2hfp Citations

Design and synthesis of novel N-sulfonyl-2-indole carboxamides as potent PPAR-gamma binding agents with potential application to the treatment of osteoporosis.

Abstract

The synthesis and structure-activity relationships of a novel series of N-sulfonyl-2-indole carboxamides that bind to peroxisome proliferator-activated receptor gamma (PPAR-gamma) are reported. Chemical optimization of the series led to the identification of 4q (IC(50)=50 nM) as a potent binding agent of PPAR-gamma. Also reported is preliminary cell based data suggesting the use of these compounds in the treatment of osteoporosis.

Reviews - 2hfp mentioned but not cited (1)

Articles - 2hfp mentioned but not cited (12)

  1. Identification and mechanism of 10-carbon fatty acid as modulating ligand of peroxisome proliferator-activated receptors. Malapaka RRV, Khoo S, Zhang J, Choi JH, Zhou XE, Xu Y, Gong Y, Li J, Yong EL, Chalmers MJ, Chang L, Resau JH, Griffin PR, Chen YE, Xu HE. J Biol Chem 287 183-195 (2012)
  2. A novel non-agonist peroxisome proliferator-activated receptor γ (PPARγ) ligand UHC1 blocks PPARγ phosphorylation by cyclin-dependent kinase 5 (CDK5) and improves insulin sensitivity. Choi SS, Kim ES, Koh M, Lee SJ, Lim D, Yang YR, Jang HJ, Seo KA, Min SH, Lee IH, Park SB, Suh PG, Choi JH. J Biol Chem 289 26618-26629 (2014)
  3. Cooperative cobinding of synthetic and natural ligands to the nuclear receptor PPARγ. Shang J, Brust R, Mosure SA, Bass J, Munoz-Tello P, Lin H, Hughes TS, Tang M, Ge Q, Kamenekca TM, Kojetin DJ. Elife 7 e43320 (2018)
  4. Effects of Crude Oil/Dispersant Mixture and Dispersant Components on PPARγ Activity in Vitro and in Vivo: Identification of Dioctyl Sodium Sulfosuccinate (DOSS; CAS #577-11-7) as a Probable Obesogen. Temkin AM, Bowers RR, Magaletta ME, Holshouser S, Maggi A, Ciana P, Guillette LJ, Bowden JA, Kucklick JR, Baatz JE, Spyropoulos DD. Environ Health Perspect 124 112-119 (2016)
  5. Identification of PPARgamma partial agonists of natural origin (I): development of a virtual screening procedure and in vitro validation. Guasch L, Sala E, Castell-Auví A, Cedó L, Liedl KR, Wolber G, Muehlbacher M, Mulero M, Pinent M, Ardévol A, Valls C, Pujadas G, Garcia-Vallvé S. PLoS One 7 e50816 (2012)
  6. A combined ligand- and structure-based virtual screening protocol identifies submicromolar PPARγ partial agonists. Vidović D, Busby SA, Griffin PR, Schürer SC. ChemMedChem 6 94-103 (2011)
  7. Computational pharmacological comparison of Salvia miltiorrhiza and Panax notoginseng used in the therapy of cardiovascular diseases. Zheng CS, Xu XJ, Ye HZ, Wu GW, Xu HF, Li XH, Huang SP, Liu XX. Exp Ther Med 6 1163-1168 (2013)
  8. Virtual Screening as a Technique for PPAR Modulator Discovery. Lewis SN, Bassaganya-Riera J, Bevan DR. PPAR Res 2010 861238 (2010)
  9. LigMerge: a fast algorithm to generate models of novel potential ligands from sets of known binders. Lindert S, Durrant JD, McCammon JA. Chem Biol Drug Des 80 358-365 (2012)
  10. Pharmacophore modeling improves virtual screening for novel peroxisome proliferator-activated receptor-gamma ligands. Lewis SN, Garcia Z, Hontecillas R, Bassaganya-Riera J, Bevan DR. J Comput Aided Mol Des 29 421-439 (2015)
  11. Molecular Modeling of Allosteric Site of Isoform-Specific Inhibition of the Peroxisome Proliferator-Activated Receptor PPARγ. Almahmoud S, Zhong HA. Biomolecules 12 1614 (2022)
  12. The Activation of PPARγ by (2Z,4E,6E)-2-methoxyocta-2,4,6-trienoic Acid Counteracts the Epithelial-Mesenchymal Transition Process in Skin Carcinogenesis. Flori E, Mosca S, Cardinali G, Briganti S, Ottaviani M, Kovacs D, Manni I, Truglio M, Mastrofrancesco A, Zaccarini M, Cota C, Piaggio G, Picardo M. Cells 12 1007 (2023)


Reviews citing this publication (2)

  1. MITF in melanoma: mechanisms behind its expression and activity. Hartman ML, Czyz M. Cell Mol Life Sci 72 1249-1260 (2015)
  2. The PPAR Ω Pocket: Renewed Opportunities for Drug Development. Kaupang Å, Hansen TV. PPAR Res 2020 9657380 (2020)

Articles citing this publication (14)

  1. In-Silico docking of HIV-1 integrase inhibitors reveals a novel drug type acting on an enzyme/DNA reaction intermediate. Savarino A. Retrovirology 4 21 (2007)
  2. Induced-fit docking approach provides insight into the binding mode and mechanism of action of HIV-1 integrase inhibitors. Barreca ML, Iraci N, De Luca L, Chimirri A. ChemMedChem 4 1446-1456 (2009)
  3. Structural basis for telmisartan-mediated partial activation of PPAR gamma. Amano Y, Yamaguchi T, Ohno K, Niimi T, Orita M, Sakashita H, Takeuchi M. Hypertens Res 35 715-719 (2012)
  4. Ligand-escape pathways from the ligand-binding domain of PPARgamma receptor as probed by molecular dynamics simulations. Genest D, Garnier N, Arrault A, Marot C, Morin-Allory L, Genest M. Eur Biophys J 37 369-379 (2008)
  5. Synthesis and biological activities of novel indole derivatives as potent and selective PPARgamma modulators. Lamotte Y, Martres P, Faucher N, Laroze A, Grillot D, Ancellin N, Saintillan Y, Beneton V, Gampe RT. Bioorg Med Chem Lett 20 1399-1404 (2010)
  6. Structural insights for the design of new PPARgamma partial agonists with high binding affinity and low transactivation activity. Guasch L, Sala E, Valls C, Blay M, Mulero M, Arola L, Pujadas G, Garcia-Vallvé S. J Comput Aided Mol Des 25 717-728 (2011)
  7. Important pharmacophoric features of pan PPAR agonists: common chemical feature analysis and virtual screening. Sundriyal S, Bharatam PV. Eur J Med Chem 44 3488-3495 (2009)
  8. Structural design and synthesis of arylalkynyl amide-type peroxisome proliferator-activated receptor γ (PPARγ)-selective antagonists based on the helix12-folding inhibition hypothesis. Ohashi M, Gamo K, Tanaka Y, Waki M, Beniyama Y, Matsuno K, Wada J, Tenta M, Eguchi J, Makishima M, Matsuura N, Oyama T, Miyachi H. Eur J Med Chem 90 53-67 (2015)
  9. Structural mechanism underlying ligand binding and activation of PPARγ. Shang J, Kojetin DJ. Structure 29 940-950.e4 (2021)
  10. Tn5 transposase as a useful platform to simulate HIV-1 integrase inhibitor binding mode. Barreca ML, Ortuso F, Iraci N, De Luca L, Alcaro S, Chimirri A. Biochem Biophys Res Commun 363 554-560 (2007)
  11. Design, synthesis, and biological evaluation of a series of alkoxy-3-indolylacetic acids as peroxisome proliferator-activated receptor γ/δ agonists. Gim HJ, Li H, Jeong JH, Lee SJ, Sung MK, Song MY, Park BH, Oh SJ, Ryu JH, Jeon R. Bioorg Med Chem 23 3322-3336 (2015)
  12. Synthesis of 2-arylindole derivatives and evaluation as nitric oxide synthase and NFκB inhibitors. Yu X, Park EJ, Kondratyuk TP, Pezzuto JM, Sun D. Org Biomol Chem 10 8835-8847 (2012)
  13. Identification of a Novel PPAR-γ Agonist through a Scaffold Tuning Approach. Gim HJ, Choi YS, Li H, Kim YJ, Ryu JH, Jeon R. Int J Mol Sci 19 E3032 (2018)
  14. Identification and characterisation of a prototype for a new class of competitive PPARγ antagonists. Knape T, Flesch D, Kuchler L, Sha LK, Giegerich AK, Labocha S, Ferreirós N, Schmid T, Wurglics M, Schubert-Zsilavecz M, Proschak E, Brüne B, Parnham MJ, von Knethen A. Eur J Pharmacol 755 16-26 (2015)