1igz Citations

Structure of eicosapentaenoic and linoleic acids in the cyclooxygenase site of prostaglandin endoperoxide H synthase-1.

J Biol Chem 276 37547-55 (2001)
Cited: 73 times
EuropePMC logo PMID: 11477109

Abstract

Prostaglandin endoperoxide H synthases-1 and -2 (PGHSs) can oxygenate 18-22 carbon polyunsaturated fatty acids, albeit with varying efficiencies. Here we report the crystal structures of eicosapentaenoic acid (EPA, 20:5 n-3) and linoleic acid (LA, 18:2 n-6) bound in the cyclooxygenase active site of Co(3+) protoporphyrin IX-reconstituted ovine PGHS-1 (Co(3+)-oPGHS-1) and compare the effects of active site substitutions on the rates of oxygenation of EPA, LA, and arachidonic acid (AA). Both EPA and LA bind in the active site with orientations similar to those seen previously with AA and dihomo-gamma-linolenic acid (DHLA). For EPA, the presence of an additional double bond (C-17/C-18) causes this substrate to bind in a "strained" conformation in which C-13 is misaligned with respect to Tyr-385, the residue that abstracts hydrogen from substrate fatty acids. Presumably, this misalignment is responsible for the low rate of EPA oxygenation. For LA, the carboxyl half binds in a more extended configuration than AA, which results in positioning C-11 next to Tyr-385. Val-349 and Ser-530, recently identified as important determinants for efficient oxygenation of DHLA by PGHS-1, play similar roles in the oxygenation of EPA and LA. Approximately 750- and 175-fold reductions in the oxygenation efficiency of EPA and LA were observed with V349A oPGHS-1, compared with a 2-fold change for AA. Val-349 contacts C-2 and C-3 of EPA and C-4 of LA orienting the carboxyl halves of these substrates so that the omega-ends are aligned properly for hydrogen abstraction. An S530T substitution decreases the V(max)/K(m) of EPA and LA by 375- and 140-fold. Ser-530 makes six contacts with EPA and four with LA involving C-8 through C-16; these interactions influence the alignment of the substrate for hydrogen abstraction. Interestingly, replacement of Phe-205 increases the volume of the cyclooxygenase site allowing EPA to be oxygenated more efficiently than with native oPGHS-1.

Reviews - 1igz mentioned but not cited (1)

Articles - 1igz mentioned but not cited (6)

  1. Long-chain carboxychromanols, metabolites of vitamin E, are potent inhibitors of cyclooxygenases. Jiang Q, Yin X, Lill MA, Danielson ML, Freiser H, Huang J. Proc Natl Acad Sci U S A 105 20464-20469 (2008)
  2. Structure and mechanism of the Propionibacterium acnes polyunsaturated fatty acid isomerase. Liavonchanka A, Hornung E, Feussner I, Rudolph MG. Proc Natl Acad Sci U S A 103 2576-2581 (2006)
  3. Investigating substrate promiscuity in cyclooxygenase-2: the role of Arg-120 and residues lining the hydrophobic groove. Vecchio AJ, Orlando BJ, Nandagiri R, Malkowski MG. J Biol Chem 287 24619-24630 (2012)
  4. A New Look at the Structures of Old Sepsis Actors by Exploratory Data Analysis Tools. Gnoni A, De Nitto E, Scacco S, Santacroce L, Palese LL. Antibiotics (Basel) 8 E225 (2019)
  5. Three-dimensional structure of human cyclooxygenase (hCOX)-1. Miciaccia M, Belviso BD, Iaselli M, Cingolani G, Ferorelli S, Cappellari M, Loguercio Polosa P, Perrone MG, Caliandro R, Scilimati A. Sci Rep 11 4312 (2021)
  6. Pharmacophore elucidation and molecular docking studies on 5-phenyl-1-(3-pyridyl)-1h-1,2,4-triazole-3-carboxylic acid derivatives as COX-2 inhibitors. Lindner M, Sippl W, Radwan AA. Sci Pharm 78 195-214 (2010)


Reviews citing this publication (21)

  1. The biochemistry of n-3 polyunsaturated fatty acids. Jump DB. J Biol Chem 277 8755-8758 (2002)
  2. Dietary polyunsaturated fatty acids and regulation of gene transcription. Jump DB. Curr Opin Lipidol 13 155-164 (2002)
  3. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Smith WL, Urade Y, Jakobsson PJ. Chem Rev 111 5821-5865 (2011)
  4. Fatty acid regulation of gene transcription. Jump DB. Crit Rev Clin Lab Sci 41 41-78 (2004)
  5. Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Schneider C, Pratt DA, Porter NA, Brash AR. Chem Biol 14 473-488 (2007)
  6. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Madsen L, Petersen RK, Kristiansen K. Biochim Biophys Acta 1740 266-286 (2005)
  7. The evolution of desaturases. Sperling P, Ternes P, Zank TK, Heinz E. Prostaglandins Leukot Essent Fatty Acids 68 73-95 (2003)
  8. n-3 fatty acids, inflammation, and immunity--relevance to postsurgical and critically ill patients. Calder PC. Lipids 39 1147-1161 (2004)
  9. Cyclooxygenases, peroxide tone and the allure of fish oil. Smith WL. Curr Opin Cell Biol 17 174-182 (2005)
  10. The structure of mammalian cyclooxygenases. Garavito RM, Mulichak AM. Annu Rev Biophys Biomol Struct 32 183-206 (2003)
  11. The structures of prostaglandin endoperoxide H synthases-1 and -2. Garavito RM, Malkowski MG, DeWitt DL. Prostaglandins Other Lipid Mediat 68-69 129-152 (2002)
  12. A critique of paradoxes in current advice on dietary lipids. Lands B. Prog Lipid Res 47 77-106 (2008)
  13. ω-3 polyunsaturated fatty acids-derived lipid metabolites on angiogenesis, inflammation and cancer. Wang W, Zhu J, Lyu F, Panigrahy D, Ferrara KW, Hammock B, Zhang G. Prostaglandins Other Lipid Mediat 113-115 13-20 (2014)
  14. Nutritionally essential fatty acids and biologically indispensable cyclooxygenases. Smith WL. Trends Biochem Sci 33 27-37 (2008)
  15. Comparison of the properties of prostaglandin H synthase-1 and -2. Kulmacz RJ, van der Donk WA, Tsai AL. Prog Lipid Res 42 377-404 (2003)
  16. Role of omega-3 fatty acid supplementation in inflammation and malignancy. Jho DH, Cole SM, Lee EM, Espat NJ. Integr Cancer Ther 3 98-111 (2004)
  17. Diets could prevent many diseases. Lands WE. Lipids 38 317-321 (2003)
  18. Cyclooxygenase-2 in Endometriosis. Lai ZZ, Yang HL, Ha SY, Chang KK, Mei J, Zhou WJ, Qiu XM, Wang XQ, Zhu R, Li DJ, Li MQ. Int J Biol Sci 15 2783-2797 (2019)
  19. Interactions of fatty acids, nonsteroidal anti-inflammatory drugs, and coxibs with the catalytic and allosteric subunits of cyclooxygenases-1 and -2. Smith WL, Malkowski MG. J Biol Chem 294 1697-1705 (2019)
  20. Applications of stereospecifically-labeled Fatty acids in oxygenase and desaturase biochemistry. Brash AR, Schneider C, Hamberg M. Lipids 47 101-116 (2012)
  21. ω-3 Polyunsaturated Fatty Acids on Colonic Inflammation and Colon Cancer: Roles of Lipid-Metabolizing Enzymes Involved. Tu M, Wang W, Zhang G, Hammock BD. Nutrients 12 E3301 (2020)

Articles citing this publication (45)

  1. Enzymes and receptors of prostaglandin pathways with arachidonic acid-derived versus eicosapentaenoic acid-derived substrates and products. Wada M, DeLong CJ, Hong YH, Rieke CJ, Song I, Sidhu RS, Yuan C, Warnock M, Schmaier AH, Yokoyama C, Smyth EM, Wilson SJ, FitzGerald GA, Garavito RM, Sui de X, Regan JW, Smith WL. J Biol Chem 282 22254-22266 (2007)
  2. Structural basis of fatty acid substrate binding to cyclooxygenase-2. Vecchio AJ, Simmons DM, Malkowski MG. J Biol Chem 285 22152-22163 (2010)
  3. Cyclooxygenase Allosterism, Fatty Acid-mediated Cross-talk between Monomers of Cyclooxygenase Homodimers. Yuan C, Sidhu RS, Kuklev DV, Kado Y, Wada M, Song I, Smith WL. J Biol Chem 284 10046-10055 (2009)
  4. Partnering between monomers of cyclooxygenase-2 homodimers. Yuan C, Rieke CJ, Rimon G, Wingerd BA, Smith WL. Proc Natl Acad Sci U S A 103 6142-6147 (2006)
  5. Modulation of angiogenesis by omega-3 polyunsaturated fatty acids is mediated by cyclooxygenases. Szymczak M, Murray M, Petrovic N. Blood 111 3514-3521 (2008)
  6. Human cyclooxygenase-2 is a sequence homodimer that functions as a conformational heterodimer. Dong L, Vecchio AJ, Sharma NP, Jurban BJ, Malkowski MG, Smith WL. J Biol Chem 286 19035-19046 (2011)
  7. The 2.0 A resolution crystal structure of prostaglandin H2 synthase-1: structural insights into an unusual peroxidase. Gupta K, Selinsky BS, Kaub CJ, Katz AK, Loll PJ. J Mol Biol 335 503-518 (2004)
  8. The crystal structure of Arabidopsis thaliana allene oxide cyclase: insights into the oxylipin cyclization reaction. Hofmann E, Zerbe P, Schaller F. Plant Cell 18 3201-3217 (2006)
  9. The content of favorable and unfavorable polyunsaturated fatty acids found in commonly eaten fish. Weaver KL, Ivester P, Chilton JA, Wilson MD, Pandey P, Chilton FH. J Am Diet Assoc 108 1178-1185 (2008)
  10. Fish oil and antioxidants alter the composition and function of circulating mononuclear cells in Crohn disease. Trebble TM, Arden NK, Wootton SA, Calder PC, Mullee MA, Fine DR, Stroud MA. Am J Clin Nutr 80 1137-1144 (2004)
  11. In vitro effects of eicosanoids derived from different 20-carbon fatty acids on T helper type 1 and T helper type 2 cytokine production in human whole-blood cultures. Miles EA, Aston L, Calder PC. Clin Exp Allergy 33 624-632 (2003)
  12. The structural basis of endocannabinoid oxygenation by cyclooxygenase-2. Vecchio AJ, Malkowski MG. J Biol Chem 286 20736-20745 (2011)
  13. Leucine/valine residues direct oxygenation of linoleic acid by (10R)- and (8R)-dioxygenases: expression and site-directed mutagenesis oF (10R)-dioxygenase with epoxyalcohol synthase activity. Garscha U, Oliw EH. J Biol Chem 284 13755-13765 (2009)
  14. Molecular dynamics simulations of arachidonic acid complexes with COX-1 and COX-2: insights into equilibrium behavior. Furse KE, Pratt DA, Porter NA, Lybrand TP. Biochemistry 45 3189-3205 (2006)
  15. Omega-3 fatty acids modulate collagen signaling in human platelets. Larson MK, Shearer GC, Ashmore JH, Anderson-Daniels JM, Graslie EL, Tholen JT, Vogelaar JL, Korth AJ, Nareddy V, Sprehe M, Harris WS. Prostaglandins Leukot Essent Fatty Acids 84 93-98 (2011)
  16. Asymmetric Binding and Metabolism of Polyunsaturated Fatty Acids (PUFAs) by CYP2J2 Epoxygenase. Arnold WR, Baylon JL, Tajkhorshid E, Das A. Biochemistry 55 6969-6980 (2016)
  17. His-311 and Arg-559 are key residues involved in fatty acid oxygenation in pathogen-inducible oxygenase. Koszelak-Rosenblum M, Krol AC, Simmons DM, Goulah CC, Wroblewski L, Malkowski MG. J Biol Chem 283 24962-24971 (2008)
  18. Role of Tyr348 in Tyr385 radical dynamics and cyclooxygenase inhibitor interactions in prostaglandin H synthase-2. Rogge CE, Ho B, Liu W, Kulmacz RJ, Tsai AL. Biochemistry 45 523-532 (2006)
  19. Stereoselective oxidation of regioisomeric octadecenoic acids by fatty acid dioxygenases. Oliw EH, Wennman A, Hoffmann I, Garscha U, Hamberg M, Jernerén F. J Lipid Res 52 1995-2004 (2011)
  20. Chemical and structural diversity in cyclooxygenase protein active sites. Huff RG, Bayram E, Tan H, Knutson ST, Knaggs MH, Richon AB, Santago P, Fetrow JS. Chem Biodivers 2 1533-1552 (2005)
  21. Dietary LA and sex effects on oxylipin profiles in rat kidney, liver, and serum differ from their effects on PUFAs. Leng S, Winter T, Aukema HM. J Lipid Res 58 1702-1712 (2017)
  22. Fatty Acid Binding to the Allosteric Subunit of Cyclooxygenase-2 Relieves a Tonic Inhibition of the Catalytic Subunit. Dong L, Yuan C, Orlando BJ, Malkowski MG, Smith WL. J Biol Chem 291 25641-25655 (2016)
  23. The Effect of Omega-3 and Omega-6 Polyunsaturated Fatty Acids on the Production of Cyclooxygenase and Lipoxygenase Metabolites by Human Umbilical Vein Endothelial Cells. Araujo P, Belghit I, Aarsæther N, Espe M, Lucena E, Holen E. Nutrients 11 E966 (2019)
  24. Inhibition of Pancreatic Carcinoma Growth Through Enhancing ω-3 Epoxy Polyunsaturated Fatty Acid Profile by Inhibition of Soluble Epoxide Hydrolase. Xia R, Sun L, Liao J, Li H, You X, Xu D, Yang J, Hwang SH, Jones RD, Hammock B, Yang GY. Anticancer Res 39 3651-3660 (2019)
  25. A combined computational strategy of sequence and structural analysis predicts the existence of a functional eicosanoid pathway in Drosophila melanogaster. Scarpati M, Qi Y, Govind S, Govind S, Singh S. PLoS One 14 e0211897 (2019)
  26. Biomarkers for personalizing omega-3 fatty acid dosing. Jiang Y, Djuric Z, Sen A, Ren J, Kuklev D, Waters I, Zhao L, Uhlson CL, Hong YH, Murphy RC, Normolle DP, Smith WL, Brenner DE. Cancer Prev Res (Phila) 7 1011-1022 (2014)
  27. Fatty acid composition of serum lipid classes in mice following allergic sensitisation with or without dietary docosahexaenoic acid-enriched fish oil substitution. Rühl R, Koch C, Marosvölgyi T, Mihály J, Schweigert FJ, Worm M, Decsi T. Br J Nutr 99 1239-1246 (2008)
  28. The Anti-inflammatory Effect of Personalized Omega-3 Fatty Acid Dosing for Reducing Prostaglandin E2 in the Colonic Mucosa Is Attenuated in Obesity. Djuric Z, Turgeon DK, Sen A, Ren J, Herman K, Ramaswamy D, Zhao L, Ruffin MT, Normolle DP, Smith WL, Brenner DE. Cancer Prev Res (Phila) 10 729-737 (2017)
  29. Inhibition of mutant KrasG12D-initiated murine pancreatic carcinoma growth by a dual c-Raf and soluble epoxide hydrolase inhibitor t-CUPM. Liao J, Hwang SH, Li H, Yang Y, Yang J, Wecksler AT, Liu JY, Hammock BD, Yang GY. Cancer Lett 371 187-193 (2016)
  30. Prostaglandin H synthase-2-catalyzed oxygenation of 2-arachidonoylglycerol is more sensitive to peroxide tone than oxygenation of arachidonic acid. Musee J, Marnett LJ. J Biol Chem 287 37383-37394 (2012)
  31. Eicosapentaenoic acid suppression of systemic inflammatory responses and inverse up-regulation of 15-deoxyΔ(12,14) prostaglandin J2 production. Davidson J, Higgs W, Rotondo D. Br J Pharmacol 169 1130-1139 (2013)
  32. Dietary Intake of n-3 PUFA-Enriched Hen Eggs Changes Inflammatory Markers' Concentration and Treg/Th17 Cells Distribution in Blood of Young Healthy Adults-A Randomised Study. Kolobarić N, Drenjančević I, Matić A, Šušnjara P, Mihaljević Z, Mihalj M. Nutrients 13 1851 (2021)
  33. Physical evidence for substrate binding in preventing cyclooxygenase inactivation under nitrative stress. Deeb RS, Cheung C, Nuriel T, Lamon BD, Upmacis RK, Gross SS, Hajjar DP. J Am Chem Soc 132 3914-3922 (2010)
  34. Pichia expression and mutagenesis of 7,8-linoleate diol synthase change the dioxygenase and hydroperoxide isomerase. Garscha U, Oliw E. Biochem Biophys Res Commun 373 579-583 (2008)
  35. Free energy perturbation approach to the critical assessment of selective cyclooxygenase-2 inhibitors. Park H, Lee S. J Comput Aided Mol Des 19 17-31 (2005)
  36. Histidine 386 and its role in cyclooxygenase and peroxidase catalysis by prostaglandin-endoperoxide H synthases. Seibold SA, Ball T, Hsi LC, Mills DA, Abeysinghe RD, Micielli R, Rieke CJ, Cukier RI, Smith WL. J Biol Chem 278 46163-46170 (2003)
  37. Maternal and neonatal dietary intake of balanced n-6/n-3 fatty acids modulates experimental colitis in young adult rats. Reddy KV, Naidu KA. Eur J Nutr 55 1875-1890 (2016)
  38. Transport of eicosapentaenoic acid-derived PGE₃, PGF(3α), and TXB₃ by ABCC4. Tanaka N, Yamaguchi H, Mano N. PLoS One 9 e109270 (2014)
  39. Expression of Transcript Variants of PTGS1 and PTGS2 Genes among Patients with Chronic Rhinosinusitis with Nasal Polyps. Pietruszewska W, Fendler W, Podwysocka M, Białas AJ, Kuna P, Kupryś-Lipińska I, Borowiec M. Diagnostics (Basel) 11 135 (2021)
  40. Functional analysis of the molecular determinants of cyclooxygenase-2 acetylation by 2-acetoxyphenylhept-2-ynyl sulfide. Phillip Hochgesang G, Nemeth-Cawley JF, Rowlinson SW, Caprioli RM, Marnett LJ. Arch Biochem Biophys 409 127-133 (2003)
  41. Polymorphic human prostaglandin H synthase-2 proteins and their interactions with cyclooxygenase substrates and inhibitors. Liu W, Poole EM, Ulrich CM, Kulmacz RJ. Pharmacogenomics J 11 337-347 (2011)
  42. Prostanoid production in Saccharomyces cerevisiae provides a novel assay for nonsteroidal anti-inflammatory drugs. Mohamed ME, Lazarus CM. FEMS Yeast Res 9 420-427 (2009)
  43. Purification and site-directed mutagenesis of linoleate 9S-dioxygenase-allene oxide synthase of Fusarium oxysporum confirms the oxygenation mechanism. Chen Y, Jernerén F, Oliw EH. Arch Biochem Biophys 625-626 24-29 (2017)
  44. Dynamics of Radical Intermediates in Prostaglandin H Synthase-1 Cyclooxygenase Reactions is Modulated by Multiple Factors. Wu G, Tsai AL. Protein Pept Lett 23 1013-1023 (2016)
  45. Production of prostaglandins in transgenic Arabidopsis thaliana. Mohamed ME, Lazarus CM. Phytochemistry 102 74-79 (2014)


Related citations provided by authors (2)

  1. Mutational and X-ray Crystallographic analysis of the Interaction of Dihomo-Gamma-Linolenic Acid with Prostaglandin Endoperoxide H Synthases.. Thuresson ED, Malkowski MG, Lakkides KM, Rieke CJ, Mulichak AM, Ginell SL, Garavito RM, Smith WL J. Biol. Chem. 276 10358-10365 (2001)
  2. The Productive Conformation of Arachidonic Acid Bound to Prostaglandin Synthase.. Malkowski MG, Ginell SL, Smith WL, Garavito RM Science 289 1933-1937 (2000)