Xylose isomerase (actinobacterial)

 

Xylose isomerase catalyses the interconvertion of D-xylose and D-xylulose. It contains two divalent metal ions, preferably magnesium, located at different metal-binding sites within the active site. The enzyme catalyses the interconversion of aldose and ketose sugars with broad substrate specificity. The enzyme binds the closed form of its sugar substrate (in the case of glucose, only the alpha anomer) and catalyses ring opening to generate a form of open-chain conformation that is coordinated to one of the metal sites.

 

Reference Protein and Structure

Sequence
P12070 UniProt (5.3.1.5) IPR013453 (Sequence Homologues) (PDB Homologues)
Biological species
Arthrobacter sp. NRRL B3728 (Bacteria) Uniprot
PDB
1xld - MECHANISM FOR ALDOSE-KETOSE INTERCONVERSION BY D-XYLOSE ISOMERASE INVOLVING RING OPENING FOLLOWED BY A 1,2-HYDRIDE SHIFT (2.5 Å) PDBe PDBsum 1xld
Catalytic CATH Domains
3.20.20.150 CATHdb (see all for 1xld)
Cofactors
Magnesium(2+) (2), Water (2) Metal MACiE
Click To Show Structure

Enzyme Reaction (EC:5.3.1.5)

D-xylopyranose
CHEBI:53455ChEBI
D-xylulose
CHEBI:17140ChEBI
Alternative enzyme names: D-xylose isomerase, D-xylose ketoisomerase, D-xylose ketol-isomerase,

Enzyme Mechanism

Introduction

After the enzyme catalysed ring opening reaction (step 1), the substrate undergoes a 1,2-hydride shift which is mediated by the presence of divalent cationic metal cofactors.

Catalytic Residues Roles

UniProt PDB* (1xld)
Met88, Lys183 Met87A, Lys182A Act to stabilise the reactive intermediates formed during the course of the reaction. steric role, polar interaction
Asp293 Asp292A Forms part of the magnesium 1 binding site, also acts as a general acid/base during the course of the reaction. attractive charge-charge interaction, hydrogen bond acceptor, metal ligand, proton acceptor, proton donor, activator
His54, Asp57 His53A, Asp56A Acts as a general acid/base during the course of the ring opening and closing reactions. hydrogen bond acceptor, hydrogen bond donor, proton acceptor, proton donor, activator
Glu217 Glu216A Acts as a bridging ligand between the two magnesium sites. metal ligand
Glu181, Asp245 Glu180A, Asp244A Forms part of the magnesium 1 binding site. metal ligand
His220, Asp255, Asp257 His219A, Asp254A, Asp256A Forms part of the magnesium 2 binding site. metal ligand
*PDB label guide - RESx(y)B(C) - RES: Residue Name; x: Residue ID in PDB file; y: Residue ID in PDB sequence if different from PDB file; B: PDB Chain; C: Biological Assembly Chain if different from PDB. If label is "Not Found" it means this residue is not found in the reference PDB.

Chemical Components

intramolecular rearrangement, proton transfer, decyclisation, proton relay, intermediate formation, hydride transfer, intramolecular nucleophilic addition, native state of enzyme regenerated, inferred reaction step

References

  1. Kovalevsky AY et al. (2010), Structure, 18, 688-699. Metal Ion Roles and the Movement of Hydrogen during Reaction Catalyzed by D-Xylose Isomerase: A Joint X-Ray and Neutron Diffraction Study. DOI:10.1016/j.str.2010.03.011. PMID:20541506.
  2. Munshi P et al. (2014), Acta Crystallogr D Biol Crystallogr, 70, 414-420. Neutron structure of the cyclic glucose-bound xylose isomerase E186Q mutant. DOI:10.1107/s1399004713029684. PMID:24531475.
  3. Langan P et al. (2014), Structure, 22, 1287-1300. L-Arabinose Binding, Isomerization, and Epimerization by D-Xylose Isomerase: X-Ray/Neutron Crystallographic and Molecular Simulation Study. DOI:10.1016/j.str.2014.07.002. PMID:25132082.
  4. Toteva MM et al. (2011), Biochemistry, 50, 10170-10181. Binding Energy and Catalysis byd-Xylose Isomerase: Kinetic, Product, and X-ray Crystallographic Analysis of Enzyme-Catalyzed Isomerization of (R)-Glyceraldehyde. DOI:10.1021/bi201378c. PMID:21995300.
  5. Kovalevsky AY et al. (2008), Biochemistry, 47, 7595-7597. Hydrogen Location in Stages of an Enzyme-Catalyzed Reaction: Time-of-Flight Neutron Structure ofd-Xylose Isomerase with Boundd-Xylulose†‡. DOI:10.1021/bi8005434. PMID:18578508.
  6. Fenn TD et al. (2004), Biochemistry, 43, 6464-6474. Xylose Isomerase in Substrate and Inhibitor Michaelis States:  Atomic Resolution Studies of a Metal-Mediated Hydride Shift†,‡. DOI:10.1021/bi049812o. PMID:15157080.
  7. Hu H et al. (1997), Proteins, 27, 545-555. The reaction pathway of the isomerization of d-xylose catalyzed by the enzyme d-xylose isomerase: A theoretical study. DOI:10.1002/(sici)1097-0134(199704)27:4<545::aid-prot7>3.0.co;2-9.
  8. Allen KN et al. (1994), Biochemistry, 33, 1488-1494. Role of the divalent metal ion in sugar binding, ring opening, and isomerization by D-xylose isomerase: replacement of a catalytic metal by an amino acid. PMID:7906142.
  9. Whitlow M et al. (1991), Proteins, 9, 153-173. A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 ÅStreptomycs rubiginosus structure with xylitol andD-xylose. DOI:10.1002/prot.340090302. PMID:2006134.
  10. Collyer CA et al. (1990), J Mol Biol, 212, 211-235. Mechanism for aldose-ketose interconversion by d-xylose isomerase involving ring opening followed by a 1,2-hydride shift. DOI:10.1016/0022-2836(90)90316-e. PMID:2319597.

Catalytic Residues Roles

Residue Roles
Asp56A hydrogen bond acceptor, activator
Met87A steric role, polar interaction
His53A activator, hydrogen bond donor
Lys182A hydrogen bond donor, electrostatic stabiliser
Asp292A attractive charge-charge interaction
Glu180A metal ligand
Asp244A metal ligand
Glu216A metal ligand
His219A metal ligand
Asp254A metal ligand
Asp256A metal ligand
Asp292A metal ligand
Asp56A proton acceptor
His53A proton donor

Chemical Components

intramolecular rearrangement, proton transfer, decyclisation, proton relay

Catalytic Residues Roles

Residue Roles
Lys182A hydrogen bond donor
Asp56A hydrogen bond acceptor
His53A hydrogen bond acceptor, hydrogen bond donor
Asp292A hydrogen bond acceptor, attractive charge-charge interaction
Glu180A metal ligand
Asp244A metal ligand
Glu216A metal ligand
His219A metal ligand
Asp254A metal ligand
Asp256A metal ligand
Asp292A metal ligand
Asp292A proton acceptor

Chemical Components

proton transfer, intermediate formation

Catalytic Residues Roles

Residue Roles
Lys182A hydrogen bond donor, electrostatic stabiliser
Asp56A hydrogen bond acceptor
His53A hydrogen bond acceptor, hydrogen bond donor
Asp292A activator, attractive charge-charge interaction
Glu180A metal ligand
Asp244A metal ligand
Glu216A metal ligand
His219A metal ligand
Asp254A metal ligand
Asp256A metal ligand
Asp292A metal ligand

Chemical Components

hydride transfer, proton transfer

Catalytic Residues Roles

Residue Roles
Lys182A hydrogen bond donor, electrostatic stabiliser
Asp56A activator, hydrogen bond donor, hydrogen bond acceptor
His53A activator, hydrogen bond acceptor, hydrogen bond donor
Asp292A attractive charge-charge interaction
Glu180A metal ligand
Asp244A metal ligand
Glu216A metal ligand
His219A metal ligand
Asp254A metal ligand
Asp256A metal ligand
Asp292A metal ligand
Asp56A proton donor
His53A proton acceptor

Chemical Components

proton transfer, ingold: intramolecular nucleophilic addition

Catalytic Residues Roles

Residue Roles
Lys182A hydrogen bond donor
Asp56A activator, hydrogen bond acceptor
His53A activator, hydrogen bond donor
Asp292A hydrogen bond acceptor
Glu180A metal ligand
Asp244A metal ligand
Glu216A metal ligand
His219A metal ligand
Asp254A metal ligand
Asp256A metal ligand
Asp292A metal ligand, proton donor

Chemical Components

proton transfer, native state of enzyme regenerated, inferred reaction step

Introduction

After ring opening (step 1) Asp292 abstracts the proton from a carbon atom, causing a bond rearrangement to form the ene-diol intermediate. This collapses, to form the final (linear) product.

Catalytic Residues Roles

UniProt PDB* (1xld)
Met88 Met87A Acts to stabilise the reactive intermediate. steric role, polar interaction
Asp293 Asp292A Forms part of the magnesium 1 binding site, also acts as a general acid/base during the course of the reaction. attractive charge-charge interaction, hydrogen bond acceptor, metal ligand, proton acceptor, proton donor
Lys183, His54, Asp57 Lys182A, His53A, Asp56A Act as general acid/bases during the course of the reaction. hydrogen bond donor, electrostatic stabiliser, proton donor
Glu217 Glu216A Acts as a bridging ligand between the two magnesium sites. metal ligand
Glu181, Asp245 Glu180A, Asp244A Forms part of the magnesium 1 binding site. metal ligand
His220, Asp255, Asp257 His219A, Asp254A, Asp256A Forms part of the magnesium 2 binding site. metal ligand
*PDB label guide - RESx(y)B(C) - RES: Residue Name; x: Residue ID in PDB file; y: Residue ID in PDB sequence if different from PDB file; B: PDB Chain; C: Biological Assembly Chain if different from PDB. If label is "Not Found" it means this residue is not found in the reference PDB.

Chemical Components

intramolecular rearrangement, proton transfer, decyclisation, proton relay, assisted keto-enol tautomerisation, intramolecular nucleophilic addition, native state of enzyme regenerated, inferred reaction step

References

  1. Rose IA (1981), Philos Trans R Soc Lond B Biol Sci, 293, 131-143. Chemistry of Proton Abstraction by Glycolytic Enzymes (Aldolase, Isomerases and Pyruvate Kinase). DOI:10.1098/rstb.1981.0067.
  2. Collyer CA et al. (1990), J Mol Biol, 212, 211-235. Mechanism for aldose-ketose interconversion by d-xylose isomerase involving ring opening followed by a 1,2-hydride shift. DOI:10.1016/0022-2836(90)90316-e. PMID:2319597.

Catalytic Residues Roles

Residue Roles
Asp292A metal ligand
Asp256A metal ligand
Asp254A metal ligand
His219A metal ligand
Glu216A metal ligand
Asp244A metal ligand
Glu180A metal ligand
Asp56A hydrogen bond acceptor, activator
Met87A steric role, polar interaction
His53A activator, hydrogen bond donor
Lys182A hydrogen bond donor, electrostatic stabiliser
Asp292A attractive charge-charge interaction
Asp56A proton acceptor
His53A proton donor

Chemical Components

intramolecular rearrangement, proton transfer, decyclisation, proton relay

Catalytic Residues Roles

Residue Roles
Lys182A hydrogen bond donor
Asp56A hydrogen bond acceptor
His53A hydrogen bond acceptor, hydrogen bond donor
Asp292A hydrogen bond acceptor, attractive charge-charge interaction
Glu180A metal ligand
Asp244A metal ligand
Glu216A metal ligand
His219A metal ligand
Asp254A metal ligand
Asp256A metal ligand
Asp292A metal ligand
Asp292A proton acceptor
Lys182A proton donor

Chemical Components

proton transfer, assisted keto-enol tautomerisation

Catalytic Residues Roles

Residue Roles
Glu180A metal ligand
Asp244A metal ligand
Glu216A metal ligand
His219A metal ligand
Asp254A metal ligand
Asp256A metal ligand
Asp292A metal ligand
His53A proton acceptor
Asp292A proton donor

Chemical Components

Catalytic Residues Roles

Residue Roles
Asp292A metal ligand
Asp256A metal ligand
Asp254A metal ligand
His219A metal ligand
Glu216A metal ligand
Asp244A metal ligand
Glu180A metal ligand
Lys182A hydrogen bond donor, electrostatic stabiliser
Asp56A activator, hydrogen bond donor, hydrogen bond acceptor
His53A activator, hydrogen bond acceptor, hydrogen bond donor
Asp292A attractive charge-charge interaction
His53A proton acceptor
Asp56A proton donor

Chemical Components

proton transfer, ingold: intramolecular nucleophilic addition

Catalytic Residues Roles

Residue Roles
Asp292A metal ligand
Asp256A metal ligand
Asp254A metal ligand
His219A metal ligand
Glu216A metal ligand
Asp244A metal ligand
Glu180A metal ligand
Lys182A hydrogen bond donor
Asp56A activator, hydrogen bond acceptor
His53A activator, hydrogen bond donor
Asp292A hydrogen bond acceptor
Asp292A proton donor

Chemical Components

proton transfer, native state of enzyme regenerated, inferred reaction step

Contributors

Sophie T. Williams, Gemma L. Holliday, Craig Porter