|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
234 a.a.*
|
 |
|
|
|
|
|
|
|
206 a.a.*
|
 |
|
|
|
|
|
|
|
208 a.a.*
|
 |
|
|
|
|
|
|
|
150 a.a.*
|
 |
|
|
|
|
|
|
|
101 a.a.*
|
 |
|
|
|
|
|
|
|
155 a.a.*
|
 |
|
|
|
|
|
|
|
138 a.a.*
|
 |
|
|
|
|
|
|
|
127 a.a.*
|
 |
|
|
|
|
|
|
|
98 a.a.*
|
 |
|
|
|
|
|
|
|
119 a.a.*
|
 |
|
|
|
|
|
|
|
124 a.a.*
|
 |
|
|
|
|
|
|
|
125 a.a.*
|
 |
|
|
|
|
|
|
|
60 a.a.*
|
 |
|
|
|
|
|
|
|
88 a.a.*
|
 |
|
|
|
|
|
|
|
83 a.a.*
|
 |
|
|
|
|
|
|
|
104 a.a.*
|
 |
|
|
|
|
|
|
|
73 a.a.*
|
 |
|
|
|
|
|
|
|
80 a.a.*
|
 |
|
|
|
|
|
|
|
99 a.a.*
|
 |
|
|
|
|
|
|
|
24 a.a.*
|
 |
|
|
|
|
|
|
* Residue conservation analysis
|
|
* C-alpha coords only
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Ribosome
|
 |
|
Title:
|
 |
The path of messenger RNA through the ribosome. This file, 1jgo, contains the 30s ribosome subunit, three tRNA, and mRNA molecules. 50s ribosome subunit is in the file 1giy
|
|
Structure:
|
 |
30s 16s ribosomal RNA. Chain: a. tRNA(phe). Chain: b, c. Engineered: yes. Other_details: a-site tRNA chain b, p-site tRNA chain c. tRNA(phe). Chain: d. Engineered: yes.
|
|
Source:
|
 |
Thermus thermophilus. Organism_taxid: 274. Synthetic: yes. Other_details: sequence naturally occurs in saccharomyces cerevisiae. Organism_taxid: 274
|
|
Resolution:
|
 |
|
5.60Å
|
R-factor:
|
not given
|
|
|
Authors:
|
 |
G.Z.Yusupova,M.M.Yusupov,J.H.D.Cate,H.F.Noller
|
Key ref:
|
 |
G.Z.Yusupova
et al.
(2001).
The path of messenger RNA through the ribosome.
Cell,
106,
233-241.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
26-Jun-01
|
Release date:
|
20-Jul-01
|
|
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P80371
(RS2_THET8) -
Small ribosomal subunit protein uS2 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
256 a.a.
234 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P80372
(RS3_THET8) -
Small ribosomal subunit protein uS3 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
239 a.a.
206 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P80373
(RS4_THET8) -
Small ribosomal subunit protein uS4 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
209 a.a.
208 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
Q5SHQ5
(RS5_THET8) -
Small ribosomal subunit protein uS5 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
162 a.a.
150 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
Q5SLP8
(RS6_THET8) -
Small ribosomal subunit protein bS6 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
101 a.a.
101 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P17291
(RS7_THET8) -
Small ribosomal subunit protein uS7 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
156 a.a.
155 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0DOY9
(RS8_THET8) -
Small ribosomal subunit protein uS8 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
138 a.a.
138 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P80374
(RS9_THET8) -
Small ribosomal subunit protein uS9 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
128 a.a.
127 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
Q5SHN7
(RS10_THET8) -
Small ribosomal subunit protein uS10 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
105 a.a.
98 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P80376
(RS11_THET8) -
Small ribosomal subunit protein uS11 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
129 a.a.
119 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
Q5SHN3
(RS12_THET8) -
Small ribosomal subunit protein uS12 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
132 a.a.
124 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P80377
(RS13_THET8) -
Small ribosomal subunit protein uS13 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
126 a.a.
125 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0DOY6
(RS14Z_THET8) -
Small ribosomal subunit protein uS14 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
61 a.a.
60 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
Q5SJ76
(RS15_THET8) -
Small ribosomal subunit protein uS15 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
89 a.a.
88 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
Q5SJH3
(RS16_THET8) -
Small ribosomal subunit protein bS16 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
88 a.a.
83 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0DOY7
(RS17_THET8) -
Small ribosomal subunit protein uS17 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
105 a.a.
104 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
Q5SLQ0
(RS18_THET8) -
Small ribosomal subunit protein bS18 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
88 a.a.
73 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
Q5SHP2
(RS19_THET8) -
Small ribosomal subunit protein uS19 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
93 a.a.
80 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chains E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X:
E.C.?
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Cell
106:233-241
(2001)
|
|
PubMed id:
|
|
|
|
|
| |
|
The path of messenger RNA through the ribosome.
|
|
G.Z.Yusupova,
M.M.Yusupov,
J.H.Cate,
H.F.Noller.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Using X-ray crystallography, we have directly observed the path of mRNA in the
70S ribosome in Fourier difference maps at 7 A resolution. About 30 nucleotides
of the mRNA are wrapped in a groove that encircles the neck of the 30S subunit.
The Shine-Dalgarno helix is bound in a large cleft between the head and the back
of the platform. At the interface, only about eight nucleotides (-1 to +7),
centered on the junction between the A and P codons, are exposed, and bond
almost exclusively to 16S rRNA. The mRNA enters the ribosome around position +13
to +15, the location of downstream pseudoknots that stimulate -1 translational
frame shifting.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1. Nucleotide Sequences of the Three Model mRNAs
Used in this StudyThe Shine-Dalgarno sequence (S/D), and P- and
A-site codons are underlined. The self-complementary sequences
forming the putative A-site helix in MF36 mRNA are overlined
|
 |
Figure 2.
Figure 2. Fourier Difference Maps of mRNAs(A) 7 Å
Fourier difference map of MK27 mRNA with the mRNA model (yellow)
docked, showing the position of the Shine-Dalgarno (S/D) helix
(magenta) and the positions of the A- and P-site codons (orange
and red, respectively), viewed from the top of the 30S
ribosomal subunit.(B) Difference map of the MF36 mRNA, showing a
four-base-pair tetraloop helix (A-site helix) fitted to the
extra density at the A site.(C) Same as for (B), except that the
A-tRNA anticodon stem-loop (green) is shown in the position
observed experimentally in the A-tRNA difference map (Yusupov et
al., 2001), in place of the A-site mRNA helix. The
five-nucleotide (GGAGG/CCUCC) core of the Shine-Dalgarno
interaction is shown in magenta, and the rest of the 16S rRNA
tail in cyan
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Cell
(2001,
106,
233-241)
copyright 2001.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
R.Melero,
G.Buchwald,
R.Castaño,
M.Raabe,
D.Gil,
M.Lázaro,
H.Urlaub,
E.Conti,
and
O.Llorca
(2012).
The cryo-EM structure of the UPF-EJC complex shows UPF1 poised toward the RNA 3' end.
|
| |
Nat Struct Mol Biol,
19,
498.
|
 |
|
|
|
|
 |
S.Melnikov,
A.Ben-Shem,
N.Garreau de Loubresse,
L.Jenner,
G.Yusupova,
and
M.Yusupov
(2012).
One core, two shells: bacterial and eukaryotic ribosomes.
|
| |
Nat Struct Mol Biol,
19,
560-567.
|
 |
|
|
|
|
 |
C.Y.Liu,
M.T.Qureshi,
and
T.H.Lee
(2011).
Interaction Strengths between the Ribosome and tRNA at Various Steps of Translocation.
|
| |
Biophys J,
100,
2201-2208.
|
 |
|
|
|
|
 |
D.N.Ermolenko,
and
H.F.Noller
(2011).
mRNA translocation occurs during the second step of ribosomal intersubunit rotation.
|
| |
Nat Struct Mol Biol,
18,
457-462.
|
 |
|
|
|
|
 |
I.S.Abaeva,
A.Marintchev,
V.P.Pisareva,
C.U.Hellen,
and
T.V.Pestova
(2011).
Bypassing of stems versus linear base-by-base inspection of mammalian mRNAs during ribosomal scanning.
|
| |
EMBO J,
30,
115-129.
|
 |
|
|
|
|
 |
J.Zhu,
A.Korostelev,
D.A.Costantino,
J.P.Donohue,
H.F.Noller,
and
J.S.Kieft
(2011).
Crystal structures of complexes containing domains from two viral internal ribosome entry site (IRES) RNAs bound to the 70S ribosome.
|
| |
Proc Natl Acad Sci U S A,
108,
1839-1844.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Malys,
and
J.E.McCarthy
(2011).
Translation initiation: variations in the mechanism can be anticipated.
|
| |
Cell Mol Life Sci,
68,
991.
|
 |
|
|
|
|
 |
T.Becker,
J.P.Armache,
A.Jarasch,
A.M.Anger,
E.Villa,
H.Sieber,
B.A.Motaal,
T.Mielke,
O.Berninghausen,
and
R.Beckmann
(2011).
Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80S ribosome.
|
| |
Nat Struct Mol Biol,
18,
715-720.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.P.Pisareva,
M.A.Skabkin,
C.U.Hellen,
T.V.Pestova,
and
A.V.Pisarev
(2011).
Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes.
|
| |
EMBO J,
30,
1804-1817.
|
 |
|
|
|
|
 |
X.Qu,
J.D.Wen,
L.Lancaster,
H.F.Noller,
C.Bustamante,
and
I.Tinoco
(2011).
The ribosome uses two active mechanisms to unwind messenger RNA during translation.
|
| |
Nature,
475,
118-121.
|
 |
|
|
|
|
 |
A.A.Malygin,
and
G.G.Karpova
(2010).
Structural motifs of the bacterial ribosomal proteins S20, S18 and S16 that contact rRNA present in the eukaryotic ribosomal proteins S25, S26 and S27A, respectively.
|
| |
Nucleic Acids Res,
38,
2089-2098.
|
 |
|
|
|
|
 |
A.Ben-Shem,
L.Jenner,
G.Yusupova,
and
M.Yusupov
(2010).
Crystal structure of the eukaryotic ribosome.
|
| |
Science,
330,
1203-1209.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.L.Ng,
K.Lang,
N.A.Meenan,
A.Sharma,
A.C.Kelley,
C.Kleanthous,
and
V.Ramakrishnan
(2010).
Structural basis for 16S ribosomal RNA cleavage by the cytotoxic domain of colicin E3.
|
| |
Nat Struct Mol Biol,
17,
1241-1246.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Frank,
and
R.L.Gonzalez
(2010).
Structure and dynamics of a processive Brownian motor: the translating ribosome.
|
| |
Annu Rev Biochem,
79,
381-412.
|
 |
|
|
|
|
 |
J.Wen,
and
S.Brogna
(2010).
Splicing-dependent NMD does not require the EJC in Schizosaccharomyces pombe.
|
| |
EMBO J,
29,
1537-1551.
|
 |
|
|
|
|
 |
K.E.Berry,
S.Waghray,
and
J.A.Doudna
(2010).
The HCV IRES pseudoknot positions the initiation codon on the 40S ribosomal subunit.
|
| |
RNA,
16,
1559-1569.
|
 |
|
|
|
|
 |
K.Papenfort,
M.Bouvier,
F.Mika,
C.M.Sharma,
and
J.Vogel
(2010).
Evidence for an autonomous 5' target recognition domain in an Hfq-associated small RNA.
|
| |
Proc Natl Acad Sci U S A,
107,
20435-20440.
|
 |
|
|
|
|
 |
L.B.Jenner,
N.Demeshkina,
G.Yusupova,
and
M.Yusupov
(2010).
Structural aspects of messenger RNA reading frame maintenance by the ribosome.
|
| |
Nat Struct Mol Biol,
17,
555-560.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Siwiak,
and
P.Zielenkiewicz
(2010).
A comprehensive, quantitative, and genome-wide model of translation.
|
| |
PLoS Comput Biol,
6,
e1000865.
|
 |
|
|
|
|
 |
M.Y.Chou,
and
K.Y.Chang
(2010).
An intermolecular RNA triplex provides insight into structural determinants for the pseudoknot stimulator of -1 ribosomal frameshifting.
|
| |
Nucleic Acids Res,
38,
1676-1685.
|
 |
|
|
|
|
 |
R.Sabate,
N.S.de Groot,
and
S.Ventura
(2010).
Protein folding and aggregation in bacteria.
|
| |
Cell Mol Life Sci,
67,
2695-2715.
|
 |
|
|
|
|
 |
S.Kurata,
K.H.Nielsen,
S.F.Mitchell,
J.R.Lorsch,
A.Kaji,
and
H.Kaji
(2010).
Ribosome recycling step in yeast cytoplasmic protein synthesis is catalyzed by eEF3 and ATP.
|
| |
Proc Natl Acad Sci U S A,
107,
10854-10859.
|
 |
|
|
|
|
 |
X.Ge,
and
B.Roux
(2010).
Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials.
|
| |
J Mol Recognit,
23,
128-141.
|
 |
|
|
|
|
 |
Z.Meng,
N.L.Jackson,
O.D.Shcherbakov,
H.Choi,
and
S.W.Blume
(2010).
The human IGF1R IRES likely operates through a Shine-Dalgarno-like interaction with the G961 loop (E-site) of the 18S rRNA and is kinetically modulated by a naturally polymorphic polyU loop.
|
| |
J Cell Biochem,
110,
531-544.
|
 |
|
|
|
|
 |
A.Devaraj,
S.Shoji,
E.D.Holbrook,
and
K.Fredrick
(2009).
A role for the 30S subunit E site in maintenance of the translational reading frame.
|
| |
RNA,
15,
255-265.
|
 |
|
|
|
|
 |
A.Korostelev,
M.Laurberg,
and
H.F.Noller
(2009).
Multistart simulated annealing refinement of the crystal structure of the 70S ribosome.
|
| |
Proc Natl Acad Sci U S A,
106,
18195-18200.
|
 |
|
|
|
|
 |
A.Marintchev,
K.A.Edmonds,
B.Marintcheva,
E.Hendrickson,
M.Oberer,
C.Suzuki,
B.Herdy,
N.Sonenberg,
and
G.Wagner
(2009).
Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation.
|
| |
Cell,
136,
447-460.
|
 |
|
|
|
|
 |
A.Rich
(2009).
The era of RNA awakening: structural biology of RNA in the early years.
|
| |
Q Rev Biophys,
42,
117-137.
|
 |
|
|
|
|
 |
A.S.Spirin
(2009).
The ribosome as a conveying thermal ratchet machine.
|
| |
J Biol Chem,
284,
21103-21119.
|
 |
|
|
|
|
 |
C.U.Hellen
(2009).
IRES-induced conformational changes in the ribosome and the mechanism of translation initiation by internal ribosomal entry.
|
| |
Biochim Biophys Acta,
1789,
558-570.
|
 |
|
|
|
|
 |
D.P.Giedroc,
and
P.V.Cornish
(2009).
Frameshifting RNA pseudoknots: structure and mechanism.
|
| |
Virus Res,
139,
193-208.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Babaylova,
D.Graifer,
A.Malygin,
J.Stahl,
I.Shatsky,
and
G.Karpova
(2009).
Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome.
|
| |
Nucleic Acids Res,
37,
1141-1151.
|
 |
|
|
|
|
 |
F.Cava,
A.Hidalgo,
and
J.Berenguer
(2009).
Thermus thermophilus as biological model.
|
| |
Extremophiles,
13,
213-231.
|
 |
|
|
|
|
 |
F.Garza-Sánchez,
S.Shoji,
K.Fredrick,
and
C.S.Hayes
(2009).
RNase II is important for A-site mRNA cleavage during ribosome pausing.
|
| |
Mol Microbiol,
73,
882-897.
|
 |
|
|
|
|
 |
G.Chen,
K.Y.Chang,
M.Y.Chou,
C.Bustamante,
and
I.Tinoco
(2009).
Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of -1 ribosomal frameshifting.
|
| |
Proc Natl Acad Sci U S A,
106,
12706-12711.
|
 |
|
|
|
|
 |
G.Y.Soung,
J.L.Miller,
H.Koc,
and
E.C.Koc
(2009).
Comprehensive analysis of phosphorylated proteins of Escherichia coli ribosomes.
|
| |
J Proteome Res,
8,
3390-3402.
|
 |
|
|
|
|
 |
H.Yang
(2009).
In plants, expression breadth and expression level distinctly and non-linearly correlate with gene structure.
|
| |
Biol Direct,
4,
45.
|
 |
|
|
|
|
 |
J.J.Jo,
and
J.S.Shin
(2009).
Construction of intragenic synthetic riboswitches for detection of a small molecule.
|
| |
Biotechnol Lett,
31,
1577-1581.
|
 |
|
|
|
|
 |
J.L.Miller,
H.Cimen,
H.Koc,
and
E.C.Koc
(2009).
Phosphorylated proteins of the mammalian mitochondrial ribosome: implications in protein synthesis.
|
| |
J Proteome Res,
8,
4789-4798.
|
 |
|
|
|
|
 |
M.H.Mazauric,
J.L.Leroy,
K.Visscher,
S.Yoshizawa,
and
D.Fourmy
(2009).
Footprinting analysis of BWYV pseudoknot-ribosome complexes.
|
| |
RNA,
15,
1775-1786.
|
 |
|
|
|
|
 |
M.H.Mazauric,
Y.Seol,
S.Yoshizawa,
K.Visscher,
and
D.Fourmy
(2009).
Interaction of the HIV-1 frameshift signal with the ribosome.
|
| |
Nucleic Acids Res,
37,
7654-7664.
|
 |
|
|
|
|
 |
N.Malys,
and
R.Nivinskas
(2009).
Non-canonical RNA arrangement in T4-even phages: accommodated ribosome binding site at the gene 26-25 intercistronic junction.
|
| |
Mol Microbiol,
73,
1115-1127.
|
 |
|
|
|
|
 |
R.J.Marcheschi,
K.D.Mouzakis,
and
S.E.Butcher
(2009).
Selection and characterization of small molecules that bind the HIV-1 frameshift site RNA.
|
| |
ACS Chem Biol,
4,
844-854.
|
 |
|
|
|
|
 |
R.Moreno,
S.Marzi,
P.Romby,
and
F.Rojo
(2009).
The Crc global regulator binds to an unpaired A-rich motif at the Pseudomonas putida alkS mRNA coding sequence and inhibits translation initiation.
|
| |
Nucleic Acids Res,
37,
7678-7690.
|
 |
|
|
|
|
 |
S.Chiba,
A.Lamsa,
and
K.Pogliano
(2009).
A ribosome-nascent chain sensor of membrane protein biogenesis in Bacillus subtilis.
|
| |
EMBO J,
28,
3461-3475.
|
 |
|
|
|
|
 |
T.Dale,
R.P.Fahlman,
M.Olejniczak,
and
O.C.Uhlenbeck
(2009).
Specificity of the ribosomal A site for aminoacyl-tRNAs.
|
| |
Nucleic Acids Res,
37,
1202-1210.
|
 |
|
|
|
|
 |
X.Agirrezabala,
and
J.Frank
(2009).
Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu.
|
| |
Q Rev Biophys,
42,
159-200.
|
 |
|
|
|
|
 |
Y.Yu,
A.Marintchev,
V.G.Kolupaeva,
A.Unbehaun,
T.Veryasova,
S.C.Lai,
P.Hong,
G.Wagner,
C.U.Hellen,
and
T.V.Pestova
(2009).
Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing.
|
| |
Nucleic Acids Res,
37,
5167-5182.
|
 |
|
|
|
|
 |
A.Görg,
C.Lück,
and
W.Weiss
(2008).
Sample prefractionation in granulated sephadex IEF gels.
|
| |
Methods Mol Biol,
424,
277-286.
|
 |
|
|
|
|
 |
A.Simonetti,
S.Marzi,
A.G.Myasnikov,
A.Fabbretti,
M.Yusupov,
C.O.Gualerzi,
and
B.P.Klaholz
(2008).
Structure of the 30S translation initiation complex.
|
| |
Nature,
455,
416-420.
|
 |
|
|
|
|
 |
A.V.Pisarev,
V.G.Kolupaeva,
M.M.Yusupov,
C.U.Hellen,
and
T.V.Pestova
(2008).
Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes.
|
| |
EMBO J,
27,
1609-1621.
|
 |
|
|
|
|
 |
D.Dulude,
G.Théberge-Julien,
L.Brakier-Gingras,
and
N.Heveker
(2008).
Selection of peptides interfering with a ribosomal frameshift in the human immunodeficiency virus type 1.
|
| |
RNA,
14,
981-991.
|
 |
|
|
|
|
 |
E.M.Youngman,
M.E.McDonald,
and
R.Green
(2008).
Peptide release on the ribosome: mechanism and implications for translational control.
|
| |
Annu Rev Microbiol,
62,
353-373.
|
 |
|
|
|
|
 |
G.S.Kopeina,
Z.A.Afonina,
K.V.Gromova,
V.A.Shirokov,
V.D.Vasiliev,
and
A.S.Spirin
(2008).
Step-wise formation of eukaryotic double-row polyribosomes and circular translation of polysomal mRNA.
|
| |
Nucleic Acids Res,
36,
2476-2488.
|
 |
|
|
|
|
 |
J.Dong,
J.S.Nanda,
H.Rahman,
M.R.Pruitt,
B.S.Shin,
C.M.Wong,
J.R.Lorsch,
and
A.G.Hinnebusch
(2008).
Genetic identification of yeast 18S rRNA residues required for efficient recruitment of initiator tRNA(Met) and AUG selection.
|
| |
Genes Dev,
22,
2242-2255.
|
 |
|
|
|
|
 |
J.E.Brock,
S.Pourshahian,
J.Giliberti,
P.A.Limbach,
and
G.R.Janssen
(2008).
Ribosomes bind leaderless mRNA in Escherichia coli through recognition of their 5'-terminal AUG.
|
| |
RNA,
14,
2159-2169.
|
 |
|
|
|
|
 |
J.Richards,
and
J.G.Belasco
(2008).
A new window onto translational repression by bacterial sRNAs.
|
| |
Mol Cell,
32,
751-753.
|
 |
|
|
|
|
 |
K.Bakowska-Zywicka,
A.M.Kietrys,
and
T.Twardowski
(2008).
Antisense oligonucleotides targeting universally conserved 26S rRNA domains of plant ribosomes at different steps of polypeptide elongation.
|
| |
Oligonucleotides,
18,
175-186.
|
 |
|
|
|
|
 |
K.N.Bulygin,
S.Baouz-Drahy,
A.Favre,
A.G.Ven'iaminova,
D.M.Graíífer,
and
G.G.Karpova
(2008).
[The environment of tRNA 3'-terminus in 80S ribosome A and P sites].
|
| |
Bioorg Khim,
34,
96.
|
 |
|
|
|
|
 |
L.M.Chubiz,
and
C.V.Rao
(2008).
Computational design of orthogonal ribosomes.
|
| |
Nucleic Acids Res,
36,
4038-4046.
|
 |
|
|
|
|
 |
M.Bouvier,
C.M.Sharma,
F.Mika,
K.H.Nierhaus,
and
J.Vogel
(2008).
Small RNA binding to 5' mRNA coding region inhibits translational initiation.
|
| |
Mol Cell,
32,
827-837.
|
 |
|
|
|
|
 |
M.Y.Pavlov,
A.Antoun,
M.Lovmar,
and
M.Ehrenberg
(2008).
Complementary roles of initiation factor 1 and ribosome recycling factor in 70S ribosome splitting.
|
| |
EMBO J,
27,
1706-1717.
|
 |
|
|
|
|
 |
N.M.Wills,
M.O'Connor,
C.C.Nelson,
C.C.Rettberg,
W.M.Huang,
R.F.Gesteland,
and
J.F.Atkins
(2008).
Translational bypassing without peptidyl-tRNA anticodon scanning of coding gap mRNA.
|
| |
EMBO J,
27,
2533-2544.
|
 |
|
|
|
|
 |
O.Kurkcuoglu,
P.Doruker,
T.Z.Sen,
A.Kloczkowski,
and
R.L.Jernigan
(2008).
The ribosome structure controls and directs mRNA entry, translocation and exit dynamics.
|
| |
Phys Biol,
5,
046005.
|
 |
|
|
|
|
 |
P.Chandramouli,
M.Topf,
J.F.Ménétret,
N.Eswar,
J.J.Cannone,
R.R.Gutell,
A.Sali,
and
C.W.Akey
(2008).
Structure of the mammalian 80S ribosome at 8.7 A resolution.
|
| |
Structure,
16,
535-548.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Cao,
and
S.J.Chen
(2008).
Predicting ribosomal frameshifting efficiency.
|
| |
Phys Biol,
5,
16002.
|
 |
|
|
|
|
 |
S.Marzi,
P.Fechter,
C.Chevalier,
P.Romby,
and
T.Geissmann
(2008).
RNA switches regulate initiation of translation in bacteria.
|
| |
Biol Chem,
389,
585-598.
|
 |
|
|
|
|
 |
S.Yao,
J.B.Blaustein,
and
D.H.Bechhofer
(2008).
Erythromycin-induced ribosome stalling and RNase J1-mediated mRNA processing in Bacillus subtilis.
|
| |
Mol Microbiol,
69,
1439-1449.
|
 |
|
|
|
|
 |
Y.H.Min,
A.R.Kwon,
E.J.Yoon,
M.J.Shim,
and
E.C.Choi
(2008).
Translational attenuation and mRNA stabilization as mechanisms of erm(B) induction by erythromycin.
|
| |
Antimicrob Agents Chemother,
52,
1782-1789.
|
 |
|
|
|
|
 |
Y.S.Khairulina,
M.V.Molotkov,
K.N.Bulygin,
D.M.Graifer,
A.G.Ven'yaminova,
L.Y.Frolova,
J.Stahl,
and
G.G.Karpova
(2008).
[Protein S3 Fragments Neighboring mRNA during Elongation and Translation Termination on the Human Ribosome.]
|
| |
Bioorg Khim,
34,
773-780.
|
 |
|
|
|
|
 |
A.Grimson,
K.K.Farh,
W.K.Johnston,
P.Garrett-Engele,
L.P.Lim,
and
D.P.Bartel
(2007).
MicroRNA targeting specificity in mammals: determinants beyond seed pairing.
|
| |
Mol Cell,
27,
91.
|
 |
|
|
|
|
 |
A.Korostelev,
and
H.F.Noller
(2007).
The ribosome in focus: new structures bring new insights.
|
| |
Trends Biochem Sci,
32,
434-441.
|
 |
|
|
|
|
 |
A.Korostelev,
S.Trakhanov,
H.Asahara,
M.Laurberg,
L.Lancaster,
and
H.F.Noller
(2007).
Interactions and dynamics of the Shine Dalgarno helix in the 70S ribosome.
|
| |
Proc Natl Acad Sci U S A,
104,
16840-16843.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.L.Manuell,
J.Quispe,
and
S.P.Mayfield
(2007).
Structure of the chloroplast ribosome: novel domains for translation regulation.
|
| |
PLoS Biol,
5,
e209.
|
 |
|
|
|
|
 |
C.Guarraia,
L.Norris,
A.Raman,
and
P.J.Farabaugh
(2007).
Saturation mutagenesis of a +1 programmed frameshift-inducing mRNA sequence derived from a yeast retrotransposon.
|
| |
RNA,
13,
1940-1947.
|
 |
|
|
|
|
 |
C.L.Sanders,
and
J.F.Curran
(2007).
Genetic analysis of the E site during RF2 programmed frameshifting.
|
| |
RNA,
13,
1483-1491.
|
 |
|
|
|
|
 |
C.S.Fraser,
and
J.A.Doudna
(2007).
Structural and mechanistic insights into hepatitis C viral translation initiation.
|
| |
Nat Rev Microbiol,
5,
29-38.
|
 |
|
|
|
|
 |
D.Pan,
S.V.Kirillov,
and
B.S.Cooperman
(2007).
Kinetically competent intermediates in the translocation step of protein synthesis.
|
| |
Mol Cell,
25,
519-529.
|
 |
|
|
|
|
 |
D.Piekna-Przybylska,
W.A.Decatur,
and
M.J.Fournier
(2007).
New bioinformatic tools for analysis of nucleotide modifications in eukaryotic rRNA.
|
| |
RNA,
13,
305-312.
|
 |
|
|
|
|
 |
D.Taliaferro,
and
P.J.Farabaugh
(2007).
An mRNA sequence derived from the yeast EST3 gene stimulates programmed +1 translational frameshifting.
|
| |
RNA,
13,
606-613.
|
 |
|
|
|
|
 |
H.R.Jonker,
S.Ilin,
S.K.Grimm,
J.Wöhnert,
and
H.Schwalbe
(2007).
L11 domain rearrangement upon binding to RNA and thiostrepton studied by NMR spectroscopy.
|
| |
Nucleic Acids Res,
35,
441-454.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.Brierley,
S.Pennell,
and
R.J.Gilbert
(2007).
Viral RNA pseudoknots: versatile motifs in gene expression and replication.
|
| |
Nat Rev Microbiol,
5,
598-610.
|
 |
|
|
|
|
 |
J.E.Brock,
R.L.Paz,
P.Cottle,
and
G.R.Janssen
(2007).
Naturally occurring adenines within mRNA coding sequences affect ribosome binding and expression in Escherichia coli.
|
| |
J Bacteriol,
189,
501-510.
|
 |
|
|
|
|
 |
L.A.Passmore,
T.M.Schmeing,
D.Maag,
D.J.Applefield,
M.G.Acker,
M.A.Algire,
J.R.Lorsch,
and
V.Ramakrishnan
(2007).
The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome.
|
| |
Mol Cell,
26,
41-50.
|
 |
|
|
|
|
 |
L.Jenner,
B.Rees,
M.Yusupov,
and
G.Yusupova
(2007).
Messenger RNA conformations in the ribosomal E site revealed by X-ray crystallography.
|
| |
EMBO Rep,
8,
846-850.
|
 |
|
|
|
|
 |
L.Pnueli,
and
Y.Arava
(2007).
Genome-wide polysomal analysis of a yeast strain with mutated ribosomal protein S9.
|
| |
BMC Genomics,
8,
285.
|
 |
|
|
|
|
 |
M.R.Sharma,
D.N.Wilson,
P.P.Datta,
C.Barat,
F.Schluenzen,
P.Fucini,
and
R.K.Agrawal
(2007).
Cryo-EM study of the spinach chloroplast ribosome reveals the structural and functional roles of plastid-specific ribosomal proteins.
|
| |
Proc Natl Acad Sci U S A,
104,
19315-19320.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Schubert,
K.Lapouge,
O.Duss,
F.C.Oberstrass,
I.Jelesarov,
D.Haas,
and
F.H.Allain
(2007).
Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA.
|
| |
Nat Struct Mol Biol,
14,
807-813.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.V.Molotkov,
D.M.GraÄfer,
E.A.Popugaeva,
K.N.Bulygin,
M.I.Meshchaninova,
A.G.Ven'iaminova,
and
G.G.Karpova
(2007).
[Protein S3 in the human 80S ribosome adjoins mRNA from 3'-side of the A-site codon]
|
| |
Bioorg Khim,
33,
431-441.
|
 |
|
|
|
|
 |
N.Fischer,
A.Paleskava,
K.B.Gromadski,
A.L.Konevega,
M.C.Wahl,
H.Stark,
and
M.V.Rodnina
(2007).
Towards understanding selenocysteine incorporation into bacterial proteins.
|
| |
Biol Chem,
388,
1061-1067.
|
 |
|
|
|
|
 |
P.P.Datta,
D.N.Wilson,
M.Kawazoe,
N.K.Swami,
T.Kaminishi,
M.R.Sharma,
T.M.Booth,
C.Takemoto,
P.Fucini,
S.Yokoyama,
and
R.K.Agrawal
(2007).
Structural aspects of RbfA action during small ribosomal subunit assembly.
|
| |
Mol Cell,
28,
434-445.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.J.Marcheschi,
D.W.Staple,
and
S.E.Butcher
(2007).
Programmed ribosomal frameshifting in SIV is induced by a highly structured RNA stem-loop.
|
| |
J Mol Biol,
373,
652-663.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.D.Moore,
and
R.T.Sauer
(2007).
The tmRNA system for translational surveillance and ribosome rescue.
|
| |
Annu Rev Biochem,
76,
101-124.
|
 |
|
|
|
|
 |
S.Marzi,
A.G.Myasnikov,
A.Serganov,
C.Ehresmann,
P.Romby,
M.Yusupov,
and
B.P.Klaholz
(2007).
Structured mRNAs regulate translation initiation by binding to the platform of the ribosome.
|
| |
Cell,
130,
1019-1031.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Uemura,
M.Dorywalska,
T.H.Lee,
H.D.Kim,
J.D.Puglisi,
and
S.Chu
(2007).
Peptide bond formation destabilizes Shine-Dalgarno interaction on the ribosome.
|
| |
Nature,
446,
454-457.
|
 |
|
|
|
|
 |
T.Kaminishi,
D.N.Wilson,
C.Takemoto,
J.M.Harms,
M.Kawazoe,
F.Schluenzen,
K.Hanawa-Suetsugu,
M.Shirouzu,
P.Fucini,
and
S.Yokoyama
(2007).
A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgarno interaction.
|
| |
Structure,
15,
289-297.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Korostelev,
S.Trakhanov,
M.Laurberg,
and
H.F.Noller
(2006).
Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements.
|
| |
Cell,
126,
1065-1077.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Raman,
C.Guarraia,
D.Taliaferro,
G.Stahl,
and
P.J.Farabaugh
(2006).
An mRNA sequence derived from a programmed frameshifting signal decreases codon discrimination during translation initiation.
|
| |
RNA,
12,
1154-1160.
|
 |
|
|
|
|
 |
A.V.Pisarev,
V.G.Kolupaeva,
V.P.Pisareva,
W.C.Merrick,
C.U.Hellen,
and
T.V.Pestova
(2006).
Specific functional interactions of nucleotides at key -3 and +4 positions flanking the initiation codon with components of the mammalian 48S translation initiation complex.
|
| |
Genes Dev,
20,
624-636.
|
 |
|
|
|
|
 |
A.Wietzorrek,
H.Schwarz,
C.Herrmann,
and
V.Braun
(2006).
The genome of the novel phage Rtp, with a rosette-like tail tip, is homologous to the genome of phage T1.
|
| |
J Bacteriol,
188,
1419-1436.
|
 |
|
|
|
|
 |
B.S.Schuwirth,
J.M.Day,
C.W.Hau,
G.R.Janssen,
A.E.Dahlberg,
J.H.Cate,
and
A.Vila-Sanjurjo
(2006).
Structural analysis of kasugamycin inhibition of translation.
|
| |
Nat Struct Mol Biol,
13,
879-886.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.M.Henderson,
C.B.Anderson,
and
M.T.Howard
(2006).
Antisense-induced ribosomal frameshifting.
|
| |
Nucleic Acids Res,
34,
4302-4310.
|
 |
|
|
|
|
 |
D.E.Andreev,
I.M.Terenin,
Y.E.Dunaevsky,
S.E.Dmitriev,
and
I.N.Shatsky
(2006).
A leaderless mRNA can bind to mammalian 80S ribosomes and direct polypeptide synthesis in the absence of translation initiation factors.
|
| |
Mol Cell Biol,
26,
3164-3169.
|
 |
|
|
|
|
 |
E.Jan
(2006).
Divergent IRES elements in invertebrates.
|
| |
Virus Res,
119,
16-28.
|
 |
|
|
|
|
 |
E.S.Laletina,
D.M.GraÄfer,
A.A.Malygin,
I.N.ShatskiÄ,
and
G.G.Karpova
(2006).
[Molecular environment of the subdomain IIIe loop of the RNA IRES element of hepatitis C virus on the human 40S ribosomal subunit]
|
| |
Bioorg Khim,
32,
311-319.
|
 |
|
|
|
|
 |
F.J.Isaacs,
D.J.Dwyer,
and
J.J.Collins
(2006).
RNA synthetic biology.
|
| |
Nat Biotechnol,
24,
545-554.
|
 |
|
|
|
|
 |
G.Hirokawa,
N.Demeshkina,
N.Iwakura,
H.Kaji,
and
A.Kaji
(2006).
The ribosome-recycling step: consensus or controversy?
|
| |
Trends Biochem Sci,
31,
143-149.
|
 |
|
|
|
|
 |
G.Yusupova,
L.Jenner,
B.Rees,
D.Moras,
and
M.Yusupov
(2006).
Structural basis for messenger RNA movement on the ribosome.
|
| |
Nature,
444,
391-394.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.Brierley,
and
F.J.Dos Ramos
(2006).
Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV.
|
| |
Virus Res,
119,
29-42.
|
 |
|
|
|
|
 |
J.Dresios,
P.Panopoulos,
and
D.Synetos
(2006).
Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function.
|
| |
Mol Microbiol,
59,
1651-1663.
|
 |
|
|
|
|
 |
J.Dresios,
S.A.Chappell,
W.Zhou,
and
V.P.Mauro
(2006).
An mRNA-rRNA base-pairing mechanism for translation initiation in eukaryotes.
|
| |
Nat Struct Mol Biol,
13,
30-34.
|
 |
|
|
|
|
 |
J.Xu,
M.C.Kiel,
A.Golshani,
J.G.Chosay,
H.Aoki,
and
M.C.Ganoza
(2006).
Molecular localization of a ribosome-dependent ATPase on Escherichia coli ribosomes.
|
| |
Nucleic Acids Res,
34,
1158-1165.
|
 |
|
|
|
|
 |
K.Mitra,
and
J.Frank
(2006).
Ribosome dynamics: insights from atomic structure modeling into cryo-electron microscopy maps.
|
| |
Annu Rev Biophys Biomol Struct,
35,
299-317.
|
 |
|
|
|
|
 |
M.Selmer,
C.M.Dunham,
F.V.Murphy,
A.Weixlbaumer,
S.Petry,
A.C.Kelley,
J.R.Weir,
and
V.Ramakrishnan
(2006).
Structure of the 70S ribosome complexed with mRNA and tRNA.
|
| |
Science,
313,
1935-1942.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Kirthi,
B.Roy-Chaudhuri,
T.Kelley,
and
G.M.Culver
(2006).
A novel single amino acid change in small subunit ribosomal protein S5 has profound effects on translational fidelity.
|
| |
RNA,
12,
2080-2091.
|
 |
|
|
|
|
 |
O.Namy,
S.J.Moran,
D.I.Stuart,
R.J.Gilbert,
and
I.Brierley
(2006).
A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting.
|
| |
Nature,
441,
244-247.
|
 |
|
|
|
|
 |
P.V.Cornish,
and
D.P.Giedroc
(2006).
Pairwise coupling analysis of helical junction hydrogen bonding interactions in luteoviral RNA pseudoknots.
|
| |
Biochemistry,
45,
11162-11171.
|
 |
|
|
|
|
 |
P.V.Cornish,
S.N.Stammler,
and
D.P.Giedroc
(2006).
The global structures of a wild-type and poorly functional plant luteoviral mRNA pseudoknot are essentially identical.
|
| |
RNA,
12,
1959-1969.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.E.Walker,
and
K.Fredrick
(2006).
Recognition and positioning of mRNA in the ribosome by tRNAs with expanded anticodons.
|
| |
J Mol Biol,
360,
599-609.
|
 |
|
|
|
|
 |
S.M.Studer,
and
S.Joseph
(2006).
Unfolding of mRNA secondary structure by the bacterial translation initiation complex.
|
| |
Mol Cell,
22,
105-115.
|
 |
|
|
|
|
 |
S.Nonin-Lecomte,
B.Felden,
and
F.Dardel
(2006).
NMR structure of the Aquifex aeolicus tmRNA pseudoknot PK1: new insights into the recoding event of the ribosomal trans-translation.
|
| |
Nucleic Acids Res,
34,
1847-1853.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.D.Schneider
(2006).
Twenty Years of Delila and Molecular Information Theory: The Altenberg-Austin Workshop in Theoretical Biology Biological Information, Beyond Metaphor: Causality, Explanation, and Unification Altenberg, Austria, 11-14 July 2002.
|
| |
Biol Theory,
1,
250-260.
|
 |
|
|
|
|
 |
T.W.Dreher,
and
W.A.Miller
(2006).
Translational control in positive strand RNA plant viruses.
|
| |
Virology,
344,
185-197.
|
 |
|
|
|
|
 |
Y.Matsuo,
T.Morimoto,
M.Kuwano,
P.C.Loh,
T.Oshima,
and
N.Ogasawara
(2006).
The GTP-binding protein YlqF participates in the late step of 50 S ribosomal subunit assembly in Bacillus subtilis.
|
| |
J Biol Chem,
281,
8110-8117.
|
 |
|
|
|
|
 |
A.A.Komar,
and
M.Hatzoglou
(2005).
Internal ribosome entry sites in cellular mRNAs: mystery of their existence.
|
| |
J Biol Chem,
280,
23425-23428.
|
 |
|
|
|
|
 |
A.G.Myasnikov,
S.Marzi,
A.Simonetti,
A.M.Giuliodori,
C.O.Gualerzi,
G.Yusupova,
M.Yusupov,
and
B.P.Klaholz
(2005).
Conformational transition of initiation factor 2 from the GTP- to GDP-bound state visualized on the ribosome.
|
| |
Nat Struct Mol Biol,
12,
1145-1149.
|
 |
|
|
|
|
 |
A.Yassin,
K.Fredrick,
and
A.S.Mankin
(2005).
Deleterious mutations in small subunit ribosomal RNA identify functional sites and potential targets for antibiotics.
|
| |
Proc Natl Acad Sci U S A,
102,
16620-16625.
|
 |
|
|
|
|
 |
B.S.Laursen,
H.P.Sørensen,
K.K.Mortensen,
and
H.U.Sperling-Petersen
(2005).
Initiation of protein synthesis in bacteria.
|
| |
Microbiol Mol Biol Rev,
69,
101-123.
|
 |
|
|
|
|
 |
B.S.Schuwirth,
M.A.Borovinskaya,
C.W.Hau,
W.Zhang,
A.Vila-Sanjurjo,
J.M.Holton,
and
J.H.Cate
(2005).
Structures of the bacterial ribosome at 3.5 A resolution.
|
| |
Science,
310,
827-834.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Siridechadilok,
C.S.Fraser,
R.J.Hall,
J.A.Doudna,
and
E.Nogales
(2005).
Structural roles for human translation factor eIF3 in initiation of protein synthesis.
|
| |
Science,
310,
1513-1515.
|
 |
|
|
|
|
 |
C.L.Shenvi,
K.C.Dong,
E.M.Friedman,
J.A.Hanson,
and
J.H.Cate
(2005).
Accessibility of 18S rRNA in human 40S subunits and 80S ribosomes at physiological magnesium ion concentrations--implications for the study of ribosome dynamics.
|
| |
RNA,
11,
1898-1908.
|
 |
|
|
|
|
 |
D.Boehringer,
R.Thermann,
A.Ostareck-Lederer,
J.D.Lewis,
and
H.Stark
(2005).
Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES.
|
| |
Structure,
13,
1695-1706.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.E.Brodersen,
and
P.Nissen
(2005).
The social life of ribosomal proteins.
|
| |
FEBS J,
272,
2098-2108.
|
 |
|
|
|
|
 |
D.N.Wilson,
and
K.H.Nierhaus
(2005).
Ribosomal proteins in the spotlight.
|
| |
Crit Rev Biochem Mol Biol,
40,
243-267.
|
 |
|
|
|
|
 |
I.K.Wower,
C.Zwieb,
and
J.Wower
(2005).
Transfer-messenger RNA unfolds as it transits the ribosome.
|
| |
RNA,
11,
668-673.
|
 |
|
|
|
|
 |
J.Poehlsgaard,
and
S.Douthwaite
(2005).
The bacterial ribosome as a target for antibiotics.
|
| |
Nat Rev Microbiol,
3,
870-881.
|
 |
|
|
|
|
 |
J.S.Sharp,
and
D.H.Bechhofer
(2005).
Effect of 5'-proximal elements on decay of a model mRNA in Bacillus subtilis.
|
| |
Mol Microbiol,
57,
484-495.
|
 |
|
|
|
|
 |
K.Asano,
D.Kurita,
K.Takada,
T.Konno,
A.Muto,
and
H.Himeno
(2005).
Competition between trans-translation and termination or elongation of translation.
|
| |
Nucleic Acids Res,
33,
5544-5552.
|
 |
|
|
|
|
 |
L.Jenner,
P.Romby,
B.Rees,
C.Schulze-Briese,
M.Springer,
C.Ehresmann,
B.Ehresmann,
D.Moras,
G.Yusupova,
and
M.Yusupov
(2005).
Translational operator of mRNA on the ribosome: how repressor proteins exclude ribosome binding.
|
| |
Science,
308,
120-123.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Olejniczak,
T.Dale,
R.P.Fahlman,
and
O.C.Uhlenbeck
(2005).
Idiosyncratic tuning of tRNAs to achieve uniform ribosome binding.
|
| |
Nat Struct Mol Biol,
12,
788-793.
|
 |
|
|
|
|
 |
M.T.Howard,
G.Aggarwal,
C.B.Anderson,
S.Khatri,
K.M.Flanigan,
and
J.F.Atkins
(2005).
Recoding elements located adjacent to a subset of eukaryal selenocysteine-specifying UGA codons.
|
| |
EMBO J,
24,
1596-1607.
|
 |
|
|
|
|
 |
N.A.Demeshkina,
V.A.Stiazhkina,
K.N.Bulygin,
M.N.Repkova,
A.G.Ven'iaminova,
and
G.G.Karpova
(2005).
[Template location on the human ribosome: environment of the mRNA nucleotide adjacent to the A-site codon on the 3'-side]
|
| |
Bioorg Khim,
31,
295-302.
|
 |
|
|
|
|
 |
N.M.Abdi,
and
K.Fredrick
(2005).
Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli.
|
| |
RNA,
11,
1624-1632.
|
 |
|
|
|
|
 |
O.Rackham,
and
J.W.Chin
(2005).
A network of orthogonal ribosome x mRNA pairs.
|
| |
Nat Chem Biol,
1,
159-166.
|
 |
|
|
|
|
 |
P.S.Pallan,
W.S.Marshall,
J.Harp,
F.C.Jewett,
Z.Wawrzak,
B.A.Brown,
A.Rich,
and
M.Egli
(2005).
Crystal structure of a luteoviral RNA pseudoknot and model for a minimal ribosomal frameshifting motif.
|
| |
Biochemistry,
44,
11315-11322.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.V.Cornish,
M.Hennig,
and
D.P.Giedroc
(2005).
A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting.
|
| |
Proc Natl Acad Sci U S A,
102,
12694-12699.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Takyar,
R.P.Hickerson,
and
H.F.Noller
(2005).
mRNA helicase activity of the ribosome.
|
| |
Cell,
120,
49-58.
|
 |
|
|
|
|
 |
S.Yoshizawa,
L.Rasubala,
T.Ose,
D.Kohda,
D.Fourmy,
and
K.Maenaka
(2005).
Structural basis for mRNA recognition by elongation factor SelB.
|
| |
Nat Struct Mol Biol,
12,
198-203.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.J.Herr,
N.M.Wills,
C.C.Nelson,
R.F.Gesteland,
and
J.F.Atkins
(2004).
Factors that influence selection of coding resumption sites in translational bypassing: minimal conventional peptidyl-tRNA:mRNA pairing can suffice.
|
| |
J Biol Chem,
279,
11081-11087.
|
 |
|
|
|
|
 |
A.Rich,
and
A.Rich
(2004).
The excitement of discovery.
|
| |
Annu Rev Biochem,
73,
1.
|
 |
|
|
|
|
 |
A.Vila-Sanjurjo,
B.S.Schuwirth,
C.W.Hau,
and
J.H.Cate
(2004).
Structural basis for the control of translation initiation during stress.
|
| |
Nat Struct Mol Biol,
11,
1054-1059.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Schneider,
Z.Morávek,
and
H.M.Berman
(2004).
RNA conformational classes.
|
| |
Nucleic Acids Res,
32,
1666-1677.
|
 |
|
|
|
|
 |
C.M.Spahn,
E.Jan,
A.Mulder,
R.A.Grassucci,
P.Sarnow,
and
J.Frank
(2004).
Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor.
|
| |
Cell,
118,
465-475.
|
 |
|
|
|
|
 |
D.Graifer,
M.Molotkov,
V.Styazhkina,
N.Demeshkina,
K.Bulygin,
A.Eremina,
A.Ivanov,
E.Laletina,
A.Ven'yaminova,
and
G.Karpova
(2004).
Variable and conserved elements of human ribosomes surrounding the mRNA at the decoding and upstream sites.
|
| |
Nucleic Acids Res,
32,
3282-3293.
|
 |
|
|
|
|
 |
H.Himeno,
K.Hanawa-Suetsugu,
T.Kimura,
K.Takagi,
W.Sugiyama,
S.Shirata,
T.Mikami,
F.Odagiri,
Y.Osanai,
D.Watanabe,
S.Goto,
L.Kalachnyuk,
C.Ushida,
and
A.Muto
(2004).
A novel GTPase activated by the small subunit of ribosome.
|
| |
Nucleic Acids Res,
32,
5303-5309.
|
 |
|
|
|
|
 |
H.J.Merianos,
J.Wang,
and
P.B.Moore
(2004).
The structure of a ribosomal protein S8/spc operon mRNA complex.
|
| |
RNA,
10,
954-964.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.L.Holmes,
and
G.M.Culver
(2004).
Mapping structural differences between 30S ribosomal subunit assembly intermediates.
|
| |
Nat Struct Mol Biol,
11,
179-186.
|
 |
|
|
|
|
 |
M.J.Trimble,
A.Minnicus,
and
K.P.Williams
(2004).
tRNA slippage at the tmRNA resume codon.
|
| |
RNA,
10,
805-812.
|
 |
|
|
|
|
 |
M.Léger,
S.Sidani,
and
L.Brakier-Gingras
(2004).
A reassessment of the response of the bacterial ribosome to the frameshift stimulatory signal of the human immunodeficiency virus type 1.
|
| |
RNA,
10,
1225-1235.
|
 |
|
|
|
|
 |
M.M.Anokhina,
A.Barta,
K.H.Nierhaus,
V.A.Spiridonova,
and
A.M.Kopylov
(2004).
Mapping of the second tetracycline binding site on the ribosomal small subunit of E.coli.
|
| |
Nucleic Acids Res,
32,
2594-2597.
|
 |
|
|
|
|
 |
M.Paulus,
M.Haslbeck,
and
M.Watzele
(2004).
RNA stem-loop enhanced expression of previously non-expressible genes.
|
| |
Nucleic Acids Res,
32,
e78.
|
 |
|
|
|
|
 |
M.T.Howard,
R.F.Gesteland,
and
J.F.Atkins
(2004).
Efficient stimulation of site-specific ribosome frameshifting by antisense oligonucleotides.
|
| |
RNA,
10,
1653-1661.
|
 |
|
|
|
|
 |
R.J.Gilbert,
P.Fucini,
S.Connell,
S.D.Fuller,
K.H.Nierhaus,
C.V.Robinson,
C.M.Dobson,
and
D.I.Stuart
(2004).
Three-dimensional structures of translating ribosomes by Cryo-EM.
|
| |
Mol Cell,
14,
57-66.
|
 |
|
|
|
|
 |
R.K.Agrawal,
M.R.Sharma,
M.C.Kiel,
G.Hirokawa,
T.M.Booth,
C.M.Spahn,
R.A.Grassucci,
A.Kaji,
and
J.Frank
(2004).
Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: functional implications.
|
| |
Proc Natl Acad Sci U S A,
101,
8900-8905.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.P.Fahlman,
T.Dale,
and
O.C.Uhlenbeck
(2004).
Uniform binding of aminoacylated transfer RNAs to the ribosomal A and P sites.
|
| |
Mol Cell,
16,
799-805.
|
 |
|
|
|
|
 |
U.Mäder,
S.Hennig,
M.Hecker,
and
G.Homuth
(2004).
Transcriptional organization and posttranscriptional regulation of the Bacillus subtilis branched-chain amino acid biosynthesis genes.
|
| |
J Bacteriol,
186,
2240-2252.
|
 |
|
|
|
|
 |
Z.Druzina,
and
B.S.Cooperman
(2004).
Photolabile anticodon stem-loop analogs of tRNAPhe as probes of ribosomal structure and structural fluctuation at the decoding center.
|
| |
RNA,
10,
1550-1562.
|
 |
|
|
|
|
 |
A.Meskauskas,
J.W.Harger,
K.L.Jacobs,
and
J.D.Dinman
(2003).
Decreased peptidyltransferase activity correlates with increased programmed -1 ribosomal frameshifting and viral maintenance defects in the yeast Saccharomyces cerevisiae.
|
| |
RNA,
9,
982-992.
|
 |
|
|
|
|
 |
A.Tabb-Massey,
J.M.Caffrey,
P.Logsden,
S.Taylor,
J.O.Trent,
and
S.R.Ellis
(2003).
Ribosomal proteins Rps0 and Rps21 of Saccharomyces cerevisiae have overlapping functions in the maturation of the 3' end of 18S rRNA.
|
| |
Nucleic Acids Res,
31,
6798-6805.
|
 |
|
|
|
|
 |
B.P.Klaholz,
T.Pape,
A.V.Zavialov,
A.G.Myasnikov,
E.V.Orlova,
B.Vestergaard,
M.Ehrenberg,
and
M.van Heel
(2003).
Structure of the Escherichia coli ribosomal termination complex with release factor 2.
|
| |
Nature,
421,
90-94.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.H.Williams,
and
T.D.Fox
(2003).
Antagonistic signals within the COX2 mRNA coding sequence control its translation in Saccharomyces cerevisiae mitochondria.
|
| |
RNA,
9,
419-431.
|
 |
|
|
|
|
 |
E.P.Plant,
K.L.Jacobs,
J.W.Harger,
A.Meskauskas,
J.L.Jacobs,
J.L.Baxter,
A.N.Petrov,
and
J.D.Dinman
(2003).
The 9-A solution: how mRNA pseudoknots promote efficient programmed -1 ribosomal frameshifting.
|
| |
RNA,
9,
168-174.
|
 |
|
|
|
|
 |
F.Robert,
and
L.Brakier-Gingras
(2003).
A functional interaction between ribosomal proteins S7 and S11 within the bacterial ribosome.
|
| |
J Biol Chem,
278,
44913-44920.
|
 |
|
|
|
|
 |
G.M.Culver
(2003).
Assembly of the 30S ribosomal subunit.
|
| |
Biopolymers,
68,
234-249.
|
 |
|
|
|
|
 |
H.Gao,
J.Sengupta,
M.Valle,
A.Korostelev,
N.Eswar,
S.M.Stagg,
P.Van Roey,
R.K.Agrawal,
S.C.Harvey,
A.Sali,
M.S.Chapman,
and
J.Frank
(2003).
Study of the structural dynamics of the E coli 70S ribosome using real-space refinement.
|
| |
Cell,
113,
789-801.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.S.Sharp,
and
D.H.Bechhofer
(2003).
Effect of translational signals on mRNA decay in Bacillus subtilis.
|
| |
J Bacteriol,
185,
5372-5379.
|
 |
|
|
|
|
 |
M.R.Sharma,
E.C.Koc,
P.P.Datta,
T.M.Booth,
L.L.Spremulli,
and
R.K.Agrawal
(2003).
Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins.
|
| |
Cell,
115,
97.
|
 |
|
|
|
|
 |
M.Valle,
R.Gillet,
S.Kaur,
A.Henne,
V.Ramakrishnan,
and
J.Frank
(2003).
Visualizing tmRNA entry into a stalled ribosome.
|
| |
Science,
300,
127-130.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Licznar,
N.Mejlhede,
M.F.Prère,
N.Wills,
R.F.Gesteland,
J.F.Atkins,
and
O.Fayet
(2003).
Programmed translational -1 frameshifting on hexanucleotide motifs and the wobble properties of tRNAs.
|
| |
EMBO J,
22,
4770-4778.
|
 |
|
|
|
|
 |
P.Romby,
and
M.Springer
(2003).
Bacterial translational control at atomic resolution.
|
| |
Trends Genet,
19,
155-161.
|
 |
|
|
|
|
 |
S.Joseph
(2003).
After the ribosome structure: how does translocation work?
|
| |
RNA,
9,
160-164.
|
 |
|
|
|
|
 |
T.M.Hansen,
P.V.Baranov,
I.P.Ivanov,
R.F.Gesteland,
and
J.F.Atkins
(2003).
Maintenance of the correct open reading frame by the ribosome.
|
| |
EMBO Rep,
4,
499-504.
|
 |
|
|
|
|
 |
U.B.Rawat,
A.V.Zavialov,
J.Sengupta,
M.Valle,
R.A.Grassucci,
J.Linde,
B.Vestergaard,
M.Ehrenberg,
and
J.Frank
(2003).
A cryo-electron microscopic study of ribosome-bound termination factor RF2.
|
| |
Nature,
421,
87-90.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Bertrand,
M.F.Prère,
R.F.Gesteland,
J.F.Atkins,
and
O.Fayet
(2002).
Influence of the stacking potential of the base 3' of tandem shift codons on -1 ribosomal frameshifting used for gene expression.
|
| |
RNA,
8,
16-28.
|
 |
|
|
|
|
 |
C.S.Tung,
S.Joseph,
and
K.Y.Sanbonmatsu
(2002).
All-atom homology model of the Escherichia coli 30S ribosomal subunit.
|
| |
Nat Struct Biol,
9,
750-755.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.E.Low,
J.de Azavedo,
K.Weiss,
T.Mazzulli,
M.Kuhn,
D.Church,
K.Forward,
G.Zhanel,
A.Simor,
and
A.McGeer
(2002).
Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in Canada during 2000.
|
| |
Antimicrob Agents Chemother,
46,
1295-1301.
|
 |
|
|
|
|
 |
G.A.Otto,
P.J.Lukavsky,
A.M.Lancaster,
P.Sarnow,
and
J.D.Puglisi
(2002).
Ribosomal proteins mediate the hepatitis C virus IRES-HeLa 40S interaction.
|
| |
RNA,
8,
913-923.
|
 |
|
|
|
|
 |
G.Hirokawa,
M.C.Kiel,
A.Muto,
G.Kawai,
K.Igarashi,
H.Kaji,
and
A.Kaji
(2002).
Binding of ribosome recycling factor to ribosomes, comparison with tRNA.
|
| |
J Biol Chem,
277,
35847-35852.
|
 |
|
|
|
|
 |
G.Hirokawa,
M.C.Kiel,
A.Muto,
M.Selmer,
V.S.Raj,
A.Liljas,
K.Igarashi,
H.Kaji,
and
A.Kaji
(2002).
Post-termination complex disassembly by ribosome recycling factor, a functional tRNA mimic.
|
| |
EMBO J,
21,
2272-2281.
|
 |
|
|
|
|
 |
G.Stahl,
G.P.McCarty,
and
P.J.Farabaugh
(2002).
Ribosome structure: revisiting the connection between translational accuracy and unconventional decoding.
|
| |
Trends Biochem Sci,
27,
178-183.
|
 |
|
|
|
|
 |
J.K.Barry,
and
W.A.Miller
(2002).
A -1 ribosomal frameshift element that requires base pairing across four kilobases suggests a mechanism of regulating ribosome and replicase traffic on a viral RNA.
|
| |
Proc Natl Acad Sci U S A,
99,
11133-11138.
|
 |
|
|
|
|
 |
J.Ma,
A.Campbell,
and
S.Karlin
(2002).
Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures.
|
| |
J Bacteriol,
184,
5733-5745.
|
 |
|
|
|
|
 |
J.W.Harger,
A.Meskauskas,
and
J.D.Dinman
(2002).
An "integrated model" of programmed ribosomal frameshifting.
|
| |
Trends Biochem Sci,
27,
448-454.
|
 |
|
|
|
|
 |
K.Fredrick,
and
H.F.Noller
(2002).
Accurate translocation of mRNA by the ribosome requires a peptidyl group or its analog on the tRNA moving into the 30S P site.
|
| |
Mol Cell,
9,
1125-1131.
|
 |
|
|
|
|
 |
L.Lancaster,
M.C.Kiel,
A.Kaji,
and
H.F.Noller
(2002).
Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing.
|
| |
Cell,
111,
129-140.
|
 |
|
|
|
|
 |
M.A.Schäfer,
A.O.Tastan,
S.Patzke,
G.Blaha,
C.M.Spahn,
D.N.Wilson,
and
K.H.Nierhaus
(2002).
Codon-anticodon interaction at the P site is a prerequisite for tRNA interaction with the small ribosomal subunit.
|
| |
J Biol Chem,
277,
19095-19105.
|
 |
|
|
|
|
 |
M.Selmer,
and
X.D.Su
(2002).
Crystal structure of an mRNA-binding fragment of Moorella thermoacetica elongation factor SelB.
|
| |
EMBO J,
21,
4145-4153.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Valle,
J.Sengupta,
N.K.Swami,
R.A.Grassucci,
N.Burkhardt,
K.H.Nierhaus,
R.K.Agrawal,
and
J.Frank
(2002).
Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process.
|
| |
EMBO J,
21,
3557-3567.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.V.Baranov,
R.F.Gesteland,
and
J.F.Atkins
(2002).
Release factor 2 frameshifting sites in different bacteria.
|
| |
EMBO Rep,
3,
373-377.
|
 |
|
|
|
|
 |
S.Cheley,
L.Q.Gu,
and
H.Bayley
(2002).
Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate with an engineered pore.
|
| |
Chem Biol,
9,
829-838.
|
 |
|
|
|
|
 |
S.P.Fletcher,
and
R.J.Jackson
(2002).
Pestivirus internal ribosome entry site (IRES) structure and function: elements in the 5' untranslated region important for IRES function.
|
| |
J Virol,
76,
5024-5033.
|
 |
|
|
|
|
 |
V.Ramakrishnan
(2002).
Ribosome structure and the mechanism of translation.
|
| |
Cell,
108,
557-572.
|
 |
|
|
|
|
 |
W.J.He,
S.Tang,
and
W.Y.Liu
(2002).
In vitro interaction of eukaryotic elongation factor 2 with synthetic oligoribonucleotide that mimics GTPase domain of rat 28S ribosomal RNA.
|
| |
Int J Biochem Cell Biol,
34,
263-268.
|
 |
|
|
|
|
 |
G.M.Culver
(2001).
Meanderings of the mRNA through the ribosome.
|
| |
Structure,
9,
751-758.
|
 |
|
|
|
|
 |
G.Stahl,
S.Ben Salem,
Z.Li,
G.McCarty,
A.Raman,
M.Shah,
and
P.J.Farabaugh
(2001).
Programmed +1 translational frameshifting in the yeast Saccharomyces cerevisiae results from disruption of translational error correction.
|
| |
Cold Spring Harb Symp Quant Biol,
66,
249-258.
|
 |
|
|
|
|
 |
H.F.Noller,
M.M.Yusupov,
G.Z.Yusupova,
A.Baucom,
K.Lieberman,
L.Lancaster,
A.Dallas,
K.Fredrick,
T.N.Earnest,
and
J.H.Cate
(2001).
Structure of the ribosome at 5.5 A resolution and its interactions with functional ligands.
|
| |
Cold Spring Harb Symp Quant Biol,
66,
57-66.
|
 |
|
|
|
|
 |
I.Brierley,
and
S.Pennell
(2001).
Structure and function of the stimulatory RNAs involved in programmed eukaryotic-1 ribosomal frameshifting.
|
| |
Cold Spring Harb Symp Quant Biol,
66,
233-248.
|
 |
|
|
|
|
 |
J.B.Mansell,
D.Guévremont,
E.S.Poole,
and
W.P.Tate
(2001).
A dynamic competition between release factor 2 and the tRNA(Sec) decoding UGA at the recoding site of Escherichia coli formate dehydrogenase H.
|
| |
EMBO J,
20,
7284-7293.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
| |