spacer
spacer

PDBsum entry 2d7r

Go to PDB code: 
protein ligands metals links
Transferase PDB id
2d7r

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
536 a.a. *
Ligands
NAG-NAG
NAG ×2
NGA
UDP
SER-A2G
Metals
_MN
Waters ×74
* Residue conservation analysis
PDB id:
2d7r
Name: Transferase
Title: Crystal structure of pp-galnac-t10 complexed with galnac-ser on lectin domain
Structure: Polypeptide n-acetylgalactosaminyltransferase 10. Chain: a. Fragment: residues 40-603. Synonym: protein-udp acetylgalactosaminyltransferase 10, udp- galnac:polypeptide n-acetylgalactosaminyltransferase 10, polypeptide galnac transferase 10, galnac-t10, pp-gantase 10. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: pichia pastoris. Expression_system_taxid: 4922.
Resolution:
2.80Å     R-factor:   0.229     R-free:   0.298
Authors: T.Kubota,T.Shiba,S.Sugioka,R.Kato,S.Wakatsuki,H.Narimatsu
Key ref:
T.Kubota et al. (2006). Structural basis of carbohydrate transfer activity by human UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase (pp-GalNAc-T10). J Mol Biol, 359, 708-727. PubMed id: 16650853 DOI: 10.1016/j.jmb.2006.03.061
Date:
25-Nov-05     Release date:   07-Nov-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q86SR1  (GLT10_HUMAN) -  Polypeptide N-acetylgalactosaminyltransferase 10 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
603 a.a.
536 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.4.1.41  - polypeptide N-acetylgalactosaminyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. L-seryl-[protein] + UDP-N-acetyl-alpha-D-galactosamine = a 3-O- [N-acetyl-alpha-D-galactosaminyl]-L-seryl-[protein] + UDP + H+
2. L-threonyl-[protein] + UDP-N-acetyl-alpha-D-galactosamine = a 3-O- [N-acetyl-alpha-D-galactosaminyl]-L-threonyl-[protein] + UDP + H+
L-seryl-[protein]
+ UDP-N-acetyl-alpha-D-galactosamine
= 3-O- [N-acetyl-alpha-D-galactosaminyl]-L-seryl-[protein]
+ UDP
+ H(+)
Bound ligand (Het Group name = UDP)
corresponds exactly
L-threonyl-[protein]
+ UDP-N-acetyl-alpha-D-galactosamine
= 3-O- [N-acetyl-alpha-D-galactosaminyl]-L-threonyl-[protein]
+ UDP
+ H(+)
Bound ligand (Het Group name = UDP)
corresponds exactly
      Cofactor: Ca(2+); Mn(2+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1016/j.jmb.2006.03.061 J Mol Biol 359:708-727 (2006)
PubMed id: 16650853  
 
 
Structural basis of carbohydrate transfer activity by human UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase (pp-GalNAc-T10).
T.Kubota, T.Shiba, S.Sugioka, S.Furukawa, H.Sawaki, R.Kato, S.Wakatsuki, H.Narimatsu.
 
  ABSTRACT  
 
Mucin-type O-glycans are important carbohydrate chains involved in differentiation and malignant transformation. Biosynthesis of the O-glycan is initiated by the transfer of N-acetylgalactosamine (GalNAc) which is catalyzed by UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferases (pp-GalNAc-Ts). Here we present crystal structures of the pp-GalNAc-T10 isozyme, which has specificity for glycosylated peptides, in complex with the hydrolyzed donor substrate UDP-GalNAc and in complex with GalNAc-serine. A structural comparison with uncomplexed pp-GalNAc-T1 suggests that substantial conformational changes occur in two loops near the catalytic center upon donor substrate binding, and that a distinct interdomain arrangement between the catalytic and lectin domains forms a narrow cleft for acceptor substrates. The distance between the catalytic center and the carbohydrate-binding site on the lectin beta sub-domain influences the position of GalNAc glycosylation on GalNAc-glycosylated peptide substrates. A chimeric enzyme in which the two domains of pp-GalNAc-T10 are connected by a linker from pp-GalNAc-T1 acquires activity toward non-glycosylated acceptors, identifying a potential mechanism for generating the various acceptor specificities in different isozymes to produce a wide range of O-glycans.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Binding pocket for the donor substrate. UDP, GalNAc and Mn^2+ are shown in ball-and-stick representation in the same colors as for Figure 2. Amino acid residues interacting with the donor substrate are shown in a line representation (carbon atoms, green). Hydrogen-bonding interactions are shown as black broken lines. The coordinate bonds to Mn^2+ are represented as red broken lines. The oxygen atom of water molecule that coordinates the Mn^2+ is labeled with Wt. (a) and (b) Two views corresponding to those shown in Figure 2(a) and (b), respectively.
Figure 8.
Figure 8. Interactions between the catalytic domain, the linker region and the lectin domain. Ball-and-stick representations indicate residues responsible for the interactions, which are shown in red, blue and magenta for the catalytic domain, the linker region and the lectin domain, respectively. (a) pp-GalNAc-T10. Residues Asp289, Trp290, Lys295, Ile297, Pro298, Tyr404 and Arg408 are shown in red, Phe449TyrProProValGluProProAlaAlaAlaTrp460 in blue, and Thr504, Phe505, Trp507, Arg508, Ser540, Phe589, His591, Thr592, Asn593 and Val596 in magenta. (b) pp-GalNAc-T1. Residues Tyr256, Phe259, Trp261, Tyr268, Arg273, Met374, Phe377, Phe380, Ile383 and Glu416 are shown in red, Asp421SerGlnIleProArgHisTyrPheSerLeu431 in blue, and Gly464, Val467, Ser469, Tyr470, Thr471, Ala472, Arg477, Asp479, His499, Asn552 and Val553 in magenta.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2006, 359, 708-727) copyright 2006.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
23222542 J.L.Morgan, J.Strumillo, and J.Zimmer (2013).
Crystallographic snapshot of cellulose synthesis and membrane translocation.
  Nature, 493, 181-186.
PDB code: 4hg6
21145746 D.J.Gill, H.Clausen, and F.Bard (2011).
Location, location, location: new insights into O-GalNAc protein glycosylation.
  Trends Cell Biol, 21, 149-158.  
20878478 Y.Gao, Y.B.Tu, Y.Guo, L.Y.Yang, X.H.Guo, L.Xu, Z.R.Xu, and S.L.Wu (2011).
PpGalNacT2 participating in vanadium-induced HL-60 cell differentiation.
  Mol Biol Rep, 38, 1483-1489.  
20705453 B.Ramakrishnan, and P.K.Qasba (2010).
Structure-based evolutionary relationship of glycosyltransferases: a case study of vertebrate β1,4-galactosyltransferase, invertebrate β1,4-N-acetylgalactosaminyltransferase and α-polypeptidyl-N-acetylgalactosaminyltransferase.
  Curr Opin Struct Biol, 20, 536-542.  
20655926 B.Schuman, M.Persson, R.C.Landry, R.Polakowski, J.T.Weadge, N.O.Seto, S.N.Borisova, M.M.Palcic, and S.V.Evans (2010).
Cysteine-to-serine mutants dramatically reorder the active site of human ABO(H) blood group B glycosyltransferase without affecting activity: structural insights into cooperative substrate binding.
  J Mol Biol, 402, 399-411.
PDB codes: 3i0c 3i0d 3i0e 3i0f 3i0g 3i0h 3i0i 3i0j 3i0k 3i0l
20470363 J.M.Liefhebber, S.Punt, W.J.Spaan, and H.C.van Leeuwen (2010).
The human collagen beta(1-O)galactosyltransferase, GLT25D1, is a soluble endoplasmic reticulum localized protein.
  BMC Cell Biol, 11, 33.  
20030628 R.Hurtado-Guerrero, T.Zusman, S.Pathak, A.F.Ibrahim, S.Shepherd, A.Prescott, G.Segal, and D.M.van Aalten (2010).
Molecular mechanism of elongation factor 1A inhibition by a Legionella pneumophila glycosyltransferase.
  Biochem J, 426, 281-292.
PDB codes: 2wzf 2wzg
19460755 C.L.Perrine, A.Ganguli, P.Wu, C.R.Bertozzi, T.A.Fritz, J.Raman, L.A.Tabak, and T.A.Gerken (2009).
Glycopeptide-preferring polypeptide GalNAc transferase 10 (ppGalNAc T10), involved in mucin-type O-glycosylation, has a unique GalNAc-O-Ser/Thr-binding site in its catalytic domain not found in ppGalNAc T1 or T2.
  J Biol Chem, 284, 20387-20397.  
18562306 J.Raman, T.A.Fritz, T.A.Gerken, O.Jamison, D.Live, M.Liu, and L.A.Tabak (2008).
The Catalytic and Lectin Domains of UDP-GalNAc:Polypeptide {alpha}-N-Acetylgalactosaminyltransferase Function in Concert to Direct Glycosylation Site Selection.
  J Biol Chem, 283, 22942-22951.  
18518825 L.L.Lairson, B.Henrissat, G.J.Davies, and S.G.Withers (2008).
Glycosyltransferases: structures, functions, and mechanisms.
  Annu Rev Biochem, 77, 521-555.  
18426242 P.K.Qasba, E.Boeggeman, and B.Ramakrishnan (2008).
Site-specific linking of biomolecules via glycan residues using glycosyltransferases.
  Biotechnol Prog, 24, 520-526.  
18394902 T.Jank, and K.Aktories (2008).
Structure and mode of action of clostridial glucosylating toxins: the ABCD model.
  Trends Microbiol, 16, 222-229.  
17850816 A.L.Milac, N.V.Buchete, T.A.Fritz, G.Hummer, and L.A.Tabak (2007).
Substrate-induced conformational changes and dynamics of UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase-2.
  J Mol Biol, 373, 439-451.  
17970754 M.Tenno, A.Saeki, A.P.Elhammer, and A.Kurosaka (2007).
Function of conserved aromatic residues in the Gal/GalNAc-glycosyltransferase motif of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 1.
  FEBS J, 274, 6037-6045.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer