spacer
spacer

PDBsum entry 1w4x

Go to PDB code: 
protein ligands links
Oxygenase PDB id
1w4x

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
533 a.a. *
Ligands
FAD
SO4
Waters ×535
* Residue conservation analysis
PDB id:
1w4x
Name: Oxygenase
Title: Phenylacetone monooxygenase, a baeyer-villiger monooxygenase
Structure: Phenylacetone monooxygenase. Chain: a. Engineered: yes
Source: Thermobifida fusca. Organism_taxid: 2021. Expressed in: escherichia coli. Expression_system_taxid: 511693.
Resolution:
1.70Å     R-factor:   0.213     R-free:   0.244
Authors: E.Malito,A.Alfieri,A.Mattevi
Key ref:
E.Malito et al. (2004). Crystal structure of a Baeyer-Villiger monooxygenase. Proc Natl Acad Sci U S A, 101, 13157-13162. PubMed id: 15328411 DOI: 10.1073/pnas.0404538101
Date:
03-Aug-04     Release date:   02-Sep-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q47PU3  (PAMO_THEFY) -  Phenylacetone monooxygenase from Thermobifida fusca (strain YX)
Seq:
Struc:
 
Seq:
Struc:
542 a.a.
533 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.1.14.13.92  - phenylacetone monooxygenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: phenylacetone + NADPH + O2 + H+ = benzyl acetate + NADP+ + H2O
phenylacetone
+ NADPH
+ O2
+ H(+)
= benzyl acetate
+ NADP(+)
+ H2O
      Cofactor: FAD
FAD
Bound ligand (Het Group name = FAD) corresponds exactly
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1073/pnas.0404538101 Proc Natl Acad Sci U S A 101:13157-13162 (2004)
PubMed id: 15328411  
 
 
Crystal structure of a Baeyer-Villiger monooxygenase.
E.Malito, A.Alfieri, M.W.Fraaije, A.Mattevi.
 
  ABSTRACT  
 
Flavin-containing Baeyer-Villiger monooxygenases employ NADPH and molecular oxygen to catalyze the insertion of an oxygen atom into a carbon-carbon bond of a carbonylic substrate. These enzymes can potentially be exploited in a variety of biocatalytic applications given the wide use of Baeyer-Villiger reactions in synthetic organic chemistry. The catalytic activity of these enzymes involves the formation of two crucial intermediates: a flavin peroxide generated by the reaction of the reduced flavin with molecular oxygen and the "Criegee" intermediate resulting from the attack of the flavin peroxide onto the substrate that is being oxygenated. The crystal structure of phenylacetone monooxygenase, a Baeyer-Villiger monooxygenase from the thermophilic bacterium Thermobifida fusca, exhibits a two-domain architecture resembling that of the disulfide oxidoreductases. The active site is located in a cleft at the domain interface. An arginine residue lays above the flavin ring in a position suited to stabilize the negatively charged flavin-peroxide and Criegee intermediates. This amino acid residue is predicted to exist in two positions; the "IN" position found in the crystal structure and an "OUT" position that allows NADPH to approach the flavin to reduce the cofactor. Domain rotations are proposed to bring about the conformational changes involved in catalysis. The structural studies highlight the functional complexity of this class of flavoenzymes, which coordinate the binding of three substrates (molecular oxygen, NADPH, and phenylacetone) in proximity of the flavin cofactor with formation of two distinct catalytic intermediates.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Schematic representation of the overall catalytic reaction of the Baeyer-Villiger monooxygenases with reference to PAMO (mainly based on the kinetic analysis by Sheng et al. (7) of cyclohexanone monooxygenase). The atomic numbering of the flavin ring is shown on the left (corresponding to the initial step of the reaction).
Figure 4.
Fig. 4. Stereo view of the flavin-binding site. The orientation is approximately the same as that of Fig. 3. The flavin has a planar conformation although its N10 atom exhibits a considerable degree of pyramidalization, which positions the C1 atom of the ribityl chain out of the flavin plane. Carbons are shown in black, oxygens are shown in red, and nitrogens are shown in blue. Ordered water molecules are shown as red spheres. H-bond interactions are outlined by the dashed lines.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20939006 F.Secundo, S.Fialà, M.W.Fraaije, G.de Gonzalo, M.Meli, F.Zambianchi, and G.Ottolina (2011).
Effects of water miscible organic solvents on the activity and conformation of the Baeyer-Villiger monooxygenases from Thermobifida fusca and Acinetobacter calcoaceticus: a comparative study.
  Biotechnol Bioeng, 108, 491-499.  
21527346 H.J.Cho, H.Y.Cho, K.J.Kim, M.H.Kim, S.W.Kim, and B.S.Kang (2011).
Structural and functional analysis of bacterial flavin-containing monooxygenase reveals its ping-pong-type reaction mechanism.
  J Struct Biol, 175, 39-48.
PDB codes: 2xve 2xvf 2xvh 2xvi 2xvj
19915006 B.N.Webb, J.W.Ballinger, E.Kim, S.M.Belchik, K.S.Lam, B.Youn, M.S.Nissen, L.Xun, and C.Kang (2010).
Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:FAD oxidoreductase (TftC) of Burkholderia cepacia AC1100.
  J Biol Chem, 285, 2014-2027.
PDB codes: 3hwc 3k86 3k87 3k88
21080396 D.J.Opperman, and M.T.Reetz (2010).
Towards practical Baeyer-Villiger-monooxygenases: design of cyclohexanone monooxygenase mutants with enhanced oxidative stability.
  Chembiochem, 11, 2589-2596.  
20936617 G.de Gonzalo, M.D.Mihovilovic, and M.W.Fraaije (2010).
Recent developments in the application of Baeyer-Villiger monooxygenases as biocatalysts.
  Chembiochem, 11, 2208-2231.  
20703875 H.M.Dudek, D.E.Torres Pazmiño, C.Rodríguez, G.de Gonzalo, V.Gotor, and M.W.Fraaije (2010).
Investigating the coenzyme specificity of phenylacetone monooxygenase from Thermobifida fusca.
  Appl Microbiol Biotechnol, 88, 1135-1143.  
20665587 J.Rehdorf, M.D.Mihovilovic, M.W.Fraaije, and U.T.Bornscheuer (2010).
Enzymatic synthesis of enantiomerically pure beta-amino ketones, beta-amino esters, and beta-amino alcohols with Baeyer-Villiger monooxygenases.
  Chemistry, 16, 9525-9535.  
20689951 K.Geitner, J.Rehdorf, R.Snajdrova, and U.T.Bornscheuer (2010).
Scale-up of Baeyer-Villiger monooxygenase-catalyzed synthesis of enantiopure compounds.
  Appl Microbiol Biotechnol, 88, 1087-1093.  
20869867 S.Lutz (2010).
Beyond directed evolution--semi-rational protein engineering and design.
  Curr Opin Biotechnol, 21, 734-743.  
19485417 J.Jiang, C.N.Tetzlaff, S.Takamatsu, M.Iwatsuki, M.Komatsu, H.Ikeda, and D.E.Cane (2009).
Genome mining in Streptomyces avermitilis: A biochemical Baeyer-Villiger reaction and discovery of a new branch of the pentalenolactone family tree.
  Biochemistry, 48, 6431-6440.  
19251889 J.Rehdorf, C.L.Zimmer, and U.T.Bornscheuer (2009).
Cloning, expression, characterization, and biocatalytic investigation of the 4-hydroxyacetophenone monooxygenase from Pseudomonas putida JD1.
  Appl Environ Microbiol, 75, 3106-3114.  
19839620 J.T.Whitteck, R.M.Cicchillo, and W.A.van der Donk (2009).
Hydroperoxylation by hydroxyethylphosphonate dioxygenase.
  J Am Chem Soc, 131, 16225-16232.  
19364090 M.P.Beam, M.A.Bosserman, N.Noinaj, M.Wehenkel, and J.Rohr (2009).
Crystal structure of Baeyer-Villiger monooxygenase MtmOIV, the key enzyme of the mithramycin biosynthetic pathway .
  Biochemistry, 48, 4476-4487.
PDB code: 3fmw
19321370 M.S.Motika, J.Zhang, X.Zheng, K.Riedler, and J.R.Cashman (2009).
Novel variants of the human flavin-containing monooxygenase 3 (FMO3) gene associated with trimethylaminuria.
  Mol Genet Metab, 97, 128-135.  
19420133 S.K.Krueger, M.C.Henderson, L.K.Siddens, J.E.VanDyke, A.D.Benninghoff, P.A.Karplus, B.Furnes, D.Schlenk, and D.E.Williams (2009).
Characterization of sulfoxygenation and structural implications of human flavin-containing monooxygenase isoform 2 (FMO2.1) variants S195L and N413K.
  Drug Metab Dispos, 37, 1785-1791.  
19714327 Y.C.Park, C.E.Shaffer, and G.N.Bennett (2009).
Microbial formation of esters.
  Appl Microbiol Biotechnol, 85, 13-25.  
18443301 A.Alfieri, E.Malito, R.Orru, M.W.Fraaije, and A.Mattevi (2008).
Revealing the moonlighting role of NADP in the structure of a flavin-containing monooxygenase.
  Proc Natl Acad Sci U S A, 105, 6572-6577.
PDB codes: 2vq7 2vqb
18719900 A.Kirschner, and U.T.Bornscheuer (2008).
Directed evolution of a Baeyer-Villiger monooxygenase to enhance enantioselectivity.
  Appl Microbiol Biotechnol, 81, 465-472.  
18288667 A.Taglieber, F.Schulz, F.Hollmann, M.Rusek, and M.T.Reetz (2008).
Light-driven biocatalytic oxidation and reduction reactions: scope and limitations.
  Chembiochem, 9, 565-572.  
18293011 K.Fujino, Y.Matsuda, K.Ozawa, T.Nishimura, T.Koshiba, M.W.Fraaije, and H.Sekiguchi (2008).
NARROW LEAF 7 controls leaf shape mediated by auxin in rice.
  Mol Genet Genomics, 279, 499-507.  
18357557 M.D.Mihovilovic, B.Grötzl, W.Kandioller, A.Muskotál, R.Snajdrova, F.Rudroff, and H.Spreitzer (2008).
Recombinant whole-cell mediated baeyer-villiger oxidation of perhydropyran-type ketones.
  Chem Biodivers, 5, 490-498.  
18605677 M.D.Mihovilovic, P.Kapitán, and P.Kapitánová (2008).
Regiodivergent Baeyer-Villiger oxidation of fused ketones by recombinant whole-cell biocatalysts.
  ChemSusChem, 1, 143-148.  
18502868 M.J.Moonen, N.M.Kamerbeek, A.H.Westphal, S.A.Boeren, D.B.Janssen, M.W.Fraaije, and W.J.van Berkel (2008).
Elucidation of the 4-hydroxyacetophenone catabolic pathway in Pseudomonas fluorescens ACB.
  J Bacteriol, 190, 5190-5198.  
17227849 A.Alfieri, F.Fersini, N.Ruangchan, M.Prongjit, P.Chaiyen, and A.Mattevi (2007).
Structure of the monooxygenase component of a two-component flavoprotein monooxygenase.
  Proc Natl Acad Sci U S A, 104, 1177-1182.
PDB codes: 2jbr 2jbs 2jbt
16944127 A.Kirschner, J.Altenbuchner, and U.T.Bornscheuer (2007).
Cloning, expression, and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E. coli.
  Appl Microbiol Biotechnol, 73, 1065-1072.  
17530181 J.Rehdorf, A.Kirschner, and U.T.Bornscheuer (2007).
Cloning, expression and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440.
  Biotechnol Lett, 29, 1393-1398.  
17142393 R.P.Hausinger (2007).
New insights into acetone metabolism.
  J Bacteriol, 189, 671-673.  
17158667 S.R.Kane, A.Y.Chakicherla, P.S.Chain, R.Schmidt, M.W.Shin, T.C.Legler, K.M.Scow, F.W.Larimer, S.M.Lucas, P.M.Richardson, and K.R.Hristova (2007).
Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1.
  J Bacteriol, 189, 1931-1945.  
17071761 T.Kotani, H.Yurimoto, N.Kato, and Y.Sakai (2007).
Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5.
  J Bacteriol, 189, 886-893.  
17275397 V.Joosten, and W.J.van Berkel (2007).
Flavoenzymes.
  Curr Opin Chem Biol, 11, 195-202.  
16557313 D.Bonsor, S.F.Butz, J.Solomons, S.Grant, I.J.Fairlamb, M.J.Fogg, and G.Grogan (2006).
Ligation independent cloning (LIC) as a rapid route to families of recombinant biocatalysts from sequenced prokaryotic genomes.
  Org Biomol Chem, 4, 1252-1260.  
16597975 H.Iwaki, S.Wang, S.Grosse, H.Bergeron, A.Nagahashi, J.Lertvorachon, J.Yang, Y.Konishi, Y.Hasegawa, and P.C.Lau (2006).
Pseudomonad cyclopentadecanone monooxygenase displaying an uncommon spectrum of Baeyer-Villiger oxidations of cyclic ketones.
  Appl Environ Microbiol, 72, 2707-2720.  
17070680 L.De Colibus, and A.Mattevi (2006).
New frontiers in structural flavoenzymology.
  Curr Opin Struct Biol, 16, 722-728.  
16777962 S.Eswaramoorthy, J.B.Bonanno, S.K.Burley, and S.Swaminathan (2006).
Mechanism of action of a flavin-containing monooxygenase.
  Proc Natl Acad Sci U S A, 103, 9832-9837.
PDB codes: 1vqw 2gv8 2gvc
16751499 T.Leungsakul, G.R.Johnson, and T.K.Wood (2006).
Protein engineering of the 4-methyl-5-nitrocatechol monooxygenase from Burkholderia sp. strain DNT for enhanced degradation of nitroaromatics.
  Appl Environ Microbiol, 72, 3933-3939.  
  16511225 C.Wang, M.Gibson, J.Rohr, and M.A.Oliveira (2005).
Crystallization and X-ray diffraction properties of Baeyer-Villiger monooxygenase MtmOIV from the mithramycin biosynthetic pathway in Streptomyces argillaceus.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 1023-1026.  
  16542025 F.Schulz, F.Leca, F.Hollmann, and M.T.Reetz (2005).
Towards practical biocatalytic Baeyer-Villiger reactions: applying a thermostable enzyme in the gram-scale synthesis of optically-active lactones in a two-liquid-phase system.
  Beilstein J Org Chem, 1, 10.  
16027924 G.de Gonzalo, G.Ottolina, G.Carrea, and M.W.Fraaije (2005).
[Cp*Rh(bpy)(H2O)]2+ as a coenzyme substitute in enzymatic oxidations catalyzed by Baeyer-Villiger monooxygenases.
  Chem Commun (Camb), (), 3724-3726.  
15922018 S.K.Krueger, and D.E.Williams (2005).
Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism.
  Pharmacol Ther, 106, 357-387.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer