|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transferase/oncoprotein
|
 |
|
Title:
|
 |
Structure of a human p110alpha/p85alpha complex
|
|
Structure:
|
 |
Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha isoform. Chain: a. Synonym: pi3-kinase p110 subunit alpha, ptdins-3- kinase p110, pi3k. Engineered: yes. Phosphatidylinositol 3-kinase regulatory subunit alpha. Chain: b. Fragment: unp residues 322-600. Synonym: pi3-kinase p85 subunit alpha, ptdins-3-kinase p85-alpha,
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Gene: pik3ca. Expressed in: spodoptera frugiperda. Expression_system_taxid: 7108. Gene: pik3r1, grb1.
|
|
Resolution:
|
 |
|
3.05Å
|
R-factor:
|
0.267
|
R-free:
|
0.323
|
|
|
Authors:
|
 |
C.Huang,S.B.Gabelli,L.M.Amzel
|
Key ref:
|
 |
C.H.Huang
et al.
(2007).
The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations.
Science,
318,
1744-1748.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
20-Sep-07
|
Release date:
|
25-Dec-07
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class 2:
|
 |
Chain A:
E.C.2.7.1.137
- phosphatidylinositol 3-kinase.
|
|
 |
 |
 |
 |
 |

Pathway:
|
 |
1-Phosphatidyl-myo-inositol Metabolism
|
 |
 |
 |
 |
 |
Reaction:
|
 |
a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol) + ATP = a 1,2-diacyl- sn-glycero-3-phospho-(1D-myo-inositol-3-phosphate) + ADP + H+
|
 |
 |
 |
 |
 |
1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol)
|
+
|
ATP
|
=
|
1,2-diacyl- sn-glycero-3-phospho-(1D-myo-inositol-3-phosphate)
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 3:
|
 |
Chain A:
E.C.2.7.1.153
- phosphatidylinositol-4,5-bisphosphate 3-kinase.
|
|
 |
 |
 |
 |
 |

Pathway:
|
 |
|
 |
 |
 |
 |
 |
Reaction:
|
 |
a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-3,4,5- trisphosphate) + ADP + H+
|
 |
 |
 |
 |
 |
1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate)
|
+
|
ATP
|
=
|
1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-3,4,5- trisphosphate)
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 4:
|
 |
Chain A:
E.C.2.7.11.1
- non-specific serine/threonine protein kinase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
|
1.
|
L-seryl-[protein] + ATP = O-phospho-L-seryl-[protein] + ADP + H+
|
|
2.
|
L-threonyl-[protein] + ATP = O-phospho-L-threonyl-[protein] + ADP + H+
|
|
 |
 |
 |
 |
 |
L-seryl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-seryl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
L-threonyl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-threonyl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 5:
|
 |
Chain B:
E.C.?
|
|
 |
 |
 |
 |
 |
 |
 |
|
Note, where more than one E.C. class is given (as above), each may
correspond to a different protein domain or, in the case of polyprotein
precursors, to a different mature protein.
|
|
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Science
318:1744-1748
(2007)
|
|
PubMed id:
|
|
|
|
|
| |
|
The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations.
|
|
C.H.Huang,
D.Mandelker,
O.Schmidt-Kittler,
Y.Samuels,
V.E.Velculescu,
K.W.Kinzler,
B.Vogelstein,
S.B.Gabelli,
L.M.Amzel.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
PIK3CA, one of the two most frequently mutated oncogenes in human tumors, codes
for p110alpha, the catalytic subunit of a phosphatidylinositol 3-kinase, isoform
alpha (PI3Kalpha, p110alpha/p85). Here, we report a 3.0 angstrom resolution
structure of a complex between p110alpha and a polypeptide containing the
p110alpha-binding domains of p85alpha, a protein required for its enzymatic
activity. The structure shows that many of the mutations occur at residues lying
at the interfaces between p110alpha and p85alpha or between the kinase domain of
p110alpha and other domains within the catalytic subunit. Disruptions of these
interactions are likely to affect the regulation of kinase activity by p85 or
the catalytic activity of the enzyme, respectively. In addition to providing new
insights about the structure of PI3Kalpha, these results suggest specific
mechanisms for the effect of oncogenic mutations in p110alpha and p85alpha.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Fig. 2. Mutations in PIK3CA identified in human cancers. (A)
Distribution of representative mutations within p110 .
Residues mutated in cancers are shown as CPK models. The start
of the cancer-associated truncation (residue 571 of p85) is
shown by the red arrowhead. (B) Electron density map of Arg^38
and Arg^88 cancer mutations shown at the interface between the
ABD and the kinase domains. (C) Close-up view of the interface
of the C2 domain of p110 with iSH2 of p85. The stick
representation of the Asn^345 mutation of C2 and the residues
within iSH2 (Asp^560 and Asn^564) with which it may interact are
shown. (D) Mutations in the helical domain (Glu^542, Glu^545,
and Gln^546), located at the interface with nSH2 (orange
surface). (E) Mutations of the kinase domain (Met^1043 and
His^1047), located near the C-terminal end of the activation
loop, are shown in light green. The part of the activation loop
between residues 941 and 950 could not be traced (see text).
|
 |
Figure 3.
Fig. 3. Model of membrane interaction. (A) Positively charged
residues on the surface of iSH2 domain of p85 (red) and loops
of the C2 and kinase domains of p110 (black) are
proposed to contact the negatively charged phospholipid bilayer.
(B) Model of p110 /niSH2 bound to
Ras and its proposed orientation with respect to the lipid
membrane.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the AAAs:
Science
(2007,
318,
1744-1748)
copyright 2007.
|
|
| |
Figures were
selected
by the author.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
B.Vanhaesebroeck,
L.Stephens,
and
P.Hawkins
(2012).
PI3K signalling: the path to discovery and understanding.
|
| |
Nat Rev Mol Cell Biol,
13,
195-203.
|
 |
|
|
|
|
 |
A.Hoffman,
A.J.Lazar,
R.E.Pollock,
and
D.Lev
(2011).
New frontiers in the treatment of liposarcoma, a therapeutically resistant malignant cohort.
|
| |
Drug Resist Updat,
14,
52-66.
|
 |
|
|
|
|
 |
J.A.Pinson,
O.Schmidt-Kittler,
J.Zhu,
I.G.Jennings,
K.W.Kinzler,
B.Vogelstein,
D.K.Chalmers,
and
P.E.Thompson
(2011).
Thiazolidinedione-Based PI3Kα Inhibitors: An Analysis of Biochemical and Virtual Screening Methods.
|
| |
ChemMedChem,
6,
514-522.
|
 |
|
|
|
|
 |
L.Stephens,
and
P.Hawkins
(2011).
Signalling via class IA PI3Ks.
|
| |
Adv Enzyme Regul,
51,
27-36.
|
 |
|
|
|
|
 |
S.A.Wander,
B.T.Hennessy,
and
J.M.Slingerland
(2011).
Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy.
|
| |
J Clin Invest,
121,
1231-1241.
|
 |
|
|
|
|
 |
S.B.Gabelli,
K.C.Duong-Ly,
E.T.Brower,
and
L.M.Amzel
(2011).
Capitalizing on tumor genotyping: towards the design of mutation specific inhibitors of phosphoinsitide-3-kinase.
|
| |
Adv Enzyme Regul,
51,
273-279.
|
 |
|
|
|
|
 |
T.Mukohara
(2011).
Mechanisms of resistance to anti-human epidermal growth factor receptor 2 agents in breast cancer.
|
| |
Cancer Sci,
102,
1-8.
|
 |
|
|
|
|
 |
A.Berndt,
S.Miller,
O.Williams,
D.D.Le,
B.T.Houseman,
J.I.Pacold,
F.Gorrec,
W.C.Hon,
Y.Liu,
C.Rommel,
P.Gaillard,
T.Rückle,
M.K.Schwarz,
K.M.Shokat,
J.P.Shaw,
and
R.L.Williams
(2010).
The p110 delta structure: mechanisms for selectivity and potency of new PI(3)K inhibitors.
|
| |
Nat Chem Biol,
6,
117-124.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Chakrabarty,
B.N.Rexer,
S.E.Wang,
R.S.Cook,
J.A.Engelman,
and
C.L.Arteaga
(2010).
H1047R phosphatidylinositol 3-kinase mutant enhances HER2-mediated transformation by heregulin production and activation of HER3.
|
| |
Oncogene,
29,
5193-5203.
|
 |
|
|
|
|
 |
B.G.Hale,
P.S.Kerry,
D.Jackson,
B.L.Precious,
A.Gray,
M.J.Killip,
R.E.Randall,
and
R.J.Russell
(2010).
Structural insights into phosphoinositide 3-kinase activation by the influenza A virus NS1 protein.
|
| |
Proc Natl Acad Sci U S A,
107,
1954-1959.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.M.Coughlin,
D.S.Johnston,
A.Strahs,
M.E.Burczynski,
S.Bacus,
J.Hill,
J.M.Feingold,
C.Zacharchuk,
and
A.Berkenblit
(2010).
Approaches and limitations of phosphatidylinositol-3-kinase pathway activation status as a predictive biomarker in the clinical development of targeted therapy.
|
| |
Breast Cancer Res Treat,
124,
1.
|
 |
|
|
|
|
 |
D.Hägerstrand,
M.B.Lindh,
C.Peña,
C.Garcia-Echeverria,
M.Nistér,
F.Hofmann,
and
A.Ostman
(2010).
PI3K/PTEN/Akt pathway status affects the sensitivity of high-grade glioma cell cultures to the insulin-like growth factor-1 receptor inhibitor NVP-AEW541.
|
| |
Neuro Oncol,
12,
967-975.
|
 |
|
|
|
|
 |
H.A.Dbouk,
H.Pang,
A.Fiser,
and
J.M.Backer
(2010).
A biochemical mechanism for the oncogenic potential of the p110beta catalytic subunit of phosphoinositide 3-kinase.
|
| |
Proc Natl Acad Sci U S A,
107,
19897-19902.
|
 |
|
|
|
|
 |
J.Barretina,
B.S.Taylor,
S.Banerji,
A.H.Ramos,
M.Lagos-Quintana,
P.L.Decarolis,
K.Shah,
N.D.Socci,
B.A.Weir,
A.Ho,
D.Y.Chiang,
B.Reva,
C.H.Mermel,
G.Getz,
Y.Antipin,
R.Beroukhim,
J.E.Major,
C.Hatton,
R.Nicoletti,
M.Hanna,
T.Sharpe,
T.J.Fennell,
K.Cibulskis,
R.C.Onofrio,
T.Saito,
N.Shukla,
C.Lau,
S.Nelander,
S.J.Silver,
C.Sougnez,
A.Viale,
W.Winckler,
R.G.Maki,
L.A.Garraway,
A.Lash,
H.Greulich,
D.E.Root,
W.R.Sellers,
G.K.Schwartz,
C.R.Antonescu,
E.S.Lander,
H.E.Varmus,
M.Ladanyi,
C.Sander,
M.Meyerson,
and
S.Singer
(2010).
Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy.
|
| |
Nat Genet,
42,
715-721.
|
 |
|
|
|
|
 |
J.L.Boormans,
H.Korsten,
A.C.Ziel-van der Made,
G.J.van Leenders,
P.C.Verhagen,
and
J.Trapman
(2010).
E17K substitution in AKT1 in prostate cancer.
|
| |
Br J Cancer,
102,
1491-1494.
|
 |
|
|
|
|
 |
K.D.Courtney,
R.B.Corcoran,
and
J.A.Engelman
(2010).
The PI3K pathway as drug target in human cancer.
|
| |
J Clin Oncol,
28,
1075-1083.
|
 |
|
|
|
|
 |
K.I.Sen,
H.Wu,
J.M.Backer,
and
G.J.Gerfen
(2010).
The structure of p85ni in class IA phosphoinositide 3-kinase exhibits interdomain disorder.
|
| |
Biochemistry,
49,
2159-2166.
|
 |
|
|
|
|
 |
L.Catasus,
E.D'Angelo,
C.Pons,
I.Espinosa,
and
J.Prat
(2010).
Expression profiling of 22 genes involved in the PI3K-AKT pathway identifies two subgroups of high-grade endometrial carcinomas with different molecular alterations.
|
| |
Mod Pathol,
23,
694-702.
|
 |
|
|
|
|
 |
L.Zhao,
and
P.K.Vogt
(2010).
Hot-spot mutations in p110alpha of phosphatidylinositol 3-kinase (pI3K): differential interactions with the regulatory subunit p85 and with RAS.
|
| |
Cell Cycle,
9,
596-600.
|
 |
|
|
|
|
 |
M.Sun,
P.Hillmann,
B.T.Hofmann,
J.R.Hart,
and
P.K.Vogt
(2010).
Cancer-derived mutations in the regulatory subunit p85alpha of phosphoinositide 3-kinase function through the catalytic subunit p110alpha.
|
| |
Proc Natl Acad Sci U S A,
107,
15547-15552.
|
 |
|
|
|
|
 |
P.Workman,
and
R.L.van Montfort
(2010).
PI(3) kinases: revealing the delta lady.
|
| |
Nat Chem Biol,
6,
82-83.
|
 |
|
|
|
|
 |
S.B.Gabelli,
D.Mandelker,
O.Schmidt-Kittler,
B.Vogelstein,
and
L.M.Amzel
(2010).
Somatic mutations in PI3Kalpha: structural basis for enzyme activation and drug design.
|
| |
Biochim Biophys Acta,
1804,
533-540.
|
 |
|
|
|
|
 |
S.Carvalho,
and
F.Schmitt
(2010).
Potential role of PI3K inhibitors in the treatment of breast cancer.
|
| |
Future Oncol,
6,
1251-1263.
|
 |
|
|
|
|
 |
S.Miller,
B.Tavshanjian,
A.Oleksy,
O.Perisic,
B.T.Houseman,
K.M.Shokat,
and
R.L.Williams
(2010).
Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34.
|
| |
Science,
327,
1638-1642.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Li,
Y.Wang,
and
F.Zhang
(2010).
Pharmacophore modeling and 3D-QSAR analysis of phosphoinositide 3-kinase p110alpha inhibitors.
|
| |
J Mol Model,
16,
1449-1460.
|
 |
|
|
|
|
 |
Z.Saridaki,
V.Georgoulias,
and
J.Souglakos
(2010).
Mechanisms of resistance to anti-EGFR monoclonal antibody treatment in metastatic colorectal cancer.
|
| |
World J Gastroenterol,
16,
1177-1187.
|
 |
|
|
|
|
 |
Z.Sun,
Z.Li,
and
Y.Zhang
(2010).
Adult testicular dysgenesis of Inhba conditional knockout mice may also be caused by disruption of cross-talk between Leydig cells and germ cells.
|
| |
Proc Natl Acad Sci U S A,
107,
E135; author reply E136.
|
 |
|
|
|
|
 |
B.S.Jaiswal,
V.Janakiraman,
N.M.Kljavin,
S.Chaudhuri,
H.M.Stern,
W.Wang,
Z.Kan,
H.A.Dbouk,
B.A.Peters,
P.Waring,
T.Dela Vega,
D.M.Kenski,
K.K.Bowman,
M.Lorenzo,
H.Li,
J.Wu,
Z.Modrusan,
J.Stinson,
M.Eby,
P.Yue,
J.S.Kaminker,
F.J.de Sauvage,
J.M.Backer,
and
S.Seshagiri
(2009).
Somatic mutations in p85alpha promote tumorigenesis through class IA PI3K activation.
|
| |
Cancer Cell,
16,
463-474.
|
 |
|
|
|
|
 |
C.García-Echeverría
(2009).
Protein and lipid kinase inhibitors as targeted anticancer agents of the Ras/Raf/MEK and PI3K/PKB pathways.
|
| |
Purinergic Signal,
5,
117-125.
|
 |
|
|
|
|
 |
C.Martin-Fernandez,
J.Bales,
C.Hodgkinson,
A.Welman,
M.J.Welham,
C.Dive,
and
C.J.Morrow
(2009).
Blocking phosphoinositide 3-kinase activity in colorectal cancer cells reduces proliferation but does not increase apoptosis alone or in combination with cytotoxic drugs.
|
| |
Mol Cancer Res,
7,
955-965.
|
 |
|
|
|
|
 |
C.Zhang,
N.Yang,
C.H.Yang,
H.S.Ding,
C.Luo,
Y.Zhang,
M.J.Wu,
X.W.Zhang,
X.Shen,
H.L.Jiang,
L.H.Meng,
and
J.Ding
(2009).
S9, a novel anticancer agent, exerts its anti-proliferative activity by interfering with both PI3K-Akt-mTOR signaling and microtubule cytoskeleton.
|
| |
PLoS ONE,
4,
e4881.
|
 |
|
|
|
|
 |
D.A.Fruman,
and
G.Bismuth
(2009).
Fine tuning the immune response with PI3K.
|
| |
Immunol Rev,
228,
253-272.
|
 |
|
|
|
|
 |
D.Mandelker,
S.B.Gabelli,
O.Schmidt-Kittler,
J.Zhu,
I.Cheong,
C.H.Huang,
K.W.Kinzler,
B.Vogelstein,
and
L.M.Amzel
(2009).
A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane.
|
| |
Proc Natl Acad Sci U S A,
106,
16996-17001.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Hirsch,
L.Braccini,
E.Ciraolo,
F.Morello,
and
A.Perino
(2009).
Twice upon a time: PI3K's secret double life exposed.
|
| |
Trends Biochem Sci,
34,
244-248.
|
 |
|
|
|
|
 |
G.Fuentes,
and
A.Valencia
(2009).
Ras classical effectors: new tales from in silico complexes.
|
| |
Trends Biochem Sci,
34,
533-539.
|
 |
|
|
|
|
 |
G.Liang,
G.Bansal,
Z.Xie,
and
K.M.Druey
(2009).
RGS16 inhibits breast cancer cell growth by mitigating phosphatidylinositol 3-kinase signaling.
|
| |
J Biol Chem,
284,
21719-21727.
|
 |
|
|
|
|
 |
H.Lempiäinen,
and
T.D.Halazonetis
(2009).
Emerging common themes in regulation of PIKKs and PI3Ks.
|
| |
EMBO J,
28,
3067-3073.
|
 |
|
|
|
|
 |
H.Wu,
S.C.Shekar,
R.J.Flinn,
M.El-Sibai,
B.S.Jaiswal,
K.I.Sen,
V.Janakiraman,
S.Seshagiri,
G.J.Gerfen,
M.E.Girvin,
and
J.M.Backer
(2009).
Regulation of Class IA PI 3-kinases: C2 domain-iSH2 domain contacts inhibit p85/p110alpha and are disrupted in oncogenic p85 mutants.
|
| |
Proc Natl Acad Sci U S A,
106,
20258-20263.
|
 |
|
|
|
|
 |
J.A.Engelman
(2009).
Targeting PI3K signalling in cancer: opportunities, challenges and limitations.
|
| |
Nat Rev Cancer,
9,
550-562.
|
 |
|
|
|
|
 |
J.Souglakos,
J.Philips,
R.Wang,
S.Marwah,
M.Silver,
M.Tzardi,
J.Silver,
S.Ogino,
S.Hooshmand,
E.Kwak,
E.Freed,
J.A.Meyerhardt,
Z.Saridaki,
V.Georgoulias,
D.Finkelstein,
C.S.Fuchs,
M.H.Kulke,
and
R.A.Shivdasani
(2009).
Prognostic and predictive value of common mutations for treatment response and survival in patients with metastatic colorectal cancer.
|
| |
Br J Cancer,
101,
465-472.
|
 |
|
|
|
|
 |
J.Wang,
A.Rajput,
J.L.Kan,
R.Rose,
X.Q.Liu,
K.Kuropatwinski,
J.Hauser,
A.Beko,
I.Dominquez,
E.A.Sharratt,
L.Brattain,
C.Levea,
F.L.Sun,
D.M.Keane,
N.W.Gibson,
and
M.G.Brattain
(2009).
Knockdown of Ron kinase inhibits mutant phosphatidylinositol 3-kinase and reduces metastasis in human colon carcinoma.
|
| |
J Biol Chem,
284,
10912-10922.
|
 |
|
|
|
|
 |
L.Catasus,
A.Gallardo,
M.Cuatrecasas,
and
J.Prat
(2009).
Concomitant PI3K-AKT and p53 alterations in endometrial carcinomas are associated with poor prognosis.
|
| |
Mod Pathol,
22,
522-529.
|
 |
|
|
|
|
 |
M.A.Ali,
and
T.Sjöblom
(2009).
Molecular pathways in tumor progression: from discovery to functional understanding.
|
| |
Mol Biosyst,
5,
902-908.
|
 |
|
|
|
|
 |
M.Niedermeier,
B.T.Hennessy,
Z.A.Knight,
M.Henneberg,
J.Hu,
A.V.Kurtova,
W.G.Wierda,
M.J.Keating,
K.M.Shokat,
and
J.A.Burger
(2009).
Isoform-selective phosphoinositide 3'-kinase inhibitors inhibit CXCR4 signaling and overcome stromal cell-mediated drug resistance in chronic lymphocytic leukemia: a novel therapeutic approach.
|
| |
Blood,
113,
5549-5557.
|
 |
|
|
|
|
 |
N.Chalhoub,
and
S.J.Baker
(2009).
PTEN and the PI3-kinase pathway in cancer.
|
| |
Annu Rev Pathol,
4,
127-150.
|
 |
|
|
|
|
 |
P.K.Mankoo,
S.Sukumar,
and
R.Karchin
(2009).
PIK3CA somatic mutations in breast cancer: Mechanistic insights from Langevin dynamics simulations.
|
| |
Proteins,
75,
499-508.
|
 |
|
|
|
|
 |
P.Liu,
H.Cheng,
T.M.Roberts,
and
J.J.Zhao
(2009).
Targeting the phosphoinositide 3-kinase pathway in cancer.
|
| |
Nat Rev Drug Discov,
8,
627-644.
|
 |
|
|
|
|
 |
R.L.van Montfort,
and
P.Workman
(2009).
Structure-based design of molecular cancer therapeutics.
|
| |
Trends Biotechnol,
27,
315-328.
|
 |
|
|
|
|
 |
Y.Yu,
R.Anjum,
K.Kubota,
J.Rush,
J.Villen,
and
S.P.Gygi
(2009).
A site-specific, multiplexed kinase activity assay using stable-isotope dilution and high-resolution mass spectrometry.
|
| |
Proc Natl Acad Sci U S A,
106,
11606-11611.
|
 |
|
|
|
|
 |
C.Garcia-Echeverria,
and
W.R.Sellers
(2008).
Drug discovery approaches targeting the PI3K/Akt pathway in cancer.
|
| |
Oncogene,
27,
5511-5526.
|
 |
|
|
|
|
 |
E.Hirsch,
E.Ciraolo,
A.Ghigo,
and
C.Costa
(2008).
Taming the PI3K team to hold inflammation and cancer at bay.
|
| |
Pharmacol Ther,
118,
192-205.
|
 |
|
|
|
|
 |
E.Hodis,
J.Prilusky,
E.Martz,
I.Silman,
J.Moult,
and
J.L.Sussman
(2008).
Proteopedia - a scientific 'wiki' bridging the rift between three-dimensional structure and function of biomacromolecules.
|
| |
Genome Biol,
9,
R121.
|
 |
|
|
|
|
 |
E.R.Zunder,
Z.A.Knight,
B.T.Houseman,
B.Apsel,
and
K.M.Shokat
(2008).
Discovery of drug-resistant and drug-sensitizing mutations in the oncogenic PI3K isoform p110 alpha.
|
| |
Cancer Cell,
14,
180-192.
|
 |
|
|
|
|
 |
H.Yamamoto,
H.Shigematsu,
M.Nomura,
W.W.Lockwood,
M.Sato,
N.Okumura,
J.Soh,
M.Suzuki,
I.I.Wistuba,
K.M.Fong,
H.Lee,
S.Toyooka,
H.Date,
W.L.Lam,
J.D.Minna,
and
A.F.Gazdar
(2008).
PIK3CA mutations and copy number gains in human lung cancers.
|
| |
Cancer Res,
68,
6913-6921.
|
 |
|
|
|
|
 |
J.P.Gustin,
D.P.Cosgrove,
and
B.H.Park
(2008).
The PIK3CA gene as a mutated target for cancer therapy.
|
| |
Curr Cancer Drug Targets,
8,
733-740.
|
 |
|
|
|
|
 |
L.M.Amzel,
C.H.Huang,
D.Mandelker,
C.Lengauer,
S.B.Gabelli,
and
B.Vogelstein
(2008).
Structural comparisons of class I phosphoinositide 3-kinases.
|
| |
Nat Rev Cancer,
8,
665-669.
|
 |
|
|
|
|
 |
L.M.Ballou,
and
R.Z.Lin
(2008).
Rapamycin and mTOR kinase inhibitors.
|
| |
J Chem Biol,
1,
27-36.
|
 |
|
|
|
|
 |
L.Zhao,
and
P.K.Vogt
(2008).
Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms.
|
| |
Proc Natl Acad Sci U S A,
105,
2652-2657.
|
 |
|
|
|
|
 |
L.Zhao,
and
P.K.Vogt
(2008).
Class I PI3K in oncogenic cellular transformation.
|
| |
Oncogene,
27,
5486-5496.
|
 |
|
|
|
|
 |
M.Frazzetto,
C.Suphioglu,
J.Zhu,
O.Schmidt-Kittler,
I.G.Jennings,
S.L.Cranmer,
S.P.Jackson,
K.W.Kinzler,
B.Vogelstein,
and
P.E.Thompson
(2008).
Dissecting isoform selectivity of PI3K inhibitors: the role of non-conserved residues in the catalytic pocket.
|
| |
Biochem J,
414,
383-390.
|
 |
|
|
|
|
 |
P.K.Vogt
(2008).
Drug-resistant phosphatidylinositol 3-kinase: guidance for the preemptive strike.
|
| |
Cancer Cell,
14,
107-108.
|
 |
|
|
|
|
 |
R.McLendon,
A.Friedman,
D.Bigner,
E.G.Van Meir,
D.J.Brat,
G.M.Mastrogianakis,
J.J.Olson,
T.Mikkelsen,
N.Lehman,
K.Aldape,
W.K.Yung,
O.Bogler,
J.N.Weinstein,
S.VandenBerg,
M.Berger,
M.Prados,
D.Muzny,
M.Morgan,
S.Scherer,
A.Sabo,
L.Nazareth,
L.Lewis,
O.Hall,
Y.Zhu,
Y.Ren,
O.Alvi,
J.Yao,
A.Hawes,
S.Jhangiani,
G.Fowler,
A.San Lucas,
C.Kovar,
A.Cree,
H.Dinh,
J.Santibanez,
V.Joshi,
M.L.Gonzalez-Garay,
C.A.Miller,
A.Milosavljevic,
L.Donehower,
D.A.Wheeler,
R.A.Gibbs,
K.Cibulskis,
C.Sougnez,
T.Fennell,
S.Mahan,
J.Wilkinson,
L.Ziaugra,
R.Onofrio,
T.Bloom,
R.Nicol,
K.Ardlie,
J.Baldwin,
S.Gabriel,
E.S.Lander,
L.Ding,
R.S.Fulton,
M.D.McLellan,
J.Wallis,
D.E.Larson,
X.Shi,
R.Abbott,
L.Fulton,
K.Chen,
D.C.Koboldt,
M.C.Wendl,
R.Meyer,
Y.Tang,
L.Lin,
J.R.Osborne,
B.H.Dunford-Shore,
T.L.Miner,
K.Delehaunty,
C.Markovic,
G.Swift,
W.Courtney,
C.Pohl,
S.Abbott,
A.Hawkins,
S.Leong,
C.Haipek,
H.Schmidt,
M.Wiechert,
T.Vickery,
S.Scott,
D.J.Dooling,
A.Chinwalla,
G.M.Weinstock,
E.R.Mardis,
R.K.Wilson,
G.Getz,
W.Winckler,
R.G.Verhaak,
M.S.Lawrence,
M.O'Kelly,
J.Robinson,
G.Alexe,
R.Beroukhim,
S.Carter,
and
D.Chiang
(2008).
Comprehensive genomic characterization defines human glioblastoma genes and core pathways.
|
| |
Nature,
455,
1061-1068.
|
 |
|
|
|
|
 |
T.L.Yuan,
H.S.Choi,
A.Matsui,
C.Benes,
E.Lifshits,
J.Luo,
J.V.Frangioni,
and
L.C.Cantley
(2008).
Class 1A PI3K regulates vessel integrity during development and tumorigenesis.
|
| |
Proc Natl Acad Sci U S A,
105,
9739-9744.
|
 |
|
|
|
|
 |
T.L.Yuan,
and
L.C.Cantley
(2008).
PI3K pathway alterations in cancer: variations on a theme.
|
| |
Oncogene,
27,
5497-5510.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |