RJ, Driessen AJ. PLoS One 9 e98212 (2014)
  97. A novel deamido-NAD+-binding site revealed by the trapped NAD-adenylate intermediate in the NAD+ synthetase structure. Rizzi M, Bolognesi M, Coda A. Structure 6 1129-1140 (1998)
  98. Evidence for a monomeric structure of nonribosomal Peptide synthetases. Sieber SA, Linne U, Hillson NJ, Roche E, Walsh CT, Marahiel MA. Chem Biol 9 997-1008 (2002)
  99. Exploring the impact of different thioesterase domains for the design of hybrid peptide synthetases. Schwarzer D, Mootz HD, Marahiel MA. Chem Biol 8 997-1010 (2001)
  100. Functional expression of the Aspergillus flavus PKS-NRPS hybrid CpaA involved in the biosynthesis of cyclopiazonic acid. Seshime Y, Juvvadi PR, Tokuoka M, Koyama Y, Kitamoto K, Ebizuka Y, Fujii I. Bioorg Med Chem Lett 19 3288-3292 (2009)
  101. Isolation and structure determination of two microcystins and sequence comparison of the McyABC adenylation domains in Planktothrix species. Christiansen G, Yoshida WY, Blom JF, Portmann C, Gademann K, Hemscheidt T, Kurmayer R. J Nat Prod 71 1881-1886 (2008)
  102. Dynamics of firefly luciferase inhibition by general anesthetics: Gaussian and anisotropic network analyses. Szarecka A, Xu Y, Tang P. Biophys J 93 1895-1905 (2007)
  103. Rational design of a bimodular model system for the investigation of heterocyclization in nonribosomal peptide biosynthesis. Duerfahrt T, Eppelmann K, Müller R, Müller R, Marahiel MA. Chem Biol 11 261-271 (2004)
  104. Structural Elucidation of the Bispecificity of A Domains as a Basis for Activating Non-natural Amino Acids. Kaljunen H, Schiefelbein SH, Stummer D, Kozak S, Meijers R, Christiansen G, Rentmeister A. Angew Chem Int Ed Engl 54 8833-8836 (2015)
  105. Probing the domain structure and ligand-induced conformational changes by limited proteolysis of tyrocidine synthetase 1. Dieckmann R, Pavela-Vrancic M, von Döhren H, Kleinkauf H. J Mol Biol 288 129-140 (1999)
  106. The influence of Ala243 (Gly247), Arg215 and Thr226 (Asn230) on the bioluminescence spectra and pH-sensitivity of railroad worm, click beetle and firefly luciferases. Viviani VR, Uchida A, Viviani W, Ohmiya Y. Photochem Photobiol 76 538-544 (2002)
  107. Discovery of the rhizopodin biosynthetic gene cluster in Stigmatella aurantiaca Sg a15 by genome mining. Pistorius D, Müller R. Chembiochem 13 416-426 (2012)
  108. Global conformational change associated with the two-step reaction catalyzed by Escherichia coli lipoate-protein ligase A. Fujiwara K, Maita N, Hosaka H, Okamura-Ikeda K, Nakagawa A, Taniguchi H. J Biol Chem 285 9971-9980 (2010)
  109. An optimized ATP/PP(i)-exchange assay in 96-well format for screening of adenylation domains for applications in combinatorial biosynthesis. Otten LG, Schaffer ML, Villiers BR, Stachelhaus T, Hollfelder F. Biotechnol J 2 232-240 (2007)
  110. Characterization of CG6178 gene product with high sequence similarity to firefly luciferase in Drosophila melanogaster. Oba Y, Ojika M, Inouye S. Gene 329 137-145 (2004)
  111. The N-terminal amino acid sequences of the firefly luciferase are important for the stability of the enzyme. Sung D, Kang H. Photochem Photobiol 68 749-753 (1998)
  112. Structural characterization of lichenysin A components by fast atom bombardment tandem mass spectrometry. Yakimov MM, Abraham WR, Meyer H, Laura Giuliano, Golyshin PN. Biochim Biophys Acta 1438 273-280 (1999)
  113. The structural basis of N-acyl-α-amino-β-lactone formation catalyzed by a nonribosomal peptide synthetase. Kreitler DF, Gemmell EM, Schaffer JE, Wencewicz TA, Gulick AM. Nat Commun 10 3432 (2019)
  114. Substrate specificity of the adenylation enzyme SgcC1 involved in the biosynthesis of the enediyne antitumor antibiotic C-1027. Van Lanen SG, Lin S, Dorrestein PC, Kelleher NL, Shen B. J Biol Chem 281 29633-29640 (2006)
  115. The hydroxamate siderophore rhequichelin is required for virulence of the pathogenic actinomycete Rhodococcus equi. Miranda-Casoluengo R, Coulson GB, Miranda-Casoluengo A, Vázquez-Boland JA, Hondalus MK, Meijer WG. Infect Immun 80 4106-4114 (2012)
  116. Utility of epimerization domains for the redesign of nonribosomal peptide synthetases. Stein DB, Linne U, Marahiel MA. FEBS J 272 4506-4520 (2005)
  117. A ketoreductase domain in the PksJ protein of the bacillaene assembly line carries out both alpha- and beta-ketone reduction during chain growth. Calderone CT, Bumpus SB, Kelleher NL, Walsh CT, Magarvey NA. Proc Natl Acad Sci U S A 105 12809-12814 (2008)
  118. AMP-forming acetyl-CoA synthetases in Archaea show unexpected diversity in substrate utilization. Ingram-Smith C, Smith KS. Archaea 2 95-107 (2007)
  119. Bioluminescence color determinants of Phrixothrix railroad-worm luciferases: chimeric luciferases, site-directed mutagenesis of Arg 215 and guanidine effect. Viviani VR, Ohmiya Y. Photochem Photobiol 72 267-271 (2000)
  120. Characterization and genetic manipulation of peptide synthetases in Pseudomonas aeruginosa PAO1 in order to generate novel pyoverdines. Ackerley DF, Lamont IL. Chem Biol 11 971-980 (2004)
  121. Characterization of the Suillus grevillei quinone synthetase GreA supports a nonribosomal code for aromatic α-keto acids. Wackler B, Lackner G, Chooi YH, Hoffmeister D. Chembiochem 13 1798-1804 (2012)
  122. Evolutionary imprint of catalytic domains in fungal PKS-NRPS hybrids. Boettger D, Bergmann H, Kuehn B, Shelest E, Hertweck C. Chembiochem 13 2363-2373 (2012)
  123. Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Symmank H, Franke P, Saenger W, Bernhard F. Protein Eng 15 913-921 (2002)
  124. SanJ, an ATP-dependent picolinate-CoA ligase, catalyzes the conversion of picolinate to picolinate-CoA during nikkomycin biosynthesis in Streptomyces ansochromogenes. Niu G, Liu G, Tian Y, Tan H. Metab Eng 8 183-195 (2006)
  125. Synthesis of an N-acyl sulfamate analog of luciferyl-AMP: a stable and potent inhibitor of firefly luciferase. Branchini BR, Murtiashaw MH, Carmody JN, Mygatt EE, Southworth TL. Bioorg Med Chem Lett 15 3860-3864 (2005)
  126. Characterization of the colistin (polymyxin E1 and E2) biosynthetic gene cluster. Tambadou F, Caradec T, Gagez AL, Bonnet A, Sopéna V, Bridiau N, Thiéry V, Didelot S, Barthélémy C, Chevrot R. Arch Microbiol 197 521-532 (2015)
  127. Letter Novel nonribosomal peptide synthetase (NRPS) genes sequenced from intertidal mudflat bacteria. Tambadou F, Lanneluc I, Sablé S, Klein GL, Doghri I, Sopéna V, Didelot S, Barthélémy C, Thiéry V, Chevrot R. FEMS Microbiol Lett 357 123-130 (2014)
  128. Online Pyrophosphate Assay for Analyzing Adenylation Domains of Nonribosomal Peptide Synthetases. Kittilä T, Schoppet M, Cryle MJ. Chembiochem 17 576-584 (2016)
  129. A nonribosomal peptide synthetase with a novel domain organization is essential for siderophore biosynthesis in Vibrio anguillarum. Di Lorenzo M, Poppelaars S, Stork M, Nagasawa M, Tolmasky ME, Crosa JH. J Bacteriol 186 7327-7336 (2004)
  130. Aminoacyl-coenzyme A synthesis catalyzed by adenylation domains. Linne U, Schäfer A, Stubbs MT, Marahiel MA. FEBS Lett 581 905-910 (2007)
  131. Bioluminescence spectra of native and mutant firefly luciferases as a function of pH. Ugarova NN, Maloshenok LG, Uporov IV, Koksharov MI. Biochemistry (Mosc) 70 1262-1267 (2005)
  132. Characterisation of taxlllaids A-G; natural products from Xenorhabdus indica. Kronenwerth M, Bozhüyük KA, Kahnt AS, Steinhilber D, Gaudriault S, Kaiser M, Bode HB. Chemistry 20 17478-17487 (2014)
  133. Construction of hybrid peptide synthetases for the production of alpha-l-aspartyl-l-phenylalanine, a precursor for the high-intensity sweetener aspartame. Duerfahrt T, Doekel S, Sonke T, Quaedflieg PJ, Marahiel MA. Eur J Biochem 270 4555-4563 (2003)
  134. Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery. Behsaz B, Bode E, Gurevich A, Shi YN, Grundmann F, Acharya D, Caraballo-Rodríguez AM, Bouslimani A, Panitchpakdi M, Linck A, Guan C, Oh J, Dorrestein PC, Bode HB, Pevzner PA, Mohimani H. Nat Commun 12 3225 (2021)
  135. The pimeloyl-CoA synthetase BioW defines a new fold for adenylate-forming enzymes. Estrada P, Manandhar M, Dong SH, Deveryshetty J, Agarwal V, Cronan JE, Nair SK. Nat Chem Biol 13 668-674 (2017)
  136. 4-Coumarate:coenzyme A ligase has the catalytic capacity to synthesize and reuse various (di)adenosine polyphosphates. Pietrowska-Borek M, Stuible HP, Kombrink E, Guranowski A. Plant Physiol 131 1401-1410 (2003)
  137. Bimodular peptide synthetase SidE produces fumarylalanine in the human pathogen Aspergillus fumigatus. Steinchen W, Lackner G, Yasmin S, Schrettl M, Dahse HM, Haas H, Hoffmeister D. Appl Environ Microbiol 79 6670-6676 (2013)
  138. FRET monitoring of a nonribosomal peptide synthetase. Alfermann J, Sun X, Mayerthaler F, Morrell TE, Dehling E, Volkmann G, Komatsuzaki T, Yang H, Mootz HD. Nat Chem Biol 13 1009-1015 (2017)
  139. Identification of residues essential for a two-step reaction by malonyl-CoA synthetase from Rhizobium trifolii. An JH, Lee GY, Jung JW, Lee W, Kim YS. Biochem J 344 Pt 1 159-166 (1999)
  140. Defining a structural and kinetic rationale for paralogous copies of phenylacetate-CoA ligases from the cystic fibrosis pathogen Burkholderia cenocepacia J2315. Law A, Boulanger MJ. J Biol Chem 286 15577-15585 (2011)
  141. Post-translational Acetylation of MbtA Modulates Mycobacterial Siderophore Biosynthesis. Vergnolle O, Xu H, Tufariello JM, Favrot L, Malek AA, Jacobs WR, Blanchard JS. J Biol Chem 291 22315-22326 (2016)
  142. Sequence analysis of porothramycin biosynthetic gene cluster. Najmanova L, Ulanova D, Jelinkova M, Kamenik Z, Kettnerova E, Koberska M, Gazak R, Radojevic B, Janata J. Folia Microbiol (Praha) 59 543-552 (2014)
  143. Active site-directed proteomic probes for adenylation domains in nonribosomal peptide synthetases. Konno S, Ishikawa F, Suzuki T, Dohmae N, Burkart MD, Kakeya H. Chem Commun (Camb) 51 2262-2265 (2015)
  144. An improved method for culturing Streptomyces sahachiroi: biosynthetic origin of the enol fragment of azinomycin B. Kelly GT, Sharma V, Watanabe CM. Bioorg Chem 36 4-15 (2008)
  145. Biosynthesis of the new broad-spectrum lipopeptide antibiotic paenibacterin in Paenibacillus thiaminolyticus OSY-SE. Huang E, Guo Y, Yousef AE. Res Microbiol 165 243-251 (2014)
  146. Fungal biosynthesis of non-ribosomal peptide antibiotics and alpha, alpha-dialkylated amino acid constituents. Raap J, Erkelens K, Ogrel A, Skladnev DA, Brückner H. J Pept Sci 11 331-338 (2005)
  147. Impact of epimerization domains on the intermodular transfer of enzyme-bound intermediates in nonribosomal peptide synthesis. Stein DB, Linne U, Hahn M, Marahiel MA. Chembiochem 7 1807-1814 (2006)
  148. Firefly luciferase has two nucleotide binding sites: effect of nucleoside monophosphate and CoA on the light-emission spectra. Steghens JP, Min KL, Bernengo JC. Biochem J 336 ( Pt 1) 109-113 (1998)
  149. Linker Flexibility Facilitates Module Exchange in Fungal Hybrid PKS-NRPS Engineering. Nielsen ML, Isbrandt T, Petersen LM, Mortensen UH, Andersen MR, Hoof JB, Larsen TO. PLoS One 11 e0161199 (2016)
  150. Prediction of the substrate for nonribosomal peptide synthetase (NRPS) adenylation domains by virtual screening. Lee TV, Johnson RD, Arcus VL, Lott JS. Proteins 83 2052-2066 (2015)
  151. Structural basis of keto acid utilization in nonribosomal depsipeptide synthesis. Alonzo DA, Chiche-Lapierre C, Tarry MJ, Wang J, Schmeing TM. Nat Chem Biol 16 493-496 (2020)
  152. Use of the Rhodopseudomonas palustris genome sequence to identify a single amino acid that contributes to the activity of a coenzyme A ligase with chlorinated substrates. Samanta SK, Harwood CS. Mol Microbiol 55 1151-1159 (2005)
  153. Convergent evolution of [D-Leucine(1)] microcystin-LR in taxonomically disparate cyanobacteria. Shishido TK, Kaasalainen U, Fewer DP, Rouhiainen L, Jokela J, Wahlsten M, Fiore MF, Yunes JS, Rikkinen J, Sivonen K. BMC Evol Biol 13 86 (2013)
  154. Firefly luciferase and RLuc8 exhibit differential sensitivity to oxidative stress in apoptotic cells. Czupryna J, Tsourkas A. PLoS One 6 e20073 (2011)
  155. Structure of the adenylation-peptidyl carrier protein didomain of the Microcystis aeruginosa microcystin synthetase McyG. Tan XF, Dai YN, Zhou K, Jiang YL, Ren YM, Chen Y, Zhou CZ. Acta Crystallogr D Biol Crystallogr 71 873-881 (2015)
  156. Amino acids activated by fengycin synthetase FenE. Shu HY, Lin GH, Wu YC, Tschen JS, Liu ST. Biochem Biophys Res Commun 292 789-793 (2002)
  157. Biochemical evidence for conformational changes in the cross-talk between adenylation and peptidyl-carrier protein domains of nonribosomal peptide synthetases. Zettler J, Mootz HD. FEBS J 277 1159-1171 (2010)
  158. Characterization and Engineering of the Adenylation Domain of a NRPS-Like Protein: A Potential Biocatalyst for Aldehyde Generation. Wang M, Zhao H. ACS Catal 4 1219-1225 (2014)
  159. Characterization of TioQ, a type II thioesterase from the thiocoraline biosynthetic cluster. Mady AS, Zolova OE, Millán MÁ, Villamizar G, de la Calle F, Lombó F, Garneau-Tsodikova S. Mol Biosyst 7 1999-2011 (2011)
  160. Rational and efficient site-directed mutagenesis of adenylation domain alters relative yields of luminmide derivatives in vivo. Bian X, Plaza A, Yan F, Zhang Y, Müller R. Biotechnol Bioeng 112 1343-1353 (2015)
  161. Bacillibactin and Bacillomycin Analogues with Cytotoxicities against Human Cancer Cell Lines from Marine Bacillus sp. PKU-MA00093 and PKU-MA00092. Zhou M, Liu F, Yang X, Jin J, Dong X, Zeng KW, Liu D, Zhang Y, Ma M, Yang D. Mar Drugs 16 E22 (2018)
  162. Crystal structure of FadD32, an enzyme essential for mycolic acid biosynthesis in mycobacteria. Li W, Gu S, Fleming J, Bi L. Sci Rep 5 15493 (2015)
  163. Structure and biosynthesis of the BT peptide antibiotic from Brevibacillus texasporus. Wu X, Ballard J, Jiang YW. Appl Environ Microbiol 71 8519-8530 (2005)
  164. The active site and substrates binding mode of malonyl-CoA synthetase determined by transferred nuclear Overhauser effect spectroscopy, site-directed mutagenesis, and comparative modeling studies. Jung JW, An JH, Na KB, Kim YS, Lee W. Protein Sci 9 1294-1303 (2000)
  165. Bacterial-Like Nonribosomal Peptide Synthetases Produce Cyclopeptides in the Zygomycetous Fungus Mortierella alpina. Wurlitzer JM, Stanišić A, Wasmuth I, Jungmann S, Fischer D, Kries H, Gressler M. Appl Environ Microbiol 87 e02051-20 (2021)
  166. Biochemical characterization and structural insight into aliphatic β-amino acid adenylation enzymes IdnL1 and CmiS6. Cieślak J, Miyanaga A, Takaku R, Takaishi M, Amagai K, Kudo F, Eguchi T. Proteins 85 1238-1247 (2017)
  167. Biosynthesis of Amino Acid Derived α-Pyrones by an NRPS-NRPKS Hybrid Megasynthetase in Fungi. Hai Y, Huang A, Tang Y. J Nat Prod 83 593-600 (2020)
  168. Cyclic Dipeptides Mediating Quorum Sensing and Their Biological Effects in Hypsizygus Marmoreus. Sun SJ, Liu YC, Weng CH, Sun SW, Li F, Li H, Zhu H. Biomolecules 10 E298 (2020)
  169. Editing of non-cognate aminoacyl adenylates by peptide synthetases. Pavela-Vrancic M, Dieckmann R, Döhren HV, Kleinkauf H. Biochem J 342 Pt 3 715-719 (1999)
  170. Genetics of subpeptin JM4-A and subpeptin JM4-B production by Bacillus subtilis JM4. Wu S, Zhong J, Huan L. Biochem Biophys Res Commun 344 1147-1154 (2006)
  171. In silico analysis of the adenylation domains of the freestanding enzymes belonging to the eucaryotic nonribosomal peptide synthetase-like family. Di Vincenzo L, Grgurina I, Pascarella S. FEBS J 272 929-941 (2005)
  172. Mechanistic insight into 3-methylmercaptopropionate metabolism and kinetical regulation of demethylation pathway in marine dimethylsulfoniopropionate-catabolizing bacteria. Shao X, Cao HY, Zhao F, Peng M, Wang P, Li CY, Shi WL, Wei TD, Yuan Z, Zhang XH, Chen XL, Todd JD, Zhang YZ. Mol Microbiol 111 1057-1073 (2019)
  173. Chromosome rearrangements shape the diversification of secondary metabolism in the cyclosporin producing fungus Tolypocladium inflatum. Olarte RA, Menke J, Zhang Y, Sullivan S, Slot JC, Huang Y, Badalamenti JP, Quandt AC, Spatafora JW, Bushley KE. BMC Genomics 20 120 (2019)
  174. Dipeptide synthesis by an isolated adenylate-forming domain of non-ribosomal peptide synthetases (NRPS). Dieckmann R, Neuhof T, Pavela-Vrancic M, von Döhren H. FEBS Lett 498 42-45 (2001)
  175. Phenolic metabolism in the hornwort Anthoceros agrestis: 4-coumarate CoA ligase and 4-hydroxybenzoate CoA ligase. Wohl J, Petersen M. Plant Cell Rep 39 1129-1141 (2020)
  176. Structural Basis for the ATP-dependent Configuration of Adenylation Active Site in Bacillus subtilis o-Succinylbenzoyl-CoA Synthetase. Chen Y, Sun Y, Song H, Guo Z. J Biol Chem 290 23971-23983 (2015)
  177. The Biosynthesis of Rare Homo-Amino Acid Containing Variants of Microcystin by a Benthic Cyanobacterium. Shishido TK, Jokela J, Humisto A, Suurnäkki S, Wahlsten M, Alvarenga DO, Sivonen K, Fewer DP. Mar Drugs 17 E271 (2019)
  178. Three acyltetronic acid derivatives: noncanonical cryptic polyketides from Aspergillus niger identified by genome mining. Yang XL, Awakawa T, Wakimoto T, Abe I. Chembiochem 15 1578-1583 (2014)
  179. Unusually divergent 4-coumarate:CoA-ligases from Ruta graveolens L. Endler A, Martens S, Wellmann F, Matern U. Plant Mol Biol 67 335-346 (2008)
  180. Activation of the promoter of the fengycin synthetase operon by the UP element. Ke WJ, Chang BY, Lin TP, Liu ST. J Bacteriol 191 4615-4623 (2009)
  181. Enhancement of E. coli acyl-CoA synthetase FadD activity on medium chain fatty acids. Ford TJ, Way JC. PeerJ 3 e1040 (2015)
  182. Identification, isolation, and analysis of a gene cluster involved in iron acquisition by Pseudomonas mendocina ymp. Awaya JD, Dubois JL. Biometals 21 353-366 (2008)
  183. One Ring to Fight Them All: The Sulfazecin Story. Braga D, Lackner G. Cell Chem Biol 24 1-2 (2017)
  184. Peptide Bond Synthesis by a Mechanism Involving an Enzymatic Reaction and a Subsequent Chemical Reaction. Abe T, Hashimoto Y, Zhuang Y, Ge Y, Kumano T, Kobayashi M. J Biol Chem 291 1735-1750 (2016)
  185. Photo-crosslink analysis in nonribosomal peptide synthetases reveals aberrant gel migration of branched crosslink isomers and spatial proximity between non-neighboring domains. Dehling E, Rüschenbaum J, Diecker J, Dörner W, Mootz HD. Chem Sci 11 8945-8954 (2020)
  186. Thiolation-enhanced substrate recognition by D-alanyl carrier protein ligase DltA from Bacillus cereus. Du L, Luo Y. F1000Res 3 106 (2014)
  187. Catalytic trajectory of a dimeric nonribosomal peptide synthetase subunit with an inserted epimerase domain. Wang J, Li D, Chen L, Cao W, Kong L, Zhang W, Croll T, Deng Z, Liang J, Wang Z. Nat Commun 13 592 (2022)
  188. Characterisation of the ArmA adenylation domain implies a more diverse secondary metabolism in the genus Armillaria. Misiek M, Braesel J, Hoffmeister D. Fungal Biol 115 775-781 (2011)
  189. Computational design of mixed chirality peptide macrocycles with internal symmetry. Mulligan VK, Kang CS, Sawaya MR, Rettie S, Li X, Antselovich I, Craven TW, Watkins AM, Labonte JW, DiMaio F, Yeates TO, Baker D. Protein Sci 29 2433-2445 (2020)
  190. Detecting the native ligand orientation by interfacial rigidity: SiteInterlock. Raschka S, Bemister-Buffington J, Kuhn LA. Proteins 84 1888-1901 (2016)
  191. Identification of Key Residues for Enzymatic Carboxylate Reduction. Stolterfoht H, Steinkellner G, Schwendenwein D, Pavkov-Keller T, Gruber K, Winkler M. Front Microbiol 9 250 (2018)
  192. In vivo and in vitro reconstitution of unique key steps in cystobactamid antibiotic biosynthesis. Groß S, Schnell B, Haack PA, Auerbach D, Müller R. Nat Commun 12 1696 (2021)
  193. Natural variation of root lesion nematode antagonism in the biocontrol fungus Clonostachys rosea and identification of biocontrol factors through genome-wide association mapping. Iqbal M, Broberg M, Haarith D, Broberg A, Bushley KE, Brandström Durling M, Viketoft M, Funck Jensen D, Dubey M, Karlsson M. Evol Appl 13 2264-2283 (2020)
  194. Piperazine ring formation by a single-module NRPS and cleavage by an α-KG-dependent nonheme iron dioxygenase in brasiliamide biosynthesis. Yuan B, Liu D, Guan X, Yan Y, Zhang J, Zhang Y, Yang D, Ma M, Lin W. Appl Microbiol Biotechnol 104 6149-6159 (2020)
  195. Structure of the adenylation domain Thr1 involved in the biosynthesis of 4-chlorothreonine in Streptomyces sp. OH-5093-protein flexibility and molecular bases of substrate specificity. Scaglione A, Fullone MR, Montemiglio LC, Parisi G, Zamparelli C, Vallone B, Savino C, Grgurina I. FEBS J 284 2981-2999 (2017)
  196. The A9 core sequence from NRPS adenylation domain is relevant for thioester formation. Bučević-Popović V, Sprung M, Soldo B, Pavela-Vrančič M. Chembiochem 13 1913-1920 (2012)
  197. Amide compound synthesis by adenylation domain of bacillibactin synthetase. Abe T, Hashimoto Y, Sugimoto S, Kobayashi K, Kumano T, Kobayashi M. J Antibiot (Tokyo) 70 435-442 (2017)
  198. Antimicrobial peptide gramicidin S is accumulated in granules of producer cells for storage of bacterial phosphagens. Berditsch M, Trapp M, Afonin S, Weber C, Misiewicz J, Turkson J, Ulrich AS. Sci Rep 7 44324 (2017)
  199. Genomics-driven discovery of a biosynthetic gene cluster required for the synthesis of BII-Rafflesfungin from the fungus Phoma sp. F3723. Sinha S, Nge CE, Leong CY, Ng V, Crasta S, Alfatah M, Goh F, Low KN, Zhang H, Arumugam P, Lezhava A, Chen SL, Kanagasundaram Y, Ng SB, Eisenhaber F, Eisenhaber B. BMC Genomics 20 374 (2019)
  200. Intermediary conformations linked to the directionality of the aminoacylation pathway of nonribosomal peptide synthetases. Mayerthaler F, Feldberg AL, Alfermann J, Sun X, Steinchen W, Yang H, Mootz HD. RSC Chem Biol 2 843-854 (2021)
  201. Directed Evolution Reveals the Functional Sequence Space of an Adenylation Domain Specificity Code. Throckmorton K, Vinnik V, Chowdhury R, Cook T, Chevrette MG, Maranas C, Pfleger B, Thomas MG. ACS Chem Biol 14 2044-2054 (2019)
  202. Functional Characterization of PyrG, an Unusual Nonribosomal Peptide Synthetase Module from the Pyridomycin Biosynthetic Pathway. Huang T, Li L, Brock NL, Deng Z, Lin S. Chembiochem 17 1421-1425 (2016)
  203. Identification of a conserved N-terminal domain in the first module of ACV synthetases. Iacovelli R, Mózsik L, Bovenberg RAL, Driessen AJM. Microbiologyopen 10 e1145 (2021)
  204. Mechanistic insight into acrylate metabolism and detoxification in marine dimethylsulfoniopropionate-catabolizing bacteria. Wang P, Cao HY, Chen XL, Li CY, Li PY, Zhang XY, Qin QL, Todd JD, Zhang YZ. Mol Microbiol 105 674-688 (2017)
  205. Prediction of substrate-specific pockets in cyclosporin synthetase. Husi H, Schörgendorfer K, Stempfer G, Taylor P, Walkinshaw MD. FEBS Lett 414 532-536 (1997)
  206. Quenching of tryptophan fluorescence of firefly luciferase by substrates. Cherednikova EYu, Chikishev AYu, Dementieva EI, Kossobokova OV, Ugarova NN. J Photochem Photobiol B 60 7-11 (2001)
  207. Sequence characterization and computational analysis of the non-ribosomal peptide synthetases controlling biosynthesis of lipopeptides, fengycins and bacillomycin D, from Bacillus amyloliquefaciens Q-426. Zhao P, Quan C, Jin L, Wang L, Guo X, Fan S. Biotechnol Lett 35 2155-2163 (2013)
  208. Substrate specificity-conferring regions of the nonribosomal peptide synthetase adenylation domains involved in albicidin pathotoxin biosynthesis are highly conserved within the species Xanthomonas albilineans. Renier A, Vivien E, Cociancich S, Letourmy P, Perrier X, Rott PC, Royer M. Appl Environ Microbiol 73 5523-5530 (2007)
  209. The Genome of the Plant-Associated Lactic Acid Bacterium Lactococcus lactis KF147 Harbors a Hybrid NRPS-PKS System Conserved in Strains of the Dental Cariogenic Streptococcus mutans. Khayatt BI, van Noort V, Siezen RJ. Curr Microbiol 77 136-145 (2020)
  210. The identification and characterization of an oxalyl-CoA synthetase from grass pea (Lathyrus sativus L.). Goldsmith M, Barad S, Peleg Y, Albeck S, Dym O, Brandis A, Mehlman T, Reich Z. RSC Chem Biol 3 320-333 (2022)
  211. A Competitive Enzyme-Linked Immunosorbent Assay System for Adenylation Domains in Nonribosomal Peptide Synthetases. Ishikawa F, Kakeya H. Chembiochem 17 474-478 (2016)
  212. A Defined and Flexible Pocket Explains Aryl Substrate Promiscuity of the Cahuitamycin Starter Unit-Activating Enzyme CahJ. Tripathi A, Park SR, Sikkema AP, Cho HJ, Wu J, Lee B, Xi C, Smith JL, Sherman DH. Chembiochem 19 1595-1600 (2018)
  213. A non-canonical peptide synthetase adenylates 3-methyl-2-oxovaleric acid for auriculamide biosynthesis. Braga D, Hoffmeister D, Nett M. Beilstein J Org Chem 12 2766-2770 (2016)
  214. A synthetic adenylation-domain-based tRNA-aminoacylation catalyst. Giessen TW, Altegoer F, Nebel AJ, Steinbach RM, Bange G, Marahiel MA. Angew Chem Int Ed Engl 54 2492-2496 (2015)
  215. Aminoacyl-coenzyme A synthesis catalyzed by a CoA ligase from Penicillium chrysogenum. Koetsier MJ, Jekel PA, Wijma HJ, Bovenberg RA, Janssen DB. FEBS Lett 585 893-898 (2011)
  216. An Sfp-type PPTase and associated polyketide and nonribosomal peptide synthases in Agrobacterium vitis are essential for induction of tobacco hypersensitive response and grape necrosis. Zheng D, Burr TJ. Mol Plant Microbe Interact 26 812-822 (2013)
  217. Biochemical characterization of the Nocardia lactamdurans ACV synthetase. Iacovelli R, Zwahlen RD, Bovenberg RAL, Driessen AJM. PLoS One 15 e0231290 (2020)
  218. Letter Crystal Structures of Arabidopsis thaliana Oxalyl-CoA Synthetase Essential for Oxalate Degradation. Fan M, Xiao Y, Li M, Chang W. Mol Plant 9 1349-1352 (2016)
  219. Draft genome sequence, disease-resistance genes, and phenotype of a Paenibacillus terrae strain (NK3-4) with the potential to control plant diseases. Yu WQ, Zheng GP, Qiu W, Yan FC, Liu WZ, Liu WX. Genome 61 725-734 (2018)
  220. Functional analysis of a pyoverdine synthetase from Pseudomonas sp. MIS38. Lim SP, Roongsawang N, Washio K, Morikawa M. Biosci Biotechnol Biochem 71 2002-2009 (2007)
  221. Identification of non-ribosomal peptide synthetase in Ganoderma boninense Pat. that was expressed during the interaction with oil palm. Shokrollahi N, Ho CL, Zainudin NAIM, Wahab MABA, Wong MY. Sci Rep 11 16330 (2021)
  222. Probing intra- versus interchain kinetic preferences of L-Thr acylation on dimeric VibF with mass spectrometry. Hicks LM, Balibar CJ, Walsh CT, Kelleher NL, Hillson NJ. Biophys J 91 2609-2619 (2006)
  223. Sequencing and modular analysis of the hybrid non-ribosomal peptide synthase - polyketide synthase gene cluster from the marine sponge Hymeniacidon perleve-associated bacterium Pseudoalteromonas sp. strain NJ631. Zhu P, Zheng Y, You Y, Yan X, Shao J. Can J Microbiol 55 219-227 (2009)
  224. Structural characterization of a PCP-R didomain from an archaeal nonribosomal peptide synthetase reveals novel interdomain interactions. Deshpande S, Altermann E, Sarojini V, Lott JS, Lee TV. J Biol Chem 296 100432 (2021)
  225. Synthesis of d-Amino Acid-Containing Dipeptides Using the Adenylation Domains of Nonribosomal Peptide Synthetase. Kano S, Suzuki S, Hara R, Kino K. Appl Environ Microbiol 85 e00120-19 (2019)
  226. The Adenylate-Forming Enzymes AfeA and TmpB Are Involved in Aspergillus nidulans Self-Communication during Asexual Development. Soid-Raggi G, Sánchez O, Ramos-Balderas JL, Aguirre J. Front Microbiol 7 353 (2016)
  227. A thorough analysis and categorization of bacterial interrupted adenylation domains, including previously unidentified families. Lundy TA, Mori S, Garneau-Tsodikova S. RSC Chem Biol 1 233-250 (2020)
  228. Bifurcation drives the evolution of assembly-line biosynthesis. Booth TJ, Bozhüyük KAJ, Liston JD, Batey SFD, Lacey E, Wilkinson B. Nat Commun 13 3498 (2022)
  229. Enhanced Ohmyungsamycin A Production via Adenylation Domain Engineering and Optimization of Culture Conditions. Kim E, Du YE, Ban YH, Shin YH, Oh DC, Yoon YJ. Front Microbiol 12 626881 (2021)
  230. Evolution-guided adaptation of an adenylation domain substrate specificity to an unusual amino acid. Vobruba S, Kadlcik S, Gazak R, Janata J. PLoS One 12 e0189684 (2017)
  231. Identification of Sare0718 as an alanine-activating adenylation domain in marine actinomycete Salinispora arenicola CNS-205. Xia S, Ma Y, Zhang W, Yang Y, Wu S, Zhu M, Deng L, Li B, Liu Z, Qi C. PLoS One 7 e37487 (2012)
  232. Structure-Based Design, Synthesis, and Biological Evaluation of Non-Acyl Sulfamate Inhibitors of the Adenylate-Forming Enzyme MenE. Evans CE, Si Y, Matarlo JS, Yin Y, French JB, Tonge PJ, Tan DS. Biochemistry 58 1918-1930 (2019)
  233. Substrate selection of adenylation domains for nonribosomal peptide synthetase (NRPS) in bacillamide C biosynthesis by marine Bacillus atrophaeus C89. Zhang F, Wang Y, Jiang Q, Chen Q, Karthik L, Zhao YL, Li Z. J Ind Microbiol Biotechnol 45 335-344 (2018)
  234. A genetic tool to express long fungal biosynthetic genes. Kirchgaessner L, Wurlitzer JM, Seibold PS, Rakhmanov M, Gressler M. Fungal Biol Biotechnol 10 4 (2023)
  235. Comment Biosynthesis: Reprogramming assembly lines. Menon BRK, Jenner M. Nat Chem 10 245-247 (2018)
  236. Bringing protein engineering and natural product biosynthesis together. Cacho RA, Tang Y. Chem Biol 20 3-5 (2013)
  237. Characterization of the interaction of P1,P4-diadenosine 5'-tetraphosphate with luciferase. Pojoga LH, Moose JE, Hilderman RH. Biochem Biophys Res Commun 315 756-762 (2004)
  238. Crystal structure of a molecular assembly line. Weissman KJ, Müller R. Angew Chem Int Ed Engl 47 8344-8346 (2008)
  239. Enantiomer discrimination in β-phenylalanine degradation by a newly isolated Paraburkholderia strain BS115 and type strain PsJN. Buß O, Dold SM, Obermeier P, Litty D, Muller D, Grüninger J, Rudat J. AMB Express 8 149 (2018)
  240. Lessons learned in engineering interrupted adenylation domains when attempting to create trifunctional enzymes from three independent monofunctional ones. Lundy TA, Mori S, Garneau-Tsodikova S. RSC Adv 10 34299-34307 (2020)
  241. Manipulation of an existing crystal form unexpectedly results in interwoven packing networks with pseudo-translational symmetry. Reimer JM, Aloise MN, Powell HR, Schmeing TM. Acta Crystallogr D Struct Biol 72 1130-1136 (2016)
  242. Restricted dead-end elimination: protein redesign with a bounded number of residue mutations. Safi M, Lilien RH. J Comput Chem 31 1207-1215 (2010)
  243. Role of motif III in catalysis by acetyl-CoA synthetase. Ingram-Smith C, Thurman JL, Zimowski K, Smith KS. Archaea 2012 509579 (2012)
  244. Structural Studies of Modular Nonribosomal Peptide Synthetases. Patel KD, Ahmed SF, MacDonald MR, Gulick AM. Methods Mol Biol 2670 17-46 (2023)
  245. The Isolation of Pyrroloformamide Congeners and Characterization of Their Biosynthetic Gene Cluster. Zhou W, Liang H, Qin X, Cao D, Zhu X, Ju J, Shen B, Duan Y, Huang Y. J Nat Prod 83 202-209 (2020)
  246. Active site titration of gramicidin S synthetase 2: evidence for misactivation and editing in non-ribosomal peptide biosynthesis. Kittelberger R, Pavela-Vrancic M, von Döhren H. FEBS Lett 461 145-148 (1999)
  247. AdenPredictor: accurate prediction of the adenylation domain specificity of nonribosomal peptide biosynthetic gene clusters in microbial genomes. Mongia M, Baral R, Adduri A, Yan D, Liu Y, Bian Y, Kim P, Behsaz B, Mohimani H. Bioinformatics 39 i40-i46 (2023)
  248. An accurate strategy for pointing the key biocatalytic sites of bre2691A protein for modification of the brevilaterin from Brevibacillus laterosporus. Han P, Chen Z, Liu Y, Ma A, Li S, Jia Y. Microb Cell Fact 21 196 (2022)
  249. Bifurcate evolution of quinone synthetases in basidiomycetes. Seibold PS, Lawrinowitz S, Raztsou I, Gressler M, Arndt HD, Stallforth P, Hoffmeister D. Fungal Biol Biotechnol 10 14 (2023)
  250. Biosynthetic incorporation of fluorinated amino acids into the nonribosomal peptide gramicidin S. Müll M, Pourmasoumi F, Wehrhan L, Nosovska O, Stephan P, Zeihe H, Vilotijevic I, Keller BG, Kries H. RSC Chem Biol 4 692-697 (2023)
  251. Genomic Based Analysis of the Biocontrol Species Trichoderma harzianum: A Model Resource of Structurally Diverse Pharmaceuticals and Biopesticides. Al-Salihi SAA, Alberti F. J Fungi (Basel) 9 895 (2023)
  252. Natural products: Getting a handle on peptides. Winter JM, Tang Y. Nat Chem 6 1037-1038 (2014)
  253. Structure modification of an antibiotic: by engineering the fusaricidin bio-synthetase A in Paenibacillus polymyxa. Li Y, Chen S. Front Microbiol 14 1239958 (2023)
  254. Subdomain dynamics enable chemical chain reactions in non-ribosomal peptide synthetases. Sun X, Alfermann J, Li H, Watkins MB, Chen YT, Morrell TE, Mayerthaler F, Wang CY, Komatsuzaki T, Chu JW, Ando N, Mootz HD, Yang H. Nat Chem (2023)
  255. Substrate specificity and biochemical characterization of an adenylation domain from an obligate marine actinomycete. Shu X, Ma Y, Lu C, Lei M, Liu Y, Liu K, Xiong G, Xia S, Zhao Z, Luo W, Fu Q, Qi C. Biotechnol Lett 37 1049-1055 (2015)
  256. Substrate-Induced Conformational Changes of the Tyrocidine Synthetase 1 Adenylation Domain Probed by Intrinsic Trp Fluorescence. Šprung M, Soldo B, Orhanović S, Bučević-Popović V. Protein J 36 202-211 (2017)
  257. Unraveling Structural Information of Multi-Domain Nonribosomal Peptide Synthetases by Using Photo-Cross-Linking Analysis with Genetic Code Expansion. Diecker J, Dörner W, Rüschenbaum J, Mootz HD. Methods Mol Biol 2670 165-185 (2023)


Related citations provided by authors (1)