2fcw Citations

Structure of an LDLR-RAP complex reveals a general mode for ligand recognition by lipoprotein receptors.

Mol Cell 22 277-83 (2006)
Cited: 128 times
EuropePMC logo PMID: 16630895

Abstract

Proteins of the low-density lipoprotein receptor (LDLR) family are remarkable in their ability to bind an extremely diverse range of protein and lipoprotein ligands, yet the basis for ligand recognition is poorly understood. Here, we report the 1.26 A X-ray structure of a complex between a two-module region of the ligand binding domain of the LDLR and the third domain of RAP, an escort protein for LDLR family members. The RAP domain forms a three-helix bundle with two docking sites, one for each LDLR module. The mode of recognition at each site is virtually identical: three conserved, calcium-coordinating acidic residues from each LDLR module encircle a lysine side chain protruding from the second helix of RAP. This metal-dependent mode of electrostatic recognition, together with avidity effects resulting from the use of multiple sites, represents a general binding strategy likely to apply in the binding of other basic ligands to LDLR family proteins.

Reviews - 2fcw mentioned but not cited (2)

  1. Low-density lipoprotein receptor-related protein-1: role in the regulation of vascular integrity. Strickland DK, Au DT, Cunfer P, Muratoglu SC. Arterioscler Thromb Vasc Biol 34 487-498 (2014)
  2. Versatility in ligand recognition by LDL receptor family proteins: advances and frontiers. Blacklow SC. Curr Opin Struct Biol 17 419-426 (2007)

Articles - 2fcw mentioned but not cited (19)

  1. Structure of human C8 protein provides mechanistic insight into membrane pore formation by complement. Lovelace LL, Cooper CL, Sodetz JM, Lebioda L. J Biol Chem 286 17585-17592 (2011)
  2. Structure of the minimal interface between ApoE and LRP. Guttman M, Prieto JH, Handel TM, Domaille PJ, Komives EA. J Mol Biol 398 306-319 (2010)
  3. Gentamicin binds to the megalin receptor as a competitive inhibitor using the common ligand binding motif of complement type repeats: insight from the nmr structure of the 10th complement type repeat domain alone and in complex with gentamicin. Dagil R, O'Shea C, Nykjær A, Bonvin AM, Kragelund BB. J Biol Chem 288 4424-4435 (2013)
  4. Regulation of tau internalization, degradation, and seeding by LRP1 reveals multiple pathways for tau catabolism. Cooper JM, Lathuiliere A, Migliorini M, Arai AL, Wani MM, Dujardin S, Muratoglu SC, Hyman BT, Strickland DK. J Biol Chem 296 100715 (2021)
  5. Receptor-associated protein (RAP) has two high-affinity binding sites for the low-density lipoprotein receptor-related protein (LRP): consequences for the chaperone functions of RAP. Jensen JK, Dolmer K, Schar C, Gettins PG. Biochem J 421 273-282 (2009)
  6. Interface residues of transient protein-protein complexes have extensive intra-protein interactions apart from inter-protein interactions. Jayashree S, Murugavel P, Sowdhamini R, Srinivasan N. Biol Direct 14 1 (2019)
  7. Factor VIII Interacts with the Endocytic Receptor Low-density Lipoprotein Receptor-related Protein 1 via an Extended Surface Comprising "Hot-Spot" Lysine Residues. van den Biggelaar M, Madsen JJ, Faber JH, Zuurveld MG, van der Zwaan C, Olsen OH, Stennicke HR, Mertens K, Meijer AB. J Biol Chem 290 16463-16476 (2015)
  8. The structure, dynamics, and binding of the LA45 module pair of the low-density lipoprotein receptor suggest an important role for LA4 in ligand release. Guttman M, Komives EA. Biochemistry 50 11001-11008 (2011)
  9. A proximal pair of positive charges provides the dominant ligand-binding contribution to complement-like domains from the LRP (low-density lipoprotein receptor-related protein). Gettins PG, Dolmer K. Biochem J 443 65-73 (2012)
  10. Fast gap-free enumeration of conformations and sequences for protein design. Roberts KE, Gainza P, Hallen MA, Donald BR. Proteins 83 1859-1877 (2015)
  11. New horizons for lipoprotein receptors: communication by β-propellers. Andersen OM, Dagil R, Kragelund BB. J Lipid Res 54 2763-2774 (2013)
  12. Structural insights into recognition of beta2-glycoprotein I by the lipoprotein receptors. Beglov D, Lee CJ, De Biasio A, Kozakov D, Brenke R, Vajda S, Beglova N. Proteins 77 940-949 (2009)
  13. Addressing the Role of Conformational Diversity in Protein Structure Prediction. Palopoli N, Monzon AM, Parisi G, Fornasari MS. PLoS One 11 e0154923 (2016)
  14. Calculating ensemble averaged descriptions of protein rigidity without sampling. González LC, Wang H, Livesay DR, Jacobs DJ. PLoS One 7 e29176 (2012)
  15. Characterization of interaction between blood coagulation factor VIII and LRP1 suggests dynamic binding by alternating complex contacts. Chun H, Kurasawa JH, Olivares P, Marakasova ES, Shestopal SA, Hassink GU, Karnaukhova E, Karnaukhova E, Migliorini M, Obi JO, Smith AK, Wintrode PL, Durai P, Park K, Deredge D, Strickland DK, Sarafanov AG. J Thromb Haemost 20 2255-2269 (2022)
  16. Structural Basis for the Interaction of Fibrin with the Very Low-Density Lipoprotein Receptor Revealed by NMR and Site-Directed Mutagenesis. Gruschus JM, Yakovlev S, Banerjee K, Medved L, Tjandra N. Biochemistry 60 2537-2548 (2021)
  17. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  18. On simplified global nonlinear function for fitness landscape: a case study of inverse protein folding. Xu Y, Hu C, Dai Y, Liang J. PLoS One 9 e104403 (2014)
  19. HED, a Human-Engineered Domain, Confers a Unique Fc-Binding Activity to Produce a New Class of Humanized Antibody-like Molecules. Zhu Z, Goel PN, Zheng C, Nagai Y, Lam L, Samanta A, Ji M, Zhang H, Greene MI. Int J Mol Sci 24 6477 (2023)


Reviews citing this publication (17)

  1. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. Physiol Rev 88 887-918 (2008)
  2. Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Gettins PG, Olson ST. Biochem J 473 2273-2293 (2016)
  3. Structure and properties of the Ca(2+)-binding CUB domain, a widespread ligand-recognition unit involved in major biological functions. Gaboriaud C, Gregory-Pauron L, Teillet F, Thielens NM, Bally I, Arlaud GJ. Biochem J 439 185-193 (2011)
  4. Circulatory lipid transport: lipoprotein assembly and function from an evolutionary perspective. Van der Horst DJ, Roosendaal SD, Rodenburg KW. Mol Cell Biochem 326 105-119 (2009)
  5. Protein folding includes oligomerization - examples from the endoplasmic reticulum and cytosol. Christis C, Lubsen NH, Braakman I. FEBS J 275 4700-4727 (2008)
  6. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: implications for classification and disease risk. Calandra S, Tarugi P, Speedy HE, Dean AF, Bertolini S, Shoulders CC. J Lipid Res 52 1885-1926 (2011)
  7. Regulation of LRP-1 expression: make the point. Emonard H, Théret L, Bennasroune AH, Dedieu S. Pathol Biol (Paris) 62 84-90 (2014)
  8. How calcium makes endocytic receptors attractive. Andersen CB, Moestrup SK. Trends Biochem Sci 39 82-90 (2014)
  9. Structural Biology and Protein Engineering of Thrombolytics. Mican J, Toul M, Bednar D, Damborsky J. Comput Struct Biotechnol J 17 917-938 (2019)
  10. Targeting Dysregulation of Metalloproteinase Activity in Osteoarthritis. Yamamoto K, Wilkinson D, Bou-Gharios G. Calcif Tissue Int 109 277-290 (2021)
  11. Endoplasmic reticulum quality control in lipoprotein metabolism. Koerner CM, Roberts BS, Neher SB. Mol Cell Endocrinol 498 110547 (2019)
  12. Structural Insights into Reelin Function: Present and Future. Ranaivoson FM, von Daake S, Comoletti D. Front Cell Neurosci 10 137 (2016)
  13. The switch on the RAPper's necklace... Herz J. Mol Cell 23 451-455 (2006)
  14. Current View on the Molecular Mechanisms Underlying Fibrin(ogen)-Dependent Inflammation. Yakovlev S, Strickland DK, Medved L. Thromb Haemost 122 1858-1868 (2022)
  15. Targeting Aggrecanases for Osteoarthritis Therapy: From Zinc Chelation to Exosite Inhibition. Cuffaro D, Ciccone L, Rossello A, Nuti E, Santamaria S. J Med Chem 65 13505-13532 (2022)
  16. How multi-scale structural biology elucidated context-dependent variability in ectodomain conformation along with the ligand capture and release cycle for LDLR family members. Nogi T. Biophys Rev 10 481-492 (2018)
  17. Plasma Clearance of Coagulation Factor VIII and Extension of Its Half-Life for the Therapy of Hemophilia A: A Critical Review of the Current State of Research and Practice. Sarafanov AG. Int J Mol Sci 24 8584 (2023)

Articles citing this publication (90)

  1. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Langer G, Cohen SX, Lamzin VS, Perrakis A. Nat Protoc 3 1171-1179 (2008)
  2. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Cunningham D, Danley DE, Geoghegan KF, Griffor MC, Hawkins JL, Subashi TA, Varghese AH, Ammirati MJ, Culp JS, Hoth LR, Mansour MN, McGrath KM, Seddon AP, Shenolikar S, Stutzman-Engwall KJ, Warren LC, Xia D, Qiu X. Nat Struct Mol Biol 14 413-419 (2007)
  3. LRP1 is a master regulator of tau uptake and spread. Rauch JN, Luna G, Guzman E, Audouard M, Challis C, Sibih YE, Leshuk C, Hernandez I, Wegmann S, Hyman BT, Gradinaru V, Kampmann M, Kosik KS. Nature 580 381-385 (2020)
  4. Apolipoprotein E4 effects in Alzheimer's disease are mediated by synaptotoxic oligomeric amyloid-β. Koffie RM, Hashimoto T, Tai HC, Kay KR, Serrano-Pozo A, Joyner D, Hou S, Kopeikina KJ, Frosch MP, Lee VM, Holtzman DM, Hyman BT, Spires-Jones TL. Brain 135 2155-2168 (2012)
  5. PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide. Shan L, Pang L, Zhang R, Murgolo NJ, Lan H, Hedrick JA. Biochem Biophys Res Commun 375 69-73 (2008)
  6. Structural basis for the recognition of LDL-receptor family members by VSV glycoprotein. Nikolic J, Belot L, Raux H, Legrand P, Gaudin Y, A Albertini A. Nat Commun 9 1029 (2018)
  7. Structural basis for receptor recognition of vitamin-B(12)-intrinsic factor complexes. Andersen CB, Madsen M, Storm T, Moestrup SK, Andersen GR. Nature 464 445-448 (2010)
  8. Structural basis for specific recognition of reelin by its receptors. Yasui N, Nogi T, Takagi J. Structure 18 320-331 (2010)
  9. Sulfated glycosaminoglycans and low-density lipoprotein receptor contribute to Clostridium difficile toxin A entry into cells. Tao L, Tian S, Zhang J, Liu Z, Robinson-McCarthy L, Miyashita SI, Breault DT, Gerhard R, Oottamasathien S, Whelan SPJ, Dong M. Nat Microbiol 4 1760-1769 (2019)
  10. Structure of a receptor-binding fragment of reelin and mutational analysis reveal a recognition mechanism similar to endocytic receptors. Yasui N, Nogi T, Kitao T, Nakano Y, Hattori M, Takagi J. Proc Natl Acad Sci U S A 104 9988-9993 (2007)
  11. Differential regulation of extracellular tissue inhibitor of metalloproteinases-3 levels by cell membrane-bound and shed low density lipoprotein receptor-related protein 1. Scilabra SD, Troeberg L, Yamamoto K, Emonard H, Thøgersen I, Enghild JJ, Strickland DK, Nagase H. J Biol Chem 288 332-342 (2013)
  12. Binding site structure of one LRP-RAP complex: implications for a common ligand-receptor binding motif. Jensen GA, Andersen OM, Bonvin AM, Bjerrum-Bohr I, Etzerodt M, Thøgersen HC, O'Shea C, Poulsen FM, Kragelund BB. J Mol Biol 362 700-716 (2006)
  13. APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice. Choi HY, Liu Y, Tennert C, Sugiura Y, Karakatsani A, Kröger S, Johnson EB, Hammer RE, Lin W, Herz J. Elife 2 e00220 (2013)
  14. RAP uses a histidine switch to regulate its interaction with LRP in the ER and Golgi. Lee D, Walsh JD, Mikhailenko I, Yu P, Migliorini M, Wu Y, Krueger S, Curtis JE, Harris B, Lockett S, Blacklow SC, Strickland DK, Wang YX. Mol Cell 22 423-430 (2006)
  15. PhoX: An IMAC-Enrichable Cross-Linking Reagent. Steigenberger B, Pieters RJ, Heck AJR, Scheltema RA. ACS Cent Sci 5 1514-1522 (2019)
  16. Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions. Wang S, Mao Y, Narimatsu Y, Ye Z, Tian W, Goth CK, Lira-Navarrete E, Pedersen NB, Benito-Vicente A, Martin C, Uribe KB, Hurtado-Guerrero R, Christoffersen C, Seidah NG, Nielsen R, Christensen EI, Hansen L, Bennett EP, Vakhrushev SY, Schjoldager KT, Clausen H. J Biol Chem 293 7408-7422 (2018)
  17. Apolipoprotein E isoform-specific binding to the low-density lipoprotein receptor. Yamamoto T, Choi HW, Ryan RO. Anal Biochem 372 222-226 (2008)
  18. CD163 binding to haptoglobin-hemoglobin complexes involves a dual-point electrostatic receptor-ligand pairing. Nielsen MJ, Andersen CB, Moestrup SK. J Biol Chem 288 18834-18841 (2013)
  19. Mechanism of LDL binding and release probed by structure-based mutagenesis of the LDL receptor. Huang S, Henry L, Ho YK, Pownall HJ, Rudenko G. J Lipid Res 51 297-308 (2010)
  20. A unified scheme for initiation and conformational adaptation of human apolipoprotein E N-terminal domain upon lipoprotein binding and for receptor binding activity. Sivashanmugam A, Wang J. J Biol Chem 284 14657-14666 (2009)
  21. Low density lipoprotein receptor class A repeats are O-glycosylated in linker regions. Pedersen NB, Wang S, Narimatsu Y, Yang Z, Halim A, Schjoldager KT, Madsen TD, Seidah NG, Bennett EP, Levery SB, Clausen H. J Biol Chem 289 17312-17324 (2014)
  22. Decoding of lipoprotein-receptor interactions: properties of ligand binding modules governing interactions with apolipoprotein E. Guttman M, Prieto JH, Croy JE, Komives EA. Biochemistry 49 1207-1216 (2010)
  23. LRAD3, a novel low-density lipoprotein receptor family member that modulates amyloid precursor protein trafficking. Ranganathan S, Noyes NC, Migliorini M, Winkles JA, Battey FD, Hyman BT, Smith E, Yepes M, Mikhailenko I, Strickland DK. J Neurosci 31 10836-10846 (2011)
  24. SorLA complement-type repeat domains protect the amyloid precursor protein against processing. Mehmedbasic A, Christensen SK, Nilsson J, Rüetschi U, Gustafsen C, Poulsen AS, Rasmussen RW, Fjorback AN, Larson G, Andersen OM. J Biol Chem 290 3359-3376 (2015)
  25. Molecular basis for the interaction of low density lipoprotein receptor-related protein 1 (LRP1) with integrin alphaMbeta2: identification of binding sites within alphaMbeta2 for LRP1. Ranganathan S, Cao C, Catania J, Migliorini M, Zhang L, Strickland DK. J Biol Chem 286 30535-30541 (2011)
  26. Calcium as a crucial cofactor for low density lipoprotein receptor folding in the endoplasmic reticulum. Pena F, Jansens A, van Zadelhoff G, Braakman I. J Biol Chem 285 8656-8664 (2010)
  27. The epidermal growth factor homology domain of the LDL receptor drives lipoprotein release through an allosteric mechanism involving H190, H562, and H586. Zhao Z, Michaely P. J Biol Chem 283 26528-26537 (2008)
  28. A structural basis for differential cell signalling by PAI-1 and PAI-2 in breast cancer cells. Croucher DR, Saunders DN, Stillfried GE, Ranson M. Biochem J 408 203-210 (2007)
  29. Mechanism for endogenously expressed ApoE modulation of adipocyte very low density lipoprotein metabolism: role in endocytic and lipase-mediated metabolic pathways. Huang ZH, Minshall RD, Mazzone T. J Biol Chem 284 31512-31522 (2009)
  30. Mode of interaction between beta2GPI and lipoprotein receptors suggests mutually exclusive binding of beta2GPI to the receptors and anionic phospholipids. Lee CJ, De Biasio A, Beglova N. Structure 18 366-376 (2010)
  31. Inhibition of thrombotic properties of persistent autoimmune anti-β2GPI antibodies in the mouse model of antiphospholipid syndrome. Kolyada A, Porter A, Beglova N. Blood 123 1090-1097 (2014)
  32. Insights into the role of sulfated glycans in cancer cell adhesion and migration through use of branched peptide probe. Brunetti J, Depau L, Falciani C, Gentile M, Mandarini E, Riolo G, Lupetti P, Pini A, Bracci L. Sci Rep 6 27174 (2016)
  33. Investigation of interactions at the extracellular loops of the relaxin family peptide receptor 1 (RXFP1). Diepenhorst NA, Petrie EJ, Chen CZ, Wang A, Hossain MA, Bathgate RA, Gooley PR. J Biol Chem 289 34938-34952 (2014)
  34. LDL receptor/lipoprotein recognition: endosomal weakening of ApoB and ApoE binding to the convex face of the LR5 repeat. Martínez-Oliván J, Arias-Moreno X, Velazquez-Campoy A, Millet O, Sancho J. FEBS J 281 1534-1546 (2014)
  35. A novel dimeric inhibitor targeting Beta2GPI in Beta2GPI/antibody complexes implicated in antiphospholipid syndrome. Kolyada A, Lee CJ, De Biasio A, Beglova N. PLoS One 5 e15345 (2010)
  36. Lipidated apolipoprotein E4 structure and its receptor binding mechanism determined by a combined cross-linking coupled to mass spectrometry and molecular dynamics approach. Henry N, Krammer EM, Stengel F, Adams Q, Van Liefferinge F, Hubin E, Chaves R, Efremov R, Aebersold R, Vandenbussche G, Prévost M, Raussens V, Deroo S. PLoS Comput Biol 14 e1006165 (2018)
  37. Quantitative dissection of the binding contributions of ligand lysines of the receptor-associated protein (RAP) to the low density lipoprotein receptor-related protein (LRP1). Dolmer K, Campos A, Gettins PG. J Biol Chem 288 24081-24090 (2013)
  38. The relaxin receptor (RXFP1) utilizes hydrophobic moieties on a signaling surface of its N-terminal low density lipoprotein class A module to mediate receptor activation. Kong RC, Petrie EJ, Mohanty B, Ling J, Lee JC, Gooley PR, Bathgate RA. J Biol Chem 288 28138-28151 (2013)
  39. Serpin-Enzyme Receptors LDL Receptor-Related Protein 1. Strickland DK, Muratoglu SC, Antalis TM. Methods Enzymol 499 17-31 (2011)
  40. The structure of receptor-associated protein (RAP). Lee D, Walsh JD, Migliorini M, Yu P, Cai T, Schwieters CD, Krueger S, Strickland DK, Wang YX. Protein Sci 16 1628-1640 (2007)
  41. Binding areas of urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex for endocytosis receptors of the low-density lipoprotein receptor family, determined by site-directed mutagenesis. Skeldal S, Larsen JV, Pedersen KE, Petersen HH, Egelund R, Christensen A, Jensen JK, Gliemann J, Andreasen PA. FEBS J 273 5143-5159 (2006)
  42. Generation of a Potent Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Antagonist by Engineering a Stable Form of the Receptor-associated Protein (RAP) D3 Domain. Prasad JM, Migliorini M, Galisteo R, Strickland DK. J Biol Chem 290 17262-17268 (2015)
  43. Low pH-triggered beta-propeller switch of the low-density lipoprotein receptor assists rhinovirus infection. Konecsni T, Berka U, Pickl-Herk A, Bilek G, Khan AG, Gajdzig L, Fuchs R, Blaas D. J Virol 83 10922-10930 (2009)
  44. Structural basis of transcobalamin recognition by human CD320 receptor. Alam A, Woo JS, Schmitz J, Prinz B, Root K, Chen F, Bloch JS, Zenobi R, Locher KP. Nat Commun 7 12100 (2016)
  45. A single lysine of the two-lysine recognition motif of the D3 domain of receptor-associated protein is sufficient to mediate endocytosis by low-density lipoprotein receptor-related protein. van den Biggelaar M, Sellink E, Klein Gebbinck JW, Mertens K, Meijer AB. Int J Biochem Cell Biol 43 431-440 (2011)
  46. Acrolein modification impairs key functional features of rat apolipoprotein E: identification of modified sites by mass spectrometry. Tran TN, Kosaraju MG, Tamamizu-Kato S, Akintunde O, Zheng Y, Bielicki JK, Pinkerton K, Uchida K, Lee YY, Narayanaswami V. Biochemistry 53 361-375 (2014)
  47. Atomic structure of the autosomal recessive hypercholesterolemia phosphotyrosine-binding domain in complex with the LDL-receptor tail. Dvir H, Shah M, Girardi E, Guo L, Farquhar MG, Zajonc DM. Proc Natl Acad Sci U S A 109 6916-6921 (2012)
  48. Engineered Tissue Inhibitor of Metalloproteinases-3 Variants Resistant to Endocytosis Have Prolonged Chondroprotective Activity. Doherty CM, Visse R, Dinakarpandian D, Strickland DK, Nagase H, Troeberg L. J Biol Chem 291 22160-22172 (2016)
  49. Specificity of binding of the low density lipoprotein receptor-related protein to different conformational states of the clade E serpins plasminogen activator inhibitor-1 and proteinase nexin-1. Jensen JK, Dolmer K, Gettins PG. J Biol Chem 284 17989-17997 (2009)
  50. The binding sites for the very low density lipoprotein receptor and low-density lipoprotein receptor-related protein are shared within coagulation factor VIII. Ananyeva NM, Makogonenko YM, Kouiavskaia DV, Ruiz J, Limburg V, Meijer AB, Khrenov AV, Shima M, Strickland DK, Saenko EL. Blood Coagul Fibrinolysis 19 166-177 (2008)
  51. Three complement-like repeats compose the complete alpha2-macroglobulin binding site in the second ligand binding cluster of the low density lipoprotein receptor-related protein. Dolmer K, Gettins PG. J Biol Chem 281 34189-34196 (2006)
  52. Suramin Inhibits Osteoarthritic Cartilage Degradation by Increasing Extracellular Levels of Chondroprotective Tissue Inhibitor of Metalloproteinases 3. Chanalaris A, Doherty C, Marsden BD, Bambridge G, Wren SP, Nagase H, Troeberg L. Mol Pharmacol 92 459-468 (2017)
  53. Chimeric RXFP1 and RXFP2 Receptors Highlight the Similar Mechanism of Activation Utilizing Their N-Terminal Low-Density Lipoprotein Class A Modules. Bruell S, Kong RC, Petrie EJ, Hoare B, Wade JD, Scott DJ, Gooley PR, Bathgate RA. Front Endocrinol (Lausanne) 4 171 (2013)
  54. High Affinity Binding of the Receptor-associated Protein D1D2 Domains with the Low Density Lipoprotein Receptor-related Protein (LRP1) Involves Bivalent Complex Formation: CRITICAL ROLES OF LYSINES 60 AND 191. Prasad JM, Young PA, Strickland DK. J Biol Chem 291 18430-18439 (2016)
  55. High-affinity binding of plasminogen-activator inhibitor 1 complexes to LDL receptor-related protein 1 requires lysines 80, 88, and 207. Migliorini M, Li SH, Zhou A, Emal CD, Lawrence DA, Strickland DK. J Biol Chem 295 212-222 (2020)
  56. MESD is essential for apical localization of megalin/LRP2 in the visceral endoderm. Lighthouse JK, Zhang L, Hsieh JC, Rosenquist T, Holdener BC. Dev Dyn 240 577-588 (2011)
  57. Recombinant Expression of the Full-length Ectodomain of LDL Receptor-related Protein 1 (LRP1) Unravels pH-dependent Conformational Changes and the Stoichiometry of Binding with Receptor-associated Protein (RAP). De Nardis C, Lössl P, van den Biggelaar M, Madoori PK, Leloup N, Mertens K, Heck AJ, Gros P. J Biol Chem 292 912-924 (2017)
  58. Evidence That Factor VIII Forms a Bivalent Complex with the Low Density Lipoprotein (LDL) Receptor-related Protein 1 (LRP1): IDENTIFICATION OF CLUSTER IV ON LRP1 AS THE MAJOR BINDING SITE. Young PA, Migliorini M, Strickland DK. J Biol Chem 291 26035-26044 (2016)
  59. Interaction of Fibrin with the Very Low Density Lipoprotein Receptor: Further Characterization and Localization of the Fibrin-Binding Site. Yakovlev S, Medved L. Biochemistry 54 4751-4761 (2015)
  60. Structural basis for ligand capture and release by the endocytic receptor ApoER2. Hirai H, Yasui N, Yamashita K, Tabata S, Yamamoto M, Takagi J, Nogi T. EMBO Rep 18 982-999 (2017)
  61. Two structural and functional domains of MESD required for proper folding and trafficking of LRP5/6. Chen J, Liu CC, Li Q, Nowak C, Bu G, Wang J. Structure 19 313-323 (2011)
  62. Understanding Dengue Virus Capsid Protein Interaction with Key Biological Targets. Faustino AF, Martins IC, Carvalho FA, Castanho MA, Maurer-Stroh S, Santos NC. Sci Rep 5 10592 (2015)
  63. Interaction of Fibrin with the Very Low-Density Lipoprotein (VLDL) Receptor: Further Characterization and Localization of the VLDL Receptor-Binding Site in Fibrin βN-Domains. Yakovlev S, Medved L. Biochemistry 56 2518-2528 (2017)
  64. The High Affinity Binding Site on Plasminogen Activator Inhibitor-1 (PAI-1) for the Low Density Lipoprotein Receptor-related Protein (LRP1) Is Composed of Four Basic Residues. Gettins PG, Dolmer K. J Biol Chem 291 800-812 (2016)
  65. The complex of the insect LDL receptor homolog, lipophorin receptor, LpR, and its lipoprotein ligand does not dissociate under endosomal conditions. Roosendaal SD, Kerver J, Schipper M, Rodenburg KW, Van der Horst DJ. FEBS J 275 1751-1766 (2008)
  66. A novel chemical footprinting approach identifies critical lysine residues involved in the binding of receptor-associated protein to cluster II of LDL receptor-related protein. Bloem E, Ebberink EH, van den Biggelaar M, van der Zwaan C, Mertens K, Meijer AB. Biochem J 468 65-72 (2015)
  67. High-Affinity Binding of LDL Receptor-Related Protein 1 to Matrix Metalloprotease 1 Requires Protease:Inhibitor Complex Formation. Arai AL, Migliorini M, Au DT, Hahn-Dantona E, Peeney D, Stetler-Stevenson WG, Muratoglu SC, Strickland DK. Biochemistry 59 2922-2933 (2020)
  68. Interaction of coagulation factor VIII with members of the low-density lipoprotein receptor family follows common mechanism and involves consensus residues within the A2 binding site 484-509. Ananyeva NM, Makogonenko YM, Sarafanov AG, Pechik IV, Gorlatova N, Radtke KP, Shima M, Saenko EL. Blood Coagul Fibrinolysis 19 543-555 (2008)
  69. Ambulacrarian insulin-related peptides and their putative receptors suggest how insulin and similar peptides may have evolved from insulin-like growth factor. Veenstra JA. PeerJ 9 e11799 (2021)
  70. Lipid Peroxidation Induced ApoE Receptor-Ligand Disruption as a Unifying Hypothesis Underlying Sporadic Alzheimer's Disease in Humans. Ramsden CE, Keyes GS, Calzada E, Horowitz MS, Zamora D, Jahanipour J, Sedlock A, Indig FE, Moaddel R, Kapogiannis D, Maric D. J Alzheimers Dis 87 1251-1290 (2022)
  71. Mapping the binding region on the low density lipoprotein receptor for blood coagulation factor VIII. Kurasawa JH, Shestopal SA, Karnaukhova E, Struble EB, Lee TK, Sarafanov AG. J Biol Chem 288 22033-22041 (2013)
  72. Changes of Metabolites and Gene Expression under Different Feeding Systems Associated with Lipid Metabolism in Lamb Meat. Wang B, Zhao X, Li Z, Luo H, Zhang H, Guo Y, Zhang C, Ma Q. Foods 10 2612 (2021)
  73. Distinct activation modes of the Relaxin Family Peptide Receptor 2 in response to insulin-like peptide 3 and relaxin. Bruell S, Sethi A, Smith N, Scott DJ, Hossain MA, Wu QP, Guo ZY, Petrie EJ, Gooley PR, Bathgate RAD. Sci Rep 7 3294 (2017)
  74. Exploring the complete mutational space of the LDL receptor LA5 domain using molecular dynamics: linking SNPs with disease phenotypes in familial hypercholesterolemia. Angarica VE, Orozco M, Sancho J. Hum Mol Genet 25 1233-1246 (2016)
  75. Soluble analog of ApoER2 targeting beta2-glycoprotein I in immune complexes counteracts hypertension in lupus-prone mice with spontaneous antiphospholipid syndrome. Kolyada A, Ke Q, Karageorgos I, Mahlawat P, Barrios DA, Kang PM, Beglova N. J Thromb Haemost 14 1298-1307 (2016)
  76. Secondary Binding Interactions in a Synthetic Receptor for Trimethyllysine. Pinkin NK, Liu I, Abron JD, Waters ML. Chemistry 21 17981-17986 (2015)
  77. Structures of LRP2 reveal a molecular machine for endocytosis. Beenken A, Cerutti G, Brasch J, Guo Y, Sheng Z, Erdjument-Bromage H, Aziz Z, Robbins-Juarez SY, Chavez EY, Ahlsen G, Katsamba PS, Neubert TA, Fitzpatrick AWP, Barasch J, Shapiro L. Cell 186 821-836.e13 (2023)
  78. Intradomain Confinement of Disulfides in the Folding of Two Consecutive Modules of the LDL Receptor. Martínez-Oliván J, Fraga H, Arias-Moreno X, Ventura S, Sancho J. PLoS One 10 e0132141 (2015)
  79. Molecular chaperone RAP interacts with LRP1 in a dynamic bivalent mode and enhances folding of ligand-binding regions of other LDLR family receptors. Marakasova E, Olivares P, Karnaukhova E, Chun H, Hernandez NE, Kurasawa JH, Hassink GU, Shestopal SA, Strickland DK, Sarafanov AG. J Biol Chem 297 100842 (2021)
  80. The low density receptor-related protein 1 plays a significant role in ricin-mediated intoxication of lung cells. Falach R, Sapoznikov A, Gal Y, Elhanany E, Evgy Y, Shifman O, Aftalion M, Ehrlich S, Lazar S, Sabo T, Kronman C, Mazor O. Sci Rep 10 9007 (2020)
  81. Complement C1q Interacts With LRP1 Clusters II and IV Through a Site Close but Different From the Binding Site of Its C1r and C1s-Associated Proteases. Fouët G, Gout E, Wicker-Planquart C, Bally I, De Nardis C, Dedieu S, Chouquet A, Gaboriaud C, Thielens NM, Kleman JP, Rossi V. Front Immunol 11 583754 (2020)
  82. LDLR, LRP1, and Megalin redundantly participate in the uptake of Clostridium novyi alpha-toxin. Zhou Y, Li D, Li D, Chen A, He L, Luo J, Tao L. Commun Biol 5 906 (2022)
  83. Functional mimicry of the LDL receptor-associated protein through multimerization of a minimized third domain. Isbell SL, Haslam SB, Dennis SJ, Nash JA, Zankel TC. Biochem Biophys Res Commun 364 614-619 (2007)
  84. Minimization of the third domain of the LDL receptor-associated protein (RAP). Isbell SL, Haslam SB, Zankel TC. Biochem Biophys Res Commun 361 758-762 (2007)
  85. Deep generative models of LDLR protein structure to predict variant pathogenicity. James JK, Norland K, Johar AS, Kullo IJ. J Lipid Res 64 100455 (2023)
  86. Identification of Receptor Ligands in Apo B100 Reveals Potential Functional Domains. Guevara J, Romo J, Hernandez E, Guevara NV. Protein J 37 548-571 (2018)
  87. Post-translational regulation of the low-density lipoprotein receptor provides new targets for cholesterol regulation. Aldworth H, Hooper NM. Biochem Soc Trans 52 431-440 (2024)
  88. Receptor-Targeted Carbon Nanodot Delivery through Polymer Caging and Click Chemistry-Supported LRP1 Ligand Attachment. Zhang F, Benli-Hoppe T, Guo W, Seidl J, Wang Y, Huang R, Wagner E. Polymers (Basel) 15 4039 (2023)
  89. Structure of coagulation factor VIII bound to a patient-derived anti-C1 domain antibody inhibitor. Childers KC, Avery NG, Estrada Alamo KA, Davulcu O, Haynes RM, Lollar P, Doering CB, Coxon CH, Spiegel PC. Blood 142 197-201 (2023)
  90. Synthesis of multi-module low density lipoprotein receptor class A domains with acid labile cyanopyridiniumylides (CyPY) as aspartic acid masking groups. Neumann K, Vujinovic A, Kamara S, Zwicky A, Baldauf S, Bode JW. RSC Chem Biol 4 292-299 (2023)