spacer
spacer

PDBsum entry 1khf

Go to PDB code: 
protein ligands metals links
Lyase PDB id
1khf

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
603 a.a. *
Ligands
PEP
EDO ×2
Metals
_MN
_NA
Waters ×164
* Residue conservation analysis
PDB id:
1khf
Name: Lyase
Title: Pepck complex with pep
Structure: Phosphoenolpyruvate carboxykinase, cytosolic (gtp). Chain: a. Synonym: phosphoenolpyruvate carboxylase, pepck, pepck-c. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: pck1. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
2.02Å     R-factor:   0.186     R-free:   0.244
Authors: P.Dunten,C.Belunis,R.Crowther,K.Hollfelder,U.Kammlott,W.Levin, H.Michel,G.B.Ramsey,A.Swain,D.Weber,S.J.Wertheimer
Key ref:
P.Dunten et al. (2002). Crystal structure of human cytosolic phosphoenolpyruvate carboxykinase reveals a new GTP-binding site. J Mol Biol, 316, 257-264. PubMed id: 11851336 DOI: 10.1006/jmbi.2001.5364
Date:
29-Nov-01     Release date:   27-Feb-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P35558  (PCKGC_HUMAN) -  Phosphoenolpyruvate carboxykinase, cytosolic [GTP] from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
622 a.a.
603 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 2: E.C.2.7.11.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 3: E.C.4.1.1.32  - phosphoenolpyruvate carboxykinase (GTP).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: oxaloacetate + GTP = phosphoenolpyruvate + GDP + CO2
oxaloacetate
+ GTP
=
phosphoenolpyruvate
Bound ligand (Het Group name = EDO)
matches with 40.00% similarity
+ GDP
+
CO2
Bound ligand (Het Group name = PEP)
corresponds exactly
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1006/jmbi.2001.5364 J Mol Biol 316:257-264 (2002)
PubMed id: 11851336  
 
 
Crystal structure of human cytosolic phosphoenolpyruvate carboxykinase reveals a new GTP-binding site.
P.Dunten, C.Belunis, R.Crowther, K.Hollfelder, U.Kammlott, W.Levin, H.Michel, G.B.Ramsey, A.Swain, D.Weber, S.J.Wertheimer.
 
  ABSTRACT  
 
We report crystal structures of the human enzyme phosphoenolpyruvate carboxykinase (PEPCK) with and without bound substrates. These structures are the first to be determined for a GTP-dependent PEPCK, and provide the first view of a novel GTP-binding site unique to the GTP-dependent PEPCK family. Three phenylalanine residues form the walls of the guanine-binding pocket on the enzyme's surface and, most surprisingly, one of the phenylalanine side-chains contributes to the enzyme's specificity for GTP. PEPCK catalyzes the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle. Because the gluconeogenic pathway contributes to the fasting hyperglycemia of type II diabetes, inhibitors of PEPCK may be useful in the treatment of diabetes.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Interactions between the base and sugar of the non-hydrolyzable GTP analog and the enzyme. The two water molecules mediating hydrogen bonds to the protein are shown as red spheres.
Figure 3.
Figure 3. Comparison of the GTP-dependent and ATP-dependent PEPCK structures. (a) Ribbon representation of the human enzyme with metal ions and non-hydrolyzable GTP shown in ball-and-stick form. (b) The E. coli enzyme with bound metal ions and ATP shown in the same orientation to highlight the similarity of the fold. (c) The active site of the human enzyme with bound non-hydrolyzable GTP. The Mg and Mn ions are shown as purple spheres and water molecules are shown as red spheres. (d) Corresponding view of the active site of the E. coli enzyme complexed with ATP taken from the Protein Data Bank, entry 1aq2[6]. A bound molecule of pyruvate marks the location of the PEP site. The indicated torsion angle (O4'-C1'-N9-C4) is 57° (syn) for bound ATP, versus 236° (anti) for the GTP bound to the human enzyme. Atoms in the Figures are colored by type, with C, N, O, S, and P atoms in green, dark blue, red, yellow, and light blue, respectively.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2002, 316, 257-264) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20524049 E.Pérez, and E.Cardemil (2010).
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase: the relevance of Glu299 and Leu460 for nucleotide binding.
  Protein J, 29, 299-305.  
20231391 T.Shakya, and G.D.Wright (2010).
Nucleotide selectivity of antibiotic kinases.
  Antimicrob Agents Chemother, 54, 1909-1913.  
21152065 Z.Xia, L.B.Chibnik, B.I.Glanz, M.Liguori, J.M.Shulman, D.Tran, S.J.Khoury, T.Chitnis, T.Holyoak, H.L.Weiner, C.R.Guttmann, and P.L.De Jager (2010).
A putative Alzheimer's disease risk allele in PCK1 influences brain atrophy in multiple sclerosis.
  PLoS One, 5, e14169.  
19638345 G.M.Carlson, and T.Holyoak (2009).
Structural insights into the mechanism of phosphoenolpyruvate carboxykinase catalysis.
  J Biol Chem, 284, 27037-27041.  
19636078 R.W.Hanson (2009).
Thematic minireview series: a perspective on the biology of phosphoenolpyruvate carboxykinase 55 years after its discovery.
  J Biol Chem, 284, 27021-27023.  
18346928 I.Tobar, F.D.González-Nilo, A.M.Jabalquinto, and E.Cardemil (2008).
Relevance of Arg457 for the nucleotide affinity of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase.
  Int J Biochem Cell Biol, 40, 1883-1889.  
19021757 L.Dharmarajan, C.L.Case, P.Dunten, and B.Mukhopadhyay (2008).
Tyr235 of human cytosolic phosphoenolpyruvate carboxykinase influences catalysis through an anion-quadrupole interaction with phosphoenolpyruvate carboxylate.
  FEBS J, 275, 5810-5819.  
18772387 S.M.Sullivan, and T.Holyoak (2008).
Enzymes with lid-gated active sites must operate by an induced fit mechanism instead of conformational selection.
  Proc Natl Acad Sci U S A, 105, 13829-13834.
PDB codes: 3dt2 3dt4 3dt7 3dtb
17195942 A.Yévenes, F.D.González-Nilo, and E.Cardemil (2007).
Relevance of phenylalanine 216 in the affinity of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase for Mn(II).
  Protein J, 26, 135-141.  
  19461981 S.Aich, and L.T.Delbaere (2007).
Phylogenetic Study of the Evolution of PEP-Carboxykinase.
  Evol Bioinform Online, 3, 333-340.  
17015450 C.L.Case, E.M.Concar, K.L.Boswell, and B.Mukhopadhyay (2006).
Roles of Asp75, Asp78, and Glu83 of GTP-dependent phosphoenolpyruvate carboxykinase from Mycobacterium smegmatis.
  J Biol Chem, 281, 39262-39272.  
16239727 M.Sugahara, N.Ohshima, Y.Ukita, M.Sugahara, and N.Kunishima (2005).
Structure of ATP-dependent phosphoenolpyruvate carboxykinase from Thermus thermophilus HB8 showing the structural basis of induced fit and thermostability.
  Acta Crystallogr D Biol Crystallogr, 61, 1500-1507.
PDB codes: 1j3b 1xkv
16102602 U.Sauer, and B.J.Eikmanns (2005).
The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria.
  FEMS Microbiol Rev, 29, 765-794.  
15983413 Y.A.Leduc, L.Prasad, M.Laivenieks, J.G.Zeikus, and L.T.Delbaere (2005).
Structure of PEP carboxykinase from the succinate-producing Actinobacillus succinogenes: a new conserved active-site motif.
  Acta Crystallogr D Biol Crystallogr, 61, 903-912.
PDB codes: 1ygg 1ylh
15006638 C.Bueno, F.D.González-Nilo, M.Victoria Encinas, and E.Cardemil (2004).
Substrate binding to fluorescent labeled wild type, Lys213Arg, and HIS233Gln Saccharomyces cerevisiae phosphoenolpyruvate carboxykinases.
  Int J Biochem Cell Biol, 36, 861-869.  
15231795 W.Fukuda, T.Fukui, H.Atomi, and T.Imanaka (2004).
First characterization of an archaeal GTP-dependent phosphoenolpyruvate carboxykinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.
  J Bacteriol, 186, 4620-4627.  
12730230 L.Yim, M.Martínez-Vicente, M.Villarroya, C.Aguado, E.Knecht, and M.E.Armengod (2003).
The GTPase activity and C-terminal cysteine of the Escherichia coli MnmE protein are essential for its tRNA modifying function.
  J Biol Chem, 278, 28378-28387.  
12925798 S.Aich, F.Imabayashi, and L.T.Delbaere (2003).
Crystallization and preliminary X-ray crystallographic studies of phosphoenolpyruvate carboxykinase from Corynebacterium glutamicum.
  Acta Crystallogr D Biol Crystallogr, 59, 1640-1641.  
12383254 M.V.Encinas, F.D.González-Nilo, H.Goldie, and E.Cardemil (2002).
Ligand interactions and protein conformational changes of phosphopyridoxyl-labeled Escherichia coli phosphoenolpyruvate carboxykinase determined by fluorescence spectroscopy.
  Eur J Biochem, 269, 4960-4968.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer