1mnm Citations

Crystal structure of the yeast MATalpha2/MCM1/DNA ternary complex.

Nature 391 660-6 (1998)
Related entries: 1apl, 1srs

Cited: 166 times
EuropePMC logo PMID: 9490409

Abstract

The structure of a complex containing the homeodomain repressor protein MATalpha2 and the MADS-box transcription factor MCM1 bound to DNA has been determined by X-ray crystallography at 2.25 A resolution. It reveals the protein-protein interactions responsible for cooperative binding of MATalpha2 and MCM1 to DNA. The otherwise flexible amino-terminal extension of the MATalpha2 homeodomain forms a beta-hairpin that grips the MCM1 surface through parallel beta-strand hydrogen bonds and close-packed, predominantly hydrophobic, side chains. DNA bending induced by MCM1 brings the two proteins closer together, facilitating their interaction. An unusual feature of the complex is that an eight-amino-acid sequence adopts an alpha-helical conformation in one of two copies of the MATalpha2 monomer and a beta-strand conformation in the other. This 'chameleon' sequence of MATalpha2 may be important for recognizing natural operator sites.

Reviews - 1mnm mentioned but not cited (6)

  1. An overview of the structures of protein-DNA complexes. Luscombe NM, Austin SE, Berman HM, Thornton JM. Genome Biol 1 REVIEWS001 (2000)
  2. Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Hahn S, Young ET. Genetics 189 705-736 (2011)
  3. Homeodomain revisited: a lesson from disease-causing mutations. Chi YI. Hum Genet 116 433-444 (2005)
  4. Structural Basis for Plant MADS Transcription Factor Oligomerization. Lai X, Daher H, Galien A, Hugouvieux V, Zubieta C. Comput Struct Biotechnol J 17 946-953 (2019)
  5. How structural biology transformed studies of transcription regulation. Wolberger C. J Biol Chem 296 100741 (2021)
  6. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1mnm mentioned but not cited (20)

  1. The evolution of combinatorial gene regulation in fungi. Tuch BB, Galgoczy DJ, Hernday AD, Li H, Johnson AD. PLoS Biol 6 e38 (2008)
  2. Prediction of functional sites by analysis of sequence and structure conservation. Panchenko AR, Kondrashov F, Bryant S. Protein Sci 13 884-892 (2004)
  3. A Hoogsteen base pair embedded in undistorted B-DNA. Aishima J, Gitti RK, Noah JE, Gan HH, Schlick T, Wolberger C. Nucleic Acids Res 30 5244-5252 (2002)
  4. Connecting protein structure with predictions of regulatory sites. Morozov AV, Siggia ED. Proc Natl Acad Sci U S A 104 7068-7073 (2007)
  5. Folding free energy function selects native-like protein sequences in the core but not on the surface. Jaramillo A, Wernisch L, Héry S, Wodak SJ. Proc Natl Acad Sci U S A 99 13554-13559 (2002)
  6. Grid-based backbone correction to the ff12SB protein force field for implicit-solvent simulations. Perez A, MacCallum JL, Brini E, Simmerling C, Dill KA. J Chem Theory Comput 11 4770-4779 (2015)
  7. Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces. Negi SS, Braun W. J Mol Model 13 1157-1167 (2007)
  8. Free-energy landscape of a chameleon sequence in explicit water and its inherent alpha/beta bifacial property. Ikeda K, Higo J. Protein Sci 12 2542-2548 (2003)
  9. An all-atom knowledge-based energy function for protein-DNA threading, docking decoy discrimination, and prediction of transcription-factor binding profiles. Xu B, Yang Y, Liang H, Zhou Y. Proteins 76 718-730 (2009)
  10. Small local variations in B-form DNA lead to a large variety of global geometries which can accommodate most DNA-binding protein motifs. Marathe A, Karandur D, Bansal M. BMC Struct Biol 9 24 (2009)
  11. ZHX2 promotes HIF1α oncogenic signaling in triple-negative breast cancer. Fang W, Liao C, Shi R, Simon JM, Ptacek TS, Zurlo G, Ye Y, Han L, Fan C, Bao L, Ortiz CL, Lin HR, Manocha U, Luo W, Peng Y, Kim WY, Yang LW, Zhang Q. Elife 10 e70412 (2021)
  12. PiDNA: Predicting protein-DNA interactions with structural models. Lin CK, Chen CY. Nucleic Acids Res 41 W523-30 (2013)
  13. A structural-based strategy for recognition of transcription factor binding sites. Xu B, Schones DE, Wang Y, Liang H, Li G. PLoS One 8 e52460 (2013)
  14. High performance transcription factor-DNA docking with GPU computing. Wu J, Hong B, Takeda T, Guo JT. Proteome Sci 10 Suppl 1 S17 (2012)
  15. Re-visiting protein-centric two-tier classification of existing DNA-protein complexes. Malhotra S, Sowdhamini R. BMC Bioinformatics 13 165 (2012)
  16. DNA-binding residues and binding mode prediction with binding-mechanism concerned models. Huang YF, Huang CC, Liu YC, Oyang YJ, Huang CK. BMC Genomics 10 Suppl 3 S23 (2009)
  17. Intrinsic cooperativity potentiates parallel cis-regulatory evolution. Sorrells TR, Johnson AN, Howard CJ, Britton CS, Fowler KR, Feigerle JT, Weil PA, Johnson AD. Elife 7 e37563 (2018)
  18. Ab initio predictions for 3D structure and stability of single- and double-stranded DNAs in ion solutions. Mu ZC, Tan YL, Zhang BG, Liu J, Shi YZ. PLoS Comput Biol 18 e1010501 (2022)
  19. Attenuated clinical and osteoclastic phenotypes of Paget's disease of bone linked to the p.Pro392Leu/SQSTM1 mutation by a rare variant in the DOCK6 gene. Dessay M, Couture E, Maaroufi H, Fournier F, Gagnon E, Droit A, Brown JP, Michou L. BMC Med Genomics 15 41 (2022)
  20. Knowledge-based three-body potential for transcription factor binding site prediction. Qin W, Zhao G, Carson M, Jia C, Lu H. IET Syst Biol 10 23-29 (2016)


Reviews citing this publication (32)

  1. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Chinenov Y, Kerppola TK. Oncogene 20 2438-2452 (2001)
  2. Mating-type gene switching in Saccharomyces cerevisiae. Haber JE. Annu Rev Genet 32 561-599 (1998)
  3. Mating-type genes and MAT switching in Saccharomyces cerevisiae. Haber JE. Genetics 191 33-64 (2012)
  4. The origin of protein interactions and allostery in colocalization. Kuriyan J, Eisenberg D. Nature 450 983-990 (2007)
  5. Recognition of specific DNA sequences. Garvie CW, Wolberger C. Mol Cell 8 937-946 (2001)
  6. The tumor suppressor p53: from structures to drug discovery. Joerger AC, Fersht AR. Cold Spring Harb Perspect Biol 2 a000919 (2010)
  7. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Messenguy F, Dubois E. Gene 316 1-21 (2003)
  8. The virtuoso of versatility: POU proteins that flex to fit. Phillips K, Luisi B. J Mol Biol 302 1023-1039 (2000)
  9. Nuclear-receptor interactions on DNA-response elements. Khorasanizadeh S, Rastinejad F. Trends Biochem Sci 26 384-390 (2001)
  10. A hitchhiker's guide to the MADS world of plants. Gramzow L, Theissen G. Genome Biol 11 214 (2010)
  11. Combinatorial control of gene expression. Reményi A, Schöler HR, Wilmanns M. Nat Struct Mol Biol 11 812-815 (2004)
  12. Multiprotein-DNA complexes in transcriptional regulation. Wolberger C. Annu Rev Biophys Biomol Struct 28 29-56 (1999)
  13. Mapping yeast transcriptional networks. Hughes TR, de Boer CG. Genetics 195 9-36 (2013)
  14. Cross-Family Transcription Factor Interactions: An Additional Layer of Gene Regulation. Bemer M, van Dijk ADJ, Immink RGH, Angenent GC. Trends Plant Sci 22 66-80 (2017)
  15. Mechanisms of DNA bending. Maher LJ. Curr Opin Chem Biol 2 688-694 (1998)
  16. Combinatorial gene regulation by eukaryotic transcription factors. Chen L. Curr Opin Struct Biol 9 48-55 (1999)
  17. Combinatorial transcription factors. Wolberger C. Curr Opin Genet Dev 8 552-559 (1998)
  18. Eukaryotic transcription factors. Warren AJ. Curr Opin Struct Biol 12 107-114 (2002)
  19. Patterning the flower. Irish VF. Dev Biol 209 211-220 (1999)
  20. Transcription factor complexes. Burley SK, Kamada K. Curr Opin Struct Biol 12 225-230 (2002)
  21. Chemical cross-linking in the structural analysis of protein assemblies. Chu F, Thornton DT, Nguyen HT. Methods 144 53-63 (2018)
  22. A biological cosmos of parallel universes: does protein structural plasticity facilitate evolution? Meier S, Ozbek S. Bioessays 29 1095-1104 (2007)
  23. A locus control region regulates yeast recombination. Haber JE. Trends Genet 14 317-321 (1998)
  24. A tale of chromatin and transcription in 100 structures. Cramer P. Cell 159 985-994 (2014)
  25. Functional and Regulatory Roles of Fold-Switching Proteins. Kim AK, Porter LL. Structure 29 6-14 (2021)
  26. Chromatin structure and analysis of mechanisms of activators and repressors. Simpson RT. Methods 15 283-294 (1998)
  27. Modulation of DNA-binding domains for sequence-specific DNA recognition. Marmorstein R, Fitzgerald MX. Gene 304 1-12 (2003)
  28. Transcription factors: the right combination for the DNA lock. Khorasanizadeh S, Rastinejad F. Curr Biol 9 R456-8 (1999)
  29. Degradation elements coincide with cofactor binding sites in a short-lived transcription factor. Hickey CM. Cell Logist 6 e1157664 (2016)
  30. Transcription: activation by cooperating conformations. Travers A. Curr Biol 8 R616-8 (1998)
  31. Transcriptional cooperativity: bending over backwards and doing the flip. Kerppola TK. Structure 6 549-554 (1998)
  32. Cracking the Floral Quartet Code: How Do Multimers of MIKCC-Type MADS-Domain Transcription Factors Recognize Their Target Genes? Käppel S, Rümpler F, Theißen G. Int J Mol Sci 24 8253 (2023)

Articles citing this publication (108)

  1. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Hesselberth JR, Chen X, Zhang Z, Sabo PJ, Sandstrom R, Reynolds AP, Thurman RE, Neph S, Kuehn MS, Noble WS, Fields S, Stamatoyannopoulos JA. Nat Methods 6 283-289 (2009)
  2. Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. Li XY, MacArthur S, Bourgon R, Nix D, Pollard DA, Iyer VN, Hechmer A, Simirenko L, Stapleton M, Luengo Hendriks CL, Chu HC, Ogawa N, Inwood W, Sementchenko V, Beaton A, Weiszmann R, Celniker SE, Knowles DW, Gingeras T, Speed TP, Eisen MB, Biggin MD. PLoS Biol 6 e27 (2008)
  3. The 2.8 A crystal structure of visual arrestin: a model for arrestin's regulation. Hirsch JA, Schubert C, Gurevich VV, Sigler PB. Cell 97 257-269 (1999)
  4. Structure of a DNA-bound Ultrabithorax-Extradenticle homeodomain complex. Passner JM, Ryoo HD, Shen L, Mann RS, Aggarwal AK. Nature 397 714-719 (1999)
  5. Evolution of alternative transcriptional circuits with identical logic. Tsong AE, Tuch BB, Li H, Johnson AD. Nature 443 415-420 (2006)
  6. Emerging biological materials through molecular self-assembly. Zhang S. Biotechnol Adv 20 321-339 (2002)
  7. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. Lee J, Oh M, Park H, Lee I. Plant J 55 832-843 (2008)
  8. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? Pabo CO, Nekludova L. J Mol Biol 301 597-624 (2000)
  9. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C. Mol Cell 10 523-535 (2002)
  10. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Yang Y, Fanning L, Jack T. Plant J 33 47-59 (2003)
  11. Structural studies of Ets-1/Pax5 complex formation on DNA. Garvie CW, Hagman J, Wolberger C. Mol Cell 8 1267-1276 (2001)
  12. Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. Balaji S, Babu MM, Iyer LM, Luscombe NM, Aravind L. J Mol Biol 360 213-227 (2006)
  13. Assembly requirements of PU.1-Pip (IRF-4) activator complexes: inhibiting function in vivo using fused dimers. Brass AL, Zhu AQ, Singh H. EMBO J 18 977-991 (1999)
  14. Position specific variation in the rate of evolution in transcription factor binding sites. Moses AM, Chiang DY, Kellis M, Lander ES, Eisen MB. BMC Evol Biol 3 19 (2003)
  15. Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Hileman LC, Sundstrom JF, Litt A, Chen M, Shumba T, Irish VF. Mol Biol Evol 23 2245-2258 (2006)
  16. The Arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are coordinately expressed during floral development. Tan QK, Irish VF. Plant Physiol 140 1095-1108 (2006)
  17. Engrailed homeodomain-DNA complex at 2.2 A resolution: a detailed view of the interface and comparison with other engrailed structures. Fraenkel E, Rould MA, Chambers KA, Pabo CO. J Mol Biol 284 351-361 (1998)
  18. Intermolecular and intramolecular readout mechanisms in protein-DNA recognition. Michael Gromiha M, Siebers JG, Selvaraj S, Kono H, Sarai A. J Mol Biol 337 285-294 (2004)
  19. Random circular permutation of DsbA reveals segments that are essential for protein folding and stability. Hennecke J, Sebbel P, Glockshuber R. J Mol Biol 286 1197-1215 (1999)
  20. Following gene duplication, paralog interference constrains transcriptional circuit evolution. Baker CR, Hanson-Smith V, Johnson AD. Science 342 104-108 (2013)
  21. MAL and ternary complex factor use different mechanisms to contact a common surface on the serum response factor DNA-binding domain. Zaromytidou AI, Miralles F, Treisman R. Mol Cell Biol 26 4134-4148 (2006)
  22. Crystal structure of MEF2A core bound to DNA at 1.5 A resolution. Santelli E, Richmond TJ. J Mol Biol 297 437-449 (2000)
  23. MENT, a heterochromatin protein that mediates higher order chromatin folding, is a new serpin family member. Grigoryev SA, Bednar J, Woodcock CL. J Biol Chem 274 5626-5636 (1999)
  24. Sequence-specific recruitment of transcriptional co-repressor Cabin1 by myocyte enhancer factor-2. Han A, Pan F, Stroud JC, Youn HD, Liu JO, Chen L. Nature 422 730-734 (2003)
  25. The B-box dominates SAP-1-SRF interactions in the structure of the ternary complex. Hassler M, Richmond TJ. EMBO J 20 3018-3028 (2001)
  26. SUMO-independent in vivo activity of a SUMO-targeted ubiquitin ligase toward a short-lived transcription factor. Xie Y, Rubenstein EM, Matt T, Hochstrasser M. Genes Dev 24 893-903 (2010)
  27. Protein modularity, cooperative binding, and hybrid regulatory states underlie transcriptional network diversification. Baker CR, Booth LN, Sorrells TR, Johnson AD. Cell 151 80-95 (2012)
  28. Solution structure of the MEF2A-DNA complex: structural basis for the modulation of DNA bending and specificity by MADS-box transcription factors. Huang K, Louis JM, Donaldson L, Lim FL, Sharrocks AD, Clore GM. EMBO J 19 2615-2628 (2000)
  29. Crystal structure of the CENP-B protein-DNA complex: the DNA-binding domains of CENP-B induce kinks in the CENP-B box DNA. Tanaka Y, Nureki O, Kurumizaka H, Fukai S, Kawaguchi S, Ikuta M, Iwahara J, Okazaki T, Yokoyama S. EMBO J 20 6612-6618 (2001)
  30. Crystal structure of an OCA-B peptide bound to an Oct-1 POU domain/octamer DNA complex: specific recognition of a protein-DNA interface. Chasman D, Cepek K, Sharp PA, Pabo CO. Genes Dev 13 2650-2657 (1999)
  31. The organized chromatin domain of the repressed yeast a cell-specific gene STE6 contains two molecules of the corepressor Tup1p per nucleosome. Ducker CE, Simpson RT. EMBO J 19 400-409 (2000)
  32. DNA binding and dimerisation determinants of Antirrhinum majus MADS-box transcription factors. West AG, Causier BE, Davies B, Sharrocks AD. Nucleic Acids Res 26 5277-5287 (1998)
  33. Conformational behavior of ionic self-complementary peptides. Altman M, Lee P, Rich A, Zhang S. Protein Sci 9 1095-1105 (2000)
  34. Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis. Puranik S, Acajjaoui S, Conn S, Costa L, Conn V, Vial A, Marcellin R, Melzer R, Brown E, Hart D, Theißen G, Silva CS, Parcy F, Dumas R, Nanao M, Zubieta C. Plant Cell 26 3603-3615 (2014)
  35. Crystal structure of a ternary SAP-1/SRF/c-fos SRE DNA complex. Mo Y, Ho W, Johnston K, Marmorstein R. J Mol Biol 314 495-506 (2001)
  36. DNA structure and polymerase fidelity. Timsit Y. J Mol Biol 293 835-853 (1999)
  37. DNA sequence-directed organization of chromatin: structure-based computational analysis of nucleosome-binding sequences. Balasubramanian S, Xu F, Olson WK. Biophys J 96 2245-2260 (2009)
  38. Interaction of serum response factor (SRF) with the Elk-1 B box inhibits RhoA-actin signaling to SRF and potentiates transcriptional activation by Elk-1. Murai K, Treisman R. Mol Cell Biol 22 7083-7092 (2002)
  39. Mcm1 regulates donor preference controlled by the recombination enhancer in Saccharomyces mating-type switching. Wu C, Weiss K, Yang C, Harris MA, Tye BK, Newlon CS, Simpson RT, Haber JE. Genes Dev 12 1726-1737 (1998)
  40. Interactions of the Mcm1 MADS box protein with cofactors that regulate mating in yeast. Mead J, Bruning AR, Gill MK, Steiner AM, Acton TB, Vershon AK. Mol Cell Biol 22 4607-4621 (2002)
  41. The structure of the AXH domain of spinocerebellar ataxin-1. Chen YW, Allen MD, Veprintsev DB, Löwe J, Bycroft M. J Biol Chem 279 3758-3765 (2004)
  42. Protein and drug interactions in the minor groove of DNA. Morávek Z, Neidle S, Schneider B. Nucleic Acids Res 30 1182-1191 (2002)
  43. Characterization of the ECB binding complex responsible for the M/G(1)-specific transcription of CLN3 and SWI4. Mai B, Miles S, Breeden LL. Mol Cell Biol 22 430-441 (2002)
  44. Separate domains in E1 and E2 proteins serve architectural and productive roles for cooperative DNA binding. Gillitzer E, Chen G, Stenlund A. EMBO J 19 3069-3079 (2000)
  45. A competitive transcription factor binding mechanism determines the timing of late cell cycle-dependent gene expression. Darieva Z, Clancy A, Bulmer R, Williams E, Pic-Taylor A, Morgan BA, Sharrocks AD. Mol Cell 38 29-40 (2010)
  46. Transcriptional regulation of MDR1, encoding a drug efflux determinant, in fluconazole-resistant Candida albicans strains through an Mcm1p binding site. Riggle PJ, Kumamoto CA. Eukaryot Cell 5 1957-1968 (2006)
  47. Molecular determinants of the cell-cycle regulated Mcm1p-Fkh2p transcription factor complex. Boros J, Lim FL, Darieva Z, Pic-Taylor A, Harman R, Morgan BA, Sharrocks AD. Nucleic Acids Res 31 2279-2288 (2003)
  48. Free energy landscapes of peptides by enhanced conformational sampling. Nakajima N, Higo J, Kidera A, Nakamura H. J Mol Biol 296 197-216 (2000)
  49. Structural determinants of DNA recognition by plant MADS-domain transcription factors. Muiño JM, Smaczniak C, Angenent GC, Kaufmann K, van Dijk AD. Nucleic Acids Res 42 2138-2146 (2014)
  50. Genome-wide prediction of minor-groove electrostatic potential enables biophysical modeling of protein-DNA binding. Chiu TP, Rao S, Mann RS, Honig B, Rohs R. Nucleic Acids Res 45 12565-12576 (2017)
  51. MADS-box transcription factors adopt alternative mechanisms for bending DNA. West AG, Sharrocks AD. J Mol Biol 286 1311-1323 (1999)
  52. Genome-wide determinants of sequence-specific DNA binding of general regulatory factors. Rossi MJ, Lai WKM, Pugh BF. Genome Res 28 497-508 (2018)
  53. Mcm1 binds replication origins. Chang VK, Fitch MJ, Donato JJ, Christensen TW, Merchant AM, Tye BK. J Biol Chem 278 6093-6100 (2003)
  54. Mcm1p-induced DNA bending regulates the formation of ternary transcription factor complexes. Lim FL, Hayes A, West AG, Pic-Taylor A, Darieva Z, Morgan BA, Oliver SG, Sharrocks AD. Mol Cell Biol 23 450-461 (2003)
  55. Quantitative evaluation of the chicken lysozyme epitope in the HyHEL-10 Fab complex: free energies and kinetics. Rajpal A, Taylor MG, Kirsch JF. Protein Sci 7 1868-1874 (1998)
  56. Tup1p represses Mcm1p transcriptional activation and chromatin remodeling of an a-cell-specific gene. Gavin IM, Kladde MP, Simpson RT. EMBO J 19 5875-5883 (2000)
  57. Recruitment of the ArgR/Mcm1p repressor is stimulated by the activator Gcn4p: a self-checking activation mechanism. Yoon S, Govind CK, Qiu H, Kim SJ, Dong J, Hinnebusch AG. Proc Natl Acad Sci U S A 101 11713-11718 (2004)
  58. Alpha1-induced DNA bending is required for transcriptional activation by the Mcm1-alpha1 complex. Carr EA, Mead J, Vershon AK. Nucleic Acids Res 32 2298-2305 (2004)
  59. Cloning and functional analysis of the flowering gene GmSOC1-like, a putative SUPPRESSOR OF OVEREXPRESSION CO1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in soybean. Na X, Jian B, Yao W, Wu C, Hou W, Jiang B, Bi Y, Han T. Plant Cell Rep 32 1219-1229 (2013)
  60. Crystallization of the yeast MATalpha2/MCM1/DNA ternary complex: general methods and principles for protein/DNA cocrystallization. Tan S, Hunziker Y, Pellegrini L, Richmond TJ. J Mol Biol 297 947-959 (2000)
  61. Five genes involved in biosynthesis of the pyruvylated Galbeta1,3-epitope in Schizosaccharomyces pombe N-linked glycans. Andreishcheva EN, Kunkel JP, Gemmill TR, Trimble RB. J Biol Chem 279 35644-35655 (2004)
  62. Inherent protein structural flexibility at the RNA-binding interface of L30e. Chao JA, Prasad GS, White SA, Stout CD, Williamson JR. J Mol Biol 326 999-1004 (2003)
  63. Dimerization of zinc fingers mediated by peptides evolved in vitro from random sequences. Wang BS, Pabo CO. Proc Natl Acad Sci U S A 96 9568-9573 (1999)
  64. Microarray profiling of phage-display selections for rapid mapping of transcription factor-DNA interactions. Freckleton G, Lippman SI, Broach JR, Tavazoie S. PLoS Genet 5 e1000449 (2009)
  65. Design of orthogonal regulatory systems for modulating gene expression in plants. Belcher MS, Vuu KM, Zhou A, Mansoori N, Agosto Ramos A, Thompson MG, Scheller HV, Loqué D, Shih PM. Nat Chem Biol 16 857-865 (2020)
  66. Role of inter and intramolecular interactions in protein-DNA recognition. Gromiha MM, Siebers JG, Selvaraj S, Kono H, Sarai A. Gene 364 108-113 (2005)
  67. Two patches of amino acids on the E2 DNA binding domain define the surface for interaction with E1. Chen G, Stenlund A. J Virol 74 1506-1512 (2000)
  68. A sequence resembling a peroxisomal targeting sequence directs the interaction between the tetratricopeptide repeats of Ssn6 and the homeodomain of alpha 2. Smith RL, Johnson AD. Proc Natl Acad Sci U S A 97 3901-3906 (2000)
  69. Scanning mutagenesis of Mcm1: residues required for DNA binding, DNA bending, and transcriptional activation by a MADS-box protein. Acton TB, Mead J, Steiner AM, Vershon AK. Mol Cell Biol 20 1-11 (2000)
  70. Physical and functional interactions between the prostate suppressor homeoprotein NKX3.1 and serum response factor. Ju JH, Maeng JS, Zemedkun M, Ahronovitz N, Mack JW, Ferretti JA, Gelmann EP, Gruschus JM. J Mol Biol 360 989-999 (2006)
  71. Conservation and evolution in and among SRF- and MEF2-type MADS domains and their binding sites. Wu W, Huang X, Cheng J, Li Z, de Folter S, Huang Z, Jiang X, Pang H, Tao S. Mol Biol Evol 28 501-511 (2011)
  72. Evolutionary Dynamics of Floral Homeotic Transcription Factor Protein-Protein Interactions. Bartlett M, Thompson B, Brabazon H, Del Gizzi R, Zhang T, Whipple C. Mol Biol Evol 33 1486-1501 (2016)
  73. The yeast a1 and alpha2 homeodomain proteins do not contribute equally to heterodimeric DNA binding. Jin Y, Zhong H, Vershon AK. Mol Cell Biol 19 585-593 (1999)
  74. Crystal structure of the beta-apical domain of the thermosome reveals structural plasticity in the protrusion region. Bosch G, Baumeister W, Essen LO. J Mol Biol 301 19-25 (2000)
  75. Decoupling of divergent gene regulation by sequence-specific DNA binding factors. Yan C, Zhang D, Raygoza Garay JA, Mwangi MM, Bai L. Nucleic Acids Res 43 7292-7305 (2015)
  76. Sequence dependencies of DNA deformability and hydration in the minor groove. Yonetani Y, Kono H. Biophys J 97 1138-1147 (2009)
  77. Bck2 acts through the MADS box protein Mcm1 to activate cell-cycle-regulated genes in budding yeast. Bastajian N, Friesen H, Andrews BJ. PLoS Genet 9 e1003507 (2013)
  78. Swapping functional specificity of a MADS box protein: residues required for Arg80 regulation of arginine metabolism. Jamai A, Dubois E, Vershon AK, Messenguy F. Mol Cell Biol 22 5741-5752 (2002)
  79. Experimental maps of DNA structure at nucleotide resolution distinguish intrinsic from protein-induced DNA deformations. Azad RN, Zafiropoulos D, Ober D, Jiang Y, Chiu TP, Sagendorf JM, Rohs R, Tullius TD. Nucleic Acids Res 46 2636-2647 (2018)
  80. Insights into nonspecific binding of homeodomains from a structure of MATalpha2 bound to DNA. Aishima J, Wolberger C. Proteins 51 544-551 (2003)
  81. STUbL-mediated degradation of the transcription factor MATα2 requires degradation elements that coincide with corepressor binding sites. Hickey CM, Hochstrasser M. Mol Biol Cell 26 3401-3412 (2015)
  82. Chromatin structure mapping in Saccharomyces cerevisiae in vivo with DNase I. Wang X, Simpson RT. Nucleic Acids Res 29 1943-1950 (2001)
  83. Conformational contagion in a protein: structural properties of a chameleon sequence. Takano K, Katagiri Y, Mukaiyama A, Chon H, Matsumura H, Koga Y, Kanaya S. Proteins 68 617-625 (2007)
  84. Environmentally induced reversible conformational switching in the yeast cell adhesion protein alpha-agglutinin. Zhao H, Chen MH, Shen ZM, Kahn PC, Lipke PN. Protein Sci 10 1113-1123 (2001)
  85. Solvent-accessible surface area: How well can be applied to hot-spot detection? Martins JM, Ramos RM, Pimenta AC, Moreira IS. Proteins 82 479-490 (2014)
  86. Structural and thermodynamic characterization of the DNA binding properties of a triple alanine mutant of MATalpha2. Ke A, Mathias JR, Vershon AK, Wolberger C. Structure 10 961-971 (2002)
  87. Structure of dimerized radixin FERM domain suggests a novel masking motif in C-terminal residues 295-304. Kitano K, Yusa F, Hakoshima T. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 340-345 (2006)
  88. The essential transcription factor Reb1p interacts with the CLB2 UAS outside of the G2/M control region. Van Slyke C, Grayhack EJ. Nucleic Acids Res 31 4597-4607 (2003)
  89. A DNA minor groove electronegative potential genome map based on photo-chemical probing. Lindemose S, Nielsen PE, Hansen M, Møllegaard NE. Nucleic Acids Res 39 6269-6276 (2011)
  90. Quantitative measurement of water diffusion lifetimes at a protein/DNA interface by NMR. Gruschus JM, Ferretti JA. J Biomol NMR 20 111-126 (2001)
  91. Stepwise induced fit in the pico- to nanosecond time scale governs the complexation of the even-skipped transcriptional repressor homeodomain to DNA. Flader W, Wellenzohn B, Winger RH, Hallbrucker A, Mayer E, Liedl KR. Biopolymers 68 139-149 (2003)
  92. Local conformational changes in the DNA interfaces of proteins. Sunami T, Kono H. PLoS One 8 e56080 (2013)
  93. Impact of DNA-binding position variants on yeast gene expression. Swamy KB, Cho CY, Chiang S, Tsai ZT, Tsai HK. Nucleic Acids Res 37 6991-7001 (2009)
  94. Integration of bioinformatics and computational biology to understand protein-DNA recognition mechanism. Sarai A, Siebers J, Selvaraj S, Gromiha MM, Kono H. J Bioinform Comput Biol 3 169-183 (2005)
  95. King of the castle: competition between repressors and activators on the Mcm1 platform. Leatherwood J, Futcher B. Mol Cell 38 1-2 (2010)
  96. A possible mechanism for partitioning between homo- and heterodimerization of the yeast homeodomain proteins MATa1 and MATalpha2. Ho CY, Smith M, Houston ME, Adamson JG, Hodges RS. J Pept Res 59 34-43 (2002)
  97. Mcm1p binding sites in ARG1 positively regulate Gcn4p binding and SWI/SNF recruitment. Yoon S, Hinnebusch AG. Biochem Biophys Res Commun 381 123-128 (2009)
  98. Monitoring the interaction between DNA and a transcription factor (MEF2A) using fluorescence correlation spectroscopy. Octobre G, Lemercier C, Khochbin S, Robert-Nicoud M, Souchier C. C R Biol 328 1033-1040 (2005)
  99. N-terminal arm of Mcm1 is required for transcription of a subset of genes involved in maintenance of the cell wall. Abraham DS, Vershon AK. Eukaryot Cell 4 1808-1819 (2005)
  100. Comment Remodeling of replication initiator proteins. Forest KT, Filutowicz MS. Nat Struct Biol 10 496-498 (2003)
  101. Mcm1p binding sites in the ARG1 promoter positively regulate ARG1 transcription and S. cerevisiae growth in the absence of arginine and Gcn4p. Hong S, Yoon S. Amino Acids 40 623-631 (2011)
  102. A Model for Dimerization of the SOX Group E Transcription Factor Family. Ramsook SN, Ni J, Shahangian S, Vakiloroayaei A, Khan N, Kwan JJ, Donaldson LW. PLoS One 11 e0161432 (2016)
  103. Crystallization studies of the keratin-like domain from Arabidopsis thaliana SEPALLATA 3. Acajjaoui S, Zubieta C. Acta Crystallogr Sect F Struct Biol Cryst Commun 69 997-1000 (2013)
  104. Extending the applicability of the O-ring theory to protein-DNA complexes. Ramos RM, Fernandes LF, Moreira IS. Comput Biol Chem 44 31-39 (2013)
  105. Virtual screening on an α-helix to β-strand switchable region of the FGFR2 extracellular domain revealed positive and negative modulators. Diaz C, Corentin H, Thierry V, Chantal A, Tanguy B, David S, Jean-Marc H, Pascual F, Françoise B, Edgardo F. Proteins 82 2982-2997 (2014)
  106. Ancient transcriptional regulators can easily evolve new pair-wise cooperativity. Fowler KR, Leon F, Johnson AD. Proc Natl Acad Sci U S A 120 e2302445120 (2023)
  107. Crystal Structures of Ternary Complexes of MEF2 and NKX2-5 Bound to DNA Reveal a Disease Related Protein-Protein Interaction Interface. Lei X, Zhao J, Sagendorf JM, Rajashekar N, Xu J, Dantas Machado AC, Sen C, Rohs R, Feng P, Chen L. J Mol Biol 432 5499-5508 (2020)
  108. Evolution of a new form of haploid-specific gene regulation appearing in a limited clade of ascomycete yeast species. Del Frate F, Garber ME, Johnson AD. Genetics 224 iyad053 (2023)


Related citations provided by authors (2)

  1. Structure of serum response factor core bound to DNA.. Pellegrini L, Tan S, Richmond TJ Nature 376 490-8 (1995)
  2. Crystal structure of a MAT alpha 2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions.. Wolberger C, Vershon AK, Liu B, Johnson AD, Pabo CO Cell 67 517-28 (1991)