|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
234 a.a.
|
 |
|
|
|
|
|
|
|
206 a.a.
|
 |
|
|
|
|
|
|
|
208 a.a.
|
 |
|
|
|
|
|
|
|
150 a.a.
|
 |
|
|
|
|
|
|
|
101 a.a.
|
 |
|
|
|
|
|
|
|
155 a.a.
|
 |
|
|
|
|
|
|
|
138 a.a.
|
 |
|
|
|
|
|
|
|
127 a.a.
|
 |
|
|
|
|
|
|
|
98 a.a.
|
 |
|
|
|
|
|
|
|
119 a.a.
|
 |
|
|
|
|
|
|
|
124 a.a.
|
 |
|
|
|
|
|
|
|
125 a.a.
|
 |
|
|
|
|
|
|
|
60 a.a.
|
 |
|
|
|
|
|
|
|
88 a.a.
|
 |
|
|
|
|
|
|
|
83 a.a.
|
 |
|
|
|
|
|
|
|
104 a.a.
|
 |
|
|
|
|
|
|
|
73 a.a.
|
 |
|
|
|
|
|
|
|
80 a.a.
|
 |
|
|
|
|
|
|
|
99 a.a.
|
 |
|
|
|
|
|
|
|
24 a.a.
|
 |
|
|
|
|
|
|
|
365 a.a.*
|
 |
|
|
|
|
|
|
* Residue conservation analysis
|
|
* C-alpha coords only
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Ribosome
|
 |
|
Title:
|
 |
30s ribosomal subunit, trnas, mRNA and release factor rf2 fr crystal structure of the whole ribosomal complex. This file the 30s ribosomal subunit, trnas, mRNA and release factor r crystal structure of the whole ribosomal complex". The enti structure contains one 70s ribosome, trnas, mRNA and releas rf2 and is described in remark 400.
|
|
Structure:
|
 |
16s ribosomal RNA. Chain: a. P-site tRNA (phe). Chain: v. Engineered: yes. E-site tRNA (phe). Chain: w. Engineered: yes. 5'-d( Ap Up Gp Up Up Cp Up Ap Gp Ap Up Ap Cp Ap A
|
|
Source:
|
 |
Thermus thermophilus. Organism_taxid: 300852. Strain: hb8. Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562. Synthetic: yes. Other_details: chemically synthesized and gel-purified sour
|
|
Biol. unit:
|
 |
25mer (from
)
|
|
Resolution:
|
 |
|
6.76Å
|
R-factor:
|
0.341
|
R-free:
|
0.356
|
|
|
Authors:
|
 |
S.Petry,D.E.Brodersen,F.V.Murphy Iv,C.M.Dunham,M.Selmer,M.J. A.C.Kelley,V.Ramakrishnan
|
Key ref:
|
 |
S.Petry
et al.
(2005).
Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon.
Cell,
123,
1255-1266.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
12-Oct-05
|
Release date:
|
10-Jan-06
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P80371
(RS2_THET8) -
30S ribosomal protein S2
|
|
|
|
Seq: Struc:
|
 |
 |
 |
256 a.a.
234 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P80372
(RS3_THET8) -
30S ribosomal protein S3
|
|
|
|
Seq: Struc:
|
 |
 |
 |
239 a.a.
206 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P80373
(RS4_THET8) -
30S ribosomal protein S4
|
|
|
|
Seq: Struc:
|
 |
 |
 |
209 a.a.
208 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P27152
(RS5_THETH) -
30S ribosomal protein S5
|
|
|
|
Seq: Struc:
|
 |
 |
 |
162 a.a.
150 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P23370
(RS6_THETH) -
30S ribosomal protein S6
|
|
|
|
Seq: Struc:
|
 |
 |
 |
101 a.a.
101 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P17291
(RS7_THET8) -
30S ribosomal protein S7
|
|
|
|
Seq: Struc:
|
 |
 |
 |
156 a.a.
155 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P24319
(RS8_THETH) -
30S ribosomal protein S8
|
|
|
|
Seq: Struc:
|
 |
 |
 |
138 a.a.
138 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P62669
(RS9_THET2) -
30S ribosomal protein S9
|
|
|
|
Seq: Struc:
|
 |
 |
 |
128 a.a.
127 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P80375
(RS10_THETH) -
30S ribosomal protein S10
|
|
|
|
Seq: Struc:
|
 |
 |
 |
105 a.a.
98 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P80376
(RS11_THET8) -
30S ribosomal protein S11
|
|
|
|
Seq: Struc:
|
 |
 |
 |
129 a.a.
119 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
No UniProt id for this chain
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P80377
(RS13_THET8) -
30S ribosomal protein S13
|
|
|
|
Seq: Struc:
|
 |
 |
 |
126 a.a.
125 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P24320
(RS14Z_THETH) -
30S ribosomal protein S14 type Z
|
|
|
|
Seq: Struc:
|
 |
 |
 |
61 a.a.
60 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P80378
(RS15_THETH) -
30S ribosomal protein S15
|
|
|
|
Seq: Struc:
|
 |
 |
 |
89 a.a.
88 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
Q5SJH3
(RS16_THET8) -
30S ribosomal protein S16
|
|
|
|
Seq: Struc:
|
 |
 |
 |
88 a.a.
83 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P24321
(RS17_THETH) -
30S ribosomal protein S17
|
|
|
|
Seq: Struc:
|
 |
 |
 |
105 a.a.
104 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P80382
(RS18_THETH) -
30S ribosomal protein S18
|
|
|
|
Seq: Struc:
|
 |
 |
 |
88 a.a.
73 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P80381
(RS19_THETH) -
30S ribosomal protein S19
|
|
|
|
Seq: Struc:
|
 |
 |
 |
93 a.a.
80 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P62661
(RS20_THET2) -
30S ribosomal protein S20
|
|
|
|
Seq: Struc:
|
 |
 |
 |
106 a.a.
99 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Cell
123:1255-1266
(2005)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon.
|
|
S.Petry,
D.E.Brodersen,
F.V.Murphy,
C.M.Dunham,
M.Selmer,
M.J.Tarry,
A.C.Kelley,
V.Ramakrishnan.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
During protein synthesis, translational release factors catalyze the release of
the polypeptide chain when a stop codon on the mRNA reaches the A site of the
ribosome. The detailed mechanism of this process is currently unknown. We
present here the crystal structures of the ribosome from Thermus thermophilus
with RF1 and RF2 bound to their cognate stop codons, at resolutions of 5.9
Angstrom and 6.7 Angstrom, respectively. The structures reveal details of
interactions of the factors with the ribosome and mRNA, including elements
previously implicated in decoding and peptide release. They also shed light on
conformational changes both in the factors and in the ribosome during
termination. Differences seen in the interaction of RF1 and RF2 with the L11
region of the ribosome allow us to rationalize previous biochemical data.
Finally, this work demonstrates the feasibility of crystallizing ribosomes with
bound factors at a defined state along the translational pathway.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 4.
Figure 4. Interaction of RF1 with the Decoding Center of
the 30S Subunit, with Overview on the Left and Details on the
Right
|
 |
Figure 6.
Figure 6. Interaction of RF1 and RF2 with the L11 Region of
the Ribosome
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Cell
(2005,
123,
1255-1266)
copyright 2005.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
D.J.Ramrath,
H.Yamamoto,
K.Rother,
D.Wittek,
M.Pech,
T.Mielke,
J.Loerke,
P.Scheerer,
P.Ivanov,
Y.Teraoka,
O.Shpanchenko,
K.H.Nierhaus,
and
C.M.Spahn
(2012).
The complex of tmRNA-SmpB and EF-G on translocating ribosomes.
|
| |
Nature,
485,
526-529.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Selmer,
Y.G.Gao,
A.Weixlbaumer,
and
V.Ramakrishnan
(2012).
Ribosome engineering to promote new crystal forms.
|
| |
Acta Crystallogr D Biol Crystallogr,
68,
578-583.
|
 |
|
|
|
|
 |
B.P.Klaholz
(2011).
Molecular recognition and catalysis in translation termination complexes.
|
| |
Trends Biochem Sci,
36,
282-292.
|
 |
|
|
|
|
 |
H.Ramu,
N.Vázquez-Laslop,
D.Klepacki,
Q.Dai,
J.Piccirilli,
R.Micura,
and
A.S.Mankin
(2011).
Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center.
|
| |
Mol Cell,
41,
321-330.
|
 |
|
|
|
|
 |
S.Kuhlenkoetter,
W.Wintermeyer,
and
M.V.Rodnina
(2011).
Different substrate-dependent transition states in the active site of the ribosome.
|
| |
Nature,
476,
351-354.
|
 |
|
|
|
|
 |
A.Korostelev,
J.Zhu,
H.Asahara,
and
H.F.Noller
(2010).
Recognition of the amber UAG stop codon by release factor RF1.
|
| |
EMBO J,
29,
2577-2585.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.J.Young,
C.D.Edgar,
E.S.Poole,
and
W.P.Tate
(2010).
The codon specificity of eubacterial release factors is determined by the sequence and size of the recognition loop.
|
| |
RNA,
16,
1623-1633.
|
 |
|
|
|
|
 |
D.J.Young,
C.D.Edgar,
J.Murphy,
J.Fredebohm,
E.S.Poole,
and
W.P.Tate
(2010).
Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria.
|
| |
RNA,
16,
1146-1155.
|
 |
|
|
|
|
 |
H.Antonicka,
E.Ostergaard,
F.Sasarman,
W.Weraarpachai,
F.Wibrand,
A.M.Pedersen,
R.J.Rodenburg,
M.S.van der Knaap,
J.A.Smeitink,
Z.M.Chrzanowska-Lightowlers,
and
E.A.Shoubridge
(2010).
Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect.
|
| |
Am J Hum Genet,
87,
115-122.
|
 |
|
|
|
|
 |
H.Jin,
A.C.Kelley,
D.Loakes,
and
V.Ramakrishnan
(2010).
Structure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release.
|
| |
Proc Natl Acad Sci U S A,
107,
8593-8598.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.A.Dunkle,
and
J.H.Cate
(2010).
Ribosome structure and dynamics during translocation and termination.
|
| |
Annu Rev Biophys,
39,
227-244.
|
 |
|
|
|
|
 |
J.Sund,
M.Andér,
and
J.Aqvist
(2010).
Principles of stop-codon reading on the ribosome.
|
| |
Nature,
465,
947-950.
|
 |
|
|
|
|
 |
N.Vázquez-Laslop,
H.Ramu,
D.Klepacki,
K.Kannan,
and
A.S.Mankin
(2010).
The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide.
|
| |
EMBO J,
29,
3108-3117.
|
 |
|
|
|
|
 |
T.Yanagisawa,
T.Sumida,
R.Ishii,
C.Takemoto,
and
S.Yokoyama
(2010).
A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P.
|
| |
Nat Struct Mol Biol,
17,
1136-1143.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Hetrick,
K.Lee,
and
S.Joseph
(2009).
Kinetics of stop codon recognition by release factor 1.
|
| |
Biochemistry,
48,
11178-11184.
|
 |
|
|
|
|
 |
E.Diago-Navarro,
L.Mora,
R.H.Buckingham,
R.Díaz-Orejas,
and
M.Lemonnier
(2009).
Novel Escherichia coli RF1 mutants with decreased translation termination activity and increased sensitivity to the cytotoxic effect of the bacterial toxins Kid and RelE.
|
| |
Mol Microbiol,
71,
66-78.
|
 |
|
|
|
|
 |
H.S.Zaher,
and
R.Green
(2009).
Fidelity at the molecular level: lessons from protein synthesis.
|
| |
Cell,
136,
746-762.
|
 |
|
|
|
|
 |
J.C.Schuette,
F.V.Murphy,
A.C.Kelley,
J.R.Weir,
J.Giesebrecht,
S.R.Connell,
J.Loerke,
T.Mielke,
W.Zhang,
P.A.Penczek,
V.Ramakrishnan,
and
C.M.Spahn
(2009).
GTPase activation of elongation factor EF-Tu by the ribosome during decoding.
|
| |
EMBO J,
28,
755-765.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Simonović,
and
T.A.Steitz
(2009).
A structural view on the mechanism of the ribosome-catalyzed peptide bond formation.
|
| |
Biochim Biophys Acta,
1789,
612-623.
|
 |
|
|
|
|
 |
M.T.Sykes,
and
J.R.Williamson
(2009).
A complex assembly landscape for the 30S ribosomal subunit.
|
| |
Annu Rev Biophys,
38,
197-215.
|
 |
|
|
|
|
 |
S.H.Sternberg,
J.Fei,
N.Prywes,
K.A.McGrath,
and
R.L.Gonzalez
(2009).
Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling.
|
| |
Nat Struct Mol Biol,
16,
861-868.
|
 |
|
|
|
|
 |
T.J.McLellan,
E.S.Marr,
L.M.Wondrack,
T.A.Subashi,
P.A.Aeed,
S.Han,
Z.Xu,
I.K.Wang,
and
B.A.Maguire
(2009).
A systematic study of 50S ribosomal subunit purification enabling robust crystallization.
|
| |
Acta Crystallogr D Biol Crystallogr,
65,
1270-1282.
|
 |
|
|
|
|
 |
T.M.Schmeing,
and
V.Ramakrishnan
(2009).
What recent ribosome structures have revealed about the mechanism of translation.
|
| |
Nature,
461,
1234-1242.
|
 |
|
|
|
|
 |
A.Korostelev,
D.N.Ermolenko,
and
H.F.Noller
(2008).
Structural dynamics of the ribosome.
|
| |
Curr Opin Chem Biol,
12,
674-683.
|
 |
|
|
|
|
 |
A.Korostelev,
H.Asahara,
L.Lancaster,
M.Laurberg,
A.Hirschi,
J.Zhu,
S.Trakhanov,
W.G.Scott,
and
H.F.Noller
(2008).
Crystal structure of a translation termination complex formed with release factor RF2.
|
| |
Proc Natl Acad Sci U S A,
105,
19684-19689.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.V.Kononenko,
V.A.Mitkevich,
V.I.Dubovaya,
P.M.Kolosov,
A.A.Makarov,
and
L.L.Kisselev
(2008).
Role of the individual domains of translation termination factor eRF1 in GTP binding to eRF3.
|
| |
Proteins,
70,
388-393.
|
 |
|
|
|
|
 |
A.Weixlbaumer,
H.Jin,
C.Neubauer,
R.M.Voorhees,
S.Petry,
A.C.Kelley,
and
V.Ramakrishnan
(2008).
Insights into translational termination from the structure of RF2 bound to the ribosome.
|
| |
Science,
322,
953-956.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.A.Maguire,
L.M.Wondrack,
L.G.Contillo,
and
Z.Xu
(2008).
A novel chromatography system to isolate active ribosomes from pathogenic bacteria.
|
| |
RNA,
14,
188-195.
|
 |
|
|
|
|
 |
G.C.Atkinson,
S.L.Baldauf,
and
V.Hauryliuk
(2008).
Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components.
|
| |
BMC Evol Biol,
8,
290.
|
 |
|
|
|
|
 |
J.Kutner,
J.Towpik,
K.Ginalski,
and
M.Boguta
(2008).
Mitochondrial release factor in yeast: interplay of functional domains.
|
| |
Curr Genet,
53,
185-192.
|
 |
|
|
|
|
 |
J.P.Desaulniers,
Y.C.Chang,
R.Aduri,
S.C.Abeysirigunawardena,
J.SantaLucia,
and
C.S.Chow
(2008).
Pseudouridines in rRNA helix 69 play a role in loop stacking interactions.
|
| |
Org Biomol Chem,
6,
3892-3895.
|
 |
|
|
|
|
 |
J.White,
Z.Li,
R.Sardana,
J.M.Bujnicki,
E.M.Marcotte,
and
A.W.Johnson
(2008).
Bud23 methylates G1575 of 18S rRNA and is required for efficient nuclear export of pre-40S subunits.
|
| |
Mol Cell Biol,
28,
3151-3161.
|
 |
|
|
|
|
 |
K.K.Singarapu,
R.Xiao,
T.Acton,
B.Rost,
G.T.Montelione,
and
T.Szyperski
(2008).
NMR structure of the peptidyl-tRNA hydrolase domain from Pseudomonas syringae expands the structural coverage of the hydrolysis domains of class 1 peptide chain release factors.
|
| |
Proteins,
71,
1027-1031.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Beringer
(2008).
Modulating the activity of the peptidyl transferase center of the ribosome.
|
| |
RNA,
14,
795-801.
|
 |
|
|
|
|
 |
M.Laurberg,
H.Asahara,
A.Korostelev,
J.Zhu,
S.Trakhanov,
and
H.F.Noller
(2008).
Structural basis for translation termination on the 70S ribosome.
|
| |
Nature,
454,
852-857.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Simonović,
and
T.A.Steitz
(2008).
Peptidyl-CCA deacylation on the ribosome promoted by induced fit and the O3'-hydroxyl group of A76 of the unacylated A-site tRNA.
|
| |
RNA,
14,
2372-2378.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
O.Kurkcuoglu,
P.Doruker,
T.Z.Sen,
A.Kloczkowski,
and
R.L.Jernigan
(2008).
The ribosome structure controls and directs mRNA entry, translocation and exit dynamics.
|
| |
Phys Biol,
5,
046005.
|
 |
|
|
|
|
 |
S.C.Abeysirigunawardena,
and
C.S.Chow
(2008).
pH-dependent structural changes of helix 69 from Escherichia coli 23S ribosomal RNA.
|
| |
RNA,
14,
782-792.
|
 |
|
|
|
|
 |
S.Petry,
A.Weixlbaumer,
and
V.Ramakrishnan
(2008).
The termination of translation.
|
| |
Curr Opin Struct Biol,
18,
70-77.
|
 |
|
|
|
|
 |
T.A.Steitz
(2008).
A structural understanding of the dynamic ribosome machine.
|
| |
Nat Rev Mol Cell Biol,
9,
242-253.
|
 |
|
|
|
|
 |
A.Weixlbaumer,
S.Petry,
C.M.Dunham,
M.Selmer,
A.C.Kelley,
and
V.Ramakrishnan
(2007).
Crystal structure of the ribosome recycling factor bound to the ribosome.
|
| |
Nat Struct Mol Biol,
14,
733-737.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.V.Lesnyak,
J.Osipiuk,
T.Skarina,
P.V.Sergiev,
A.A.Bogdanov,
A.Edwards,
A.Savchenko,
A.Joachimiak,
and
O.A.Dontsova
(2007).
Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure.
|
| |
J Biol Chem,
282,
5880-5887.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.M.Youngman,
S.L.He,
L.J.Nikstad,
and
R.Green
(2007).
Stop codon recognition by release factors induces structural rearrangement of the ribosomal decoding center that is productive for peptide release.
|
| |
Mol Cell,
28,
533-543.
|
 |
|
|
|
|
 |
E.S.Poole,
D.J.Young,
M.E.Askarian-Amiri,
D.J.Scarlett,
and
W.P.Tate
(2007).
Accommodating the bacterial decoding release factor as an alien protein among the RNAs at the active site of the ribosome.
|
| |
Cell Res,
17,
591-607.
|
 |
|
|
|
|
 |
E.V.Ivanova,
P.M.Kolosov,
B.Birdsall,
G.Kelly,
A.Pastore,
L.L.Kisselev,
and
V.I.Polshakov
(2007).
Eukaryotic class 1 translation termination factor eRF1--the NMR structure and dynamics of the middle domain involved in triggering ribosome-dependent peptidyl-tRNA hydrolysis.
|
| |
FEBS J,
274,
4223-4237.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Zoldák,
L.Redecke,
D.I.Svergun,
P.V.Konarev,
C.S.Voertler,
H.Dobbek,
E.Sedlák,
and
M.Sprinzl
(2007).
Release factors 2 from Escherichia coli and Thermus thermophilus: structural, spectroscopic and microcalorimetric studies.
|
| |
Nucleic Acids Res,
35,
1343-1353.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Gao,
Z.Zhou,
U.Rawat,
C.Huang,
L.Bouakaz,
C.Wang,
Z.Cheng,
Y.Liu,
A.Zavialov,
R.Gursky,
S.Sanyal,
M.Ehrenberg,
J.Frank,
and
H.Song
(2007).
RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors.
|
| |
Cell,
129,
929-941.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.R.Jonker,
S.Ilin,
S.K.Grimm,
J.Wöhnert,
and
H.Schwalbe
(2007).
L11 domain rearrangement upon binding to RNA and thiostrepton studied by NMR spectroscopy.
|
| |
Nucleic Acids Res,
35,
441-454.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.R.Soleimanpour-Lichaei,
I.Kühl,
M.Gaisne,
J.F.Passos,
M.Wydro,
J.Rorbach,
R.Temperley,
N.Bonnefoy,
W.Tate,
R.Lightowlers,
and
Z.Chrzanowska-Lightowlers
(2007).
mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG.
|
| |
Mol Cell,
27,
745-757.
|
 |
|
|
|
|
 |
J.Frank,
H.Gao,
J.Sengupta,
N.Gao,
and
D.J.Taylor
(2007).
The process of mRNA-tRNA translocation.
|
| |
Proc Natl Acad Sci U S A,
104,
19671-19678.
|
 |
|
|
|
|
 |
J.J.Shaw,
and
R.Green
(2007).
Two distinct components of release factor function uncovered by nucleophile partitioning analysis.
|
| |
Mol Cell,
28,
458-467.
|
 |
|
|
|
|
 |
J.P.Rife,
and
G.M.Culver
(2007).
Breaking the cycle of translation.
|
| |
Mol Cell,
28,
517-519.
|
 |
|
|
|
|
 |
K.Wang,
H.Neumann,
S.Y.Peak-Chew,
and
J.W.Chin
(2007).
Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion.
|
| |
Nat Biotechnol,
25,
770-777.
|
 |
|
|
|
|
 |
L.Jenner,
B.Rees,
M.Yusupov,
and
G.Yusupova
(2007).
Messenger RNA conformations in the ribosomal E site revealed by X-ray crystallography.
|
| |
EMBO Rep,
8,
846-850.
|
 |
|
|
|
|
 |
L.Mora,
V.Heurgué-Hamard,
M.de Zamaroczy,
S.Kervestin,
and
R.H.Buckingham
(2007).
Methylation of bacterial release factors RF1 and RF2 is required for normal translation termination in vivo.
|
| |
J Biol Chem,
282,
35638-35645.
|
 |
|
|
|
|
 |
M.Amort,
B.Wotzel,
K.Bakowska-Zywicka,
M.D.Erlacher,
R.Micura,
and
N.Polacek
(2007).
An intact ribose moiety at A2602 of 23S rRNA is key to trigger peptidyl-tRNA hydrolysis during translation termination.
|
| |
Nucleic Acids Res,
35,
5130-5140.
|
 |
|
|
|
|
 |
M.Ejby,
M.A.Sørensen,
and
S.Pedersen
(2007).
Pseudouridylation of helix 69 of 23S rRNA is necessary for an effective translation termination.
|
| |
Proc Natl Acad Sci U S A,
104,
19410-19415.
|
 |
|
|
|
|
 |
M.O'connor
(2007).
Interaction between the ribosomal subunits: 16S rRNA suppressors of the lethal DeltaA1916 mutation in the 23S rRNA of Escherichia coli.
|
| |
Mol Genet Genomics,
278,
307-315.
|
 |
|
|
|
|
 |
S.Lekomtsev,
P.Kolosov,
L.Bidou,
L.Frolova,
J.P.Rousset,
and
L.Kisselev
(2007).
Different modes of stop codon restriction by the Stylonychia and Paramecium eRF1 translation termination factors.
|
| |
Proc Natl Acad Sci U S A,
104,
10824-10829.
|
 |
|
|
|
|
 |
T.Margus,
M.Remm,
and
T.Tenson
(2007).
Phylogenetic distribution of translational GTPases in bacteria.
|
| |
BMC Genomics,
8,
15.
|
 |
|
|
|
|
 |
Y.Maki,
T.Hashimoto,
M.Zhou,
T.Naganuma,
J.Ohta,
T.Nomura,
C.V.Robinson,
and
T.Uchiumi
(2007).
Three binding sites for stalk protein dimers are generally present in ribosomes from archaeal organism.
|
| |
J Biol Chem,
282,
32827-32833.
|
 |
|
|
|
|
 |
A.A.Bogdanov,
V.L.Karpov,
and
L.L.Kisselev
(2006).
RNA-protein interactions at the initial and terminal stages of protein biosynthesis as investigated by Lev Kisselev (on the occasion of his 70th anniversary).
|
| |
Biochemistry (Mosc),
71,
915-924.
|
 |
|
|
|
|
 |
A.Korostelev,
S.Trakhanov,
M.Laurberg,
and
H.F.Noller
(2006).
Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements.
|
| |
Cell,
126,
1065-1077.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Liljas
(2006).
On the complementarity of methods in structural biology.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
941-945.
|
 |
|
|
|
|
 |
E.M.Youngman,
L.Cochella,
J.L.Brunelle,
S.He,
and
R.Green
(2006).
Two distinct conformations of the conserved RNA-rich decoding center of the small ribosomal subunit are recognized by tRNAs and release factors.
|
| |
Cold Spring Harb Symp Quant Biol,
71,
545-549.
|
 |
|
|
|
|
 |
E.Z.Alkalaeva,
A.V.Pisarev,
L.Y.Frolova,
L.L.Kisselev,
and
T.V.Pestova
(2006).
In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3.
|
| |
Cell,
125,
1125-1136.
|
 |
|
|
|
|
 |
G.Yusupova,
L.Jenner,
B.Rees,
D.Moras,
and
M.Yusupov
(2006).
Structural basis for messenger RNA movement on the ribosome.
|
| |
Nature,
444,
391-394.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.K.Ali,
L.Lancaster,
J.Feinberg,
S.Joseph,
and
H.F.Noller
(2006).
Deletion of a conserved, central ribosomal intersubunit RNA bridge.
|
| |
Mol Cell,
23,
865-874.
|
 |
|
|
|
|
 |
N.S.Sato,
N.Hirabayashi,
I.Agmon,
A.Yonath,
and
T.Suzuki
(2006).
Comprehensive genetic selection revealed essential bases in the peptidyl-transferase center.
|
| |
Proc Natl Acad Sci U S A,
103,
15386-15391.
|
 |
|
|
|
|
 |
P.V.Baranov,
B.Vestergaard,
T.Hamelryck,
R.F.Gesteland,
J.Nyborg,
and
J.F.Atkins
(2006).
Diverse bacterial genomes encode an operon of two genes, one of which is an unusual class-I release factor that potentially recognizes atypical mRNA signals other than normal stop codons.
|
| |
Biol Direct,
1,
28.
|
 |
|
|
|
|
 |
S.E.Walker,
and
K.Fredrick
(2006).
Recognition and positioning of mRNA in the ribosome by tRNAs with expanded anticodons.
|
| |
J Mol Biol,
360,
599-609.
|
 |
|
|
|
|
 |
V.Heurgué-Hamard,
M.Graille,
N.Scrima,
N.Ulryck,
S.Champ,
H.van Tilbeurgh,
and
R.H.Buckingham
(2006).
The zinc finger protein Ynr046w is plurifunctional and a component of the eRF1 methyltransferase in yeast.
|
| |
J Biol Chem,
281,
36140-36148.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.P.Pisareva,
A.V.Pisarev,
C.U.Hellen,
M.V.Rodnina,
and
T.V.Pestova
(2006).
Kinetic analysis of interaction of eukaryotic release factor 3 with guanine nucleotides.
|
| |
J Biol Chem,
281,
40224-40235.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
| |