spacer
spacer

PDBsum entry 5onh

Go to PDB code: 
protein dna_rna ligands metals Protein-protein interface(s) links
Ligase PDB id
5onh

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
860 a.a.
DNA/RNA
Ligands
LSS ×2
VRT ×2
Metals
_MG ×2
_ZN ×2
PDB id:
5onh
Name: Ligase
Title: Quaternary complex of wild type e. Coli leucyl-tRNA synthetase with tRNA(leu), leucyl-adenylate analogue, and post-transfer editing analogue of norvaline in the aminoacylation conformation
Structure: Leucine--tRNA ligase. Chain: a, d. Synonym: leucyl-tRNA synthetase,leurs. Engineered: yes. L-leucyl-tRNA(leu). Chain: b, e. Engineered: yes
Source: Escherichia coli k-12. Organism_taxid: 83333. Gene: leus, b0642, jw0637. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693. Synthetic: yes. Escherichia coli. Organism_taxid: 562
Resolution:
3.10Å     R-factor:   0.224     R-free:   0.257
Authors: A.Palencia,S.Cusack
Key ref: M.Dulic et al. (2018). Kinetic Origin of Substrate Specificity in Post-Transfer Editing by Leucyl-tRNA Synthetase. J Mol Biol, 430, 1. PubMed id: 29111343 DOI: 10.1016/j.jmb.2017.10.024
Date:
03-Aug-17     Release date:   15-Nov-17    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P07813  (SYL_ECOLI) -  Leucine--tRNA ligase from Escherichia coli (strain K12)
Seq:
Struc:
 
Seq:
Struc:
860 a.a.
860 a.a.
Key:    PfamA domain  Secondary structure

DNA/RNA chains
  G-C-C-C-G-G-A-U-G-G-U-G-G-A-A-U-C-G-G-U-A-G-A-C-A-C-A-A-G-G-G-A-U-U-A-A-U-C-C- 82 bases
  G-C-C-C-G-G-A-U-G-G-U-G-G-A-A-U-C-G-G-U-A-G-A-C-A-C-A-A-G-G-G-A-U-A-A-U-C-C-C- 83 bases

 Enzyme reactions 
   Enzyme class: E.C.6.1.1.4  - leucine--tRNA ligase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: tRNA(Leu) + L-leucine + ATP = L-leucyl-tRNA(Leu) + AMP + diphosphate
tRNA(Leu)
+ L-leucine
+ ATP
=
L-leucyl-tRNA(Leu)
Bound ligand (Het Group name = LSS)
matches with 54.29% similarity
+ AMP
+ diphosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/j.jmb.2017.10.024 J Mol Biol 430:1 (2018)
PubMed id: 29111343  
 
 
Kinetic Origin of Substrate Specificity in Post-Transfer Editing by Leucyl-tRNA Synthetase.
M.Dulic, N.Cvetesic, I.Zivkovic, A.Palencia, S.Cusack, B.Bertosa, I.Gruic-Sovulj.
 
  ABSTRACT  
 
The intrinsic editing capacities of aminoacyl-tRNA synthetases ensure a high-fidelity translation of the amino acids that possess effective non-cognate aminoacylation surrogates. The dominant error-correction pathway comprises deacylation of misaminoacylated tRNA within the aminoacyl-tRNA synthetase editing site. To assess the origin of specificity of Escherichia coli leucyl-tRNA synthetase (LeuRS) against the cognate aminoacylation product in editing, we followed binding and catalysis independently using cognate leucyl- and non-cognate norvalyl-tRNALeuand their non-hydrolyzable analogues. We found that the amino acid part (leucine versus norvaline) of (mis)aminoacyl-tRNAs can contribute approximately 10-fold to ground-state discrimination at the editing site. In sharp contrast, the rate of deacylation of leucyl- and norvalyl-tRNALeudiffered by about 104-fold. We further established the critical role for the A76 3'-OH group of the tRNALeuin post-transfer editing, which supports the substrate-assisted deacylation mechanism. Interestingly, the abrogation of the LeuRS specificity determinant threonine 252 did not improve the affinity of the editing site for the cognate leucine as expected, but instead substantially enhanced the rate of leucyl-tRNALeuhydrolysis. In line with that, molecular dynamics simulations revealed that the wild-type enzyme, but not the T252A mutant, enforced leucine to adopt the side-chain conformation that promotes the steric exclusion of a putative catalytic water. Our data demonstrated that the LeuRS editing site exhibits amino acid specificity of kinetic origin, arguing against the anticipated prominent role of steric exclusion in the rejection of leucine. This feature distinguishes editing from the synthetic site, which relies on ground-state discrimination in amino acid selection.
 

 

spacer

spacer