spacer
spacer

PDBsum entry 2e5l

Go to PDB code: 
protein dna_rna metals Protein-protein interface(s) links
Ribosome PDB id
2e5l

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
222 a.a. *
206 a.a. *
208 a.a. *
150 a.a. *
101 a.a. *
155 a.a. *
138 a.a. *
127 a.a. *
98 a.a. *
115 a.a. *
124 a.a. *
122 a.a. *
60 a.a. *
88 a.a. *
83 a.a. *
104 a.a. *
73 a.a. *
80 a.a. *
99 a.a. *
24 a.a. *
DNA/RNA
Metals
_ZN ×2
* Residue conservation analysis
PDB id:
2e5l
Name: Ribosome
Title: A snapshot of the 30s ribosomal subunit capturing mRNA via the shine- dalgarno interaction
Structure: 16s ribosomal RNA. Chain: a. 5'-r( Gp Ap Ap Ap Gp A)-3'. Chain: 1, 2. Engineered: yes. 30s ribosomal protein s2. Chain: b. 30s ribosomal protein s3. Chain: c.
Source: Thermus thermophilus. Organism_taxid: 274. Synthetic: yes. Synthetic construct. Organism_taxid: 32630. Organism_taxid: 274
Resolution:
3.30Å     R-factor:   0.259     R-free:   0.301
Authors: T.Kaminishi,D.N.Wilson,C.Takemoto,J.M.Harms,M.Kawazoe,F.Schluenzen, K.Hanawa-Suetsugu,M.Shirouzu,P.Fucini,S.Yokoyama,Riken Structural Genomics/proteomics Initiative (Rsgi)
Key ref:
T.Kaminishi et al. (2007). A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgarno interaction. Structure, 15, 289-297. PubMed id: 17355865 DOI: 10.1016/j.str.2006.12.008
Date:
21-Dec-06     Release date:   15-May-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P80371  (RS2_THET8) -  Small ribosomal subunit protein uS2 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
256 a.a.
222 a.a.
Protein chain
Pfam   ArchSchema ?
P80372  (RS3_THET8) -  Small ribosomal subunit protein uS3 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
239 a.a.
206 a.a.
Protein chain
Pfam   ArchSchema ?
P80373  (RS4_THET8) -  Small ribosomal subunit protein uS4 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
209 a.a.
208 a.a.
Protein chain
Pfam   ArchSchema ?
Q5SHQ5  (RS5_THET8) -  Small ribosomal subunit protein uS5 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
162 a.a.
150 a.a.
Protein chain
Q5SLP8  (RS6_THET8) -  Small ribosomal subunit protein bS6 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
101 a.a.
101 a.a.
Protein chain
Pfam   ArchSchema ?
P17291  (RS7_THET8) -  Small ribosomal subunit protein uS7 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
156 a.a.
155 a.a.
Protein chain
Pfam   ArchSchema ?
P0DOY9  (RS8_THET8) -  Small ribosomal subunit protein uS8 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
138 a.a.
138 a.a.
Protein chain
Pfam   ArchSchema ?
P80374  (RS9_THET8) -  Small ribosomal subunit protein uS9 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
128 a.a.
127 a.a.*
Protein chain
Pfam   ArchSchema ?
Q5SHN7  (RS10_THET8) -  Small ribosomal subunit protein uS10 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
105 a.a.
98 a.a.
Protein chain
Pfam   ArchSchema ?
P80376  (RS11_THET8) -  Small ribosomal subunit protein uS11 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
129 a.a.
115 a.a.
Protein chain
Pfam   ArchSchema ?
Q5SHN3  (RS12_THET8) -  Small ribosomal subunit protein uS12 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
132 a.a.
124 a.a.
Protein chain
Pfam   ArchSchema ?
P80377  (RS13_THET8) -  Small ribosomal subunit protein uS13 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
126 a.a.
122 a.a.
Protein chain
Pfam   ArchSchema ?
P0DOY6  (RS14Z_THET8) -  Small ribosomal subunit protein uS14 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
61 a.a.
60 a.a.
Protein chain
Pfam   ArchSchema ?
Q5SJ76  (RS15_THET8) -  Small ribosomal subunit protein uS15 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
89 a.a.
88 a.a.
Protein chain
Pfam   ArchSchema ?
Q5SJH3  (RS16_THET8) -  Small ribosomal subunit protein bS16 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
88 a.a.
83 a.a.
Protein chain
Pfam   ArchSchema ?
P0DOY7  (RS17_THET8) -  Small ribosomal subunit protein uS17 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
105 a.a.
104 a.a.*
Protein chain
Pfam   ArchSchema ?
Q5SLQ0  (RS18_THET8) -  Small ribosomal subunit protein bS18 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
88 a.a.
73 a.a.*
Protein chain
Pfam   ArchSchema ?
Q5SHP2  (RS19_THET8) -  Small ribosomal subunit protein uS19 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
93 a.a.
80 a.a.
Protein chain
Pfam   ArchSchema ?
P80380  (RS20_THET8) -  Small ribosomal subunit protein bS20 from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
106 a.a.
99 a.a.*
Protein chain
Q5SIH3  (RSHX_THET8) -  Small ribosomal subunit protein bTHX from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
27 a.a.
24 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

DNA/RNA chains
  U-U-G-G-A-G-A-G-U-U-U-G-A-U-C-C-U-G-G-C-U-C-A-G-G-G-U-G-A-A-C-G-C-U-G-G-C-G-G- ... 1517 bases
  G-A-A-A-G-A 6 bases
  G-A-A-A 4 bases

 Enzyme reactions 
   Enzyme class: Chains B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, V: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/j.str.2006.12.008 Structure 15:289-297 (2007)
PubMed id: 17355865  
 
 
A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgarno interaction.
T.Kaminishi, D.N.Wilson, C.Takemoto, J.M.Harms, M.Kawazoe, F.Schluenzen, K.Hanawa-Suetsugu, M.Shirouzu, P.Fucini, S.Yokoyama.
 
  ABSTRACT  
 
In the initiation phase of bacterial translation, the 30S ribosomal subunit captures mRNA in preparation for binding with initiator tRNA. The purine-rich Shine-Dalgarno (SD) sequence, in the 5' untranslated region of the mRNA, anchors the 30S subunit near the start codon, via base pairing with an anti-SD (aSD) sequence at the 3' terminus of 16S rRNA. Here, we present the 3.3 A crystal structure of the Thermus thermophilus 30S subunit bound with an mRNA mimic. The duplex formed by the SD and aSD sequences is snugly docked in a "chamber" between the head and platform domains, demonstrating how the 30S subunit captures and stabilizes the otherwise labile SD helix. This location of the SD helix is suitable for the placement of the start codon AUG in the immediate vicinity of the mRNA channel, in agreement with reported crosslinks between the second position of the start codon and G1530 of 16S rRNA.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Location of the SD Helix on the 30S Ribosomal Subunit
(A–C) The rRNA and the ribosomal proteins are colored light blue and pale pink, respectively. (A) Front (subunit interface), side (rotated 145° counterclockwise), and back (solvent) views of the 30S subunit, with the SD helix accommodated in a cavity formed between the head (orange) and platform (green) domains. Oligonucleotides (5′-GAAAGA-3′) are colored yellow, and the 3′ end nucleotides of 16S rRNA from A1534, which were clearly identified in the present structure, but were disordered in previous structures, are colored dark blue. (B) Stereo enlargement of the boxed region in the side view of (A). RNA helices from the head (h28 and h37) and platform (h23a and h26) domains are dark orange and dark green, respectively. The ribosomal proteins surrounding the cavity are colored salmon. (C) Stereo view of the SD helix position on the 30S subunit, which is represented as a molecular surface.
Figure 2.
Figure 2. Stereo Representations of the SD Helix in the Chamber on the 30S Subunit
(A) Close-up view. U723 and G1530–A1531 are represented in magenta and cyan, respectively. Other coloring is as in Figure 1A. The chamber defined by h26, U723, G1530–A1531, and S2 is highlighted with a rectangle.
(B) Detailed view of the SD helix. The 2mF[o] − DF[c] map contoured at 1.5σ shows unbiased density for the SD helix (not included in the refinement). The U723 nucleotide (magenta) on h23a of 16S rRNA faces the minor groove near the proximal end of the SD helix. S18 is omitted for clarity.
 
  The above figures are reprinted by permission from Cell Press: Structure (2007, 15, 289-297) copyright 2007.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22664983 S.Melnikov, A.Ben-Shem, N.Garreau de Loubresse, L.Jenner, G.Yusupova, and M.Yusupov (2012).
One core, two shells: bacterial and eukaryotic ribosomes.
  Nat Struct Mol Biol, 19, 560-567.  
21124832 D.Matsuda, and V.P.Mauro (2010).
Determinants of initiation codon selection during translation in mammalian cells.
  PLoS One, 5, e15057.  
20504310 D.Na, S.Lee, and D.Lee (2010).
Mathematical modeling of translation initiation for the estimation of its efficiency to computationally design mRNA sequences with desired expression levels in prokaryotes.
  BMC Syst Biol, 4, 71.  
20541509 T.Kato, H.Yoshida, T.Miyata, Y.Maki, A.Wada, and K.Namba (2010).
Structure of the 100S ribosome in the hibernation stage revealed by electron cryomicroscopy.
  Structure, 18, 719-724.  
  20432247 Z.Meng, N.L.Jackson, O.D.Shcherbakov, H.Choi, and S.W.Blume (2010).
The human IGF1R IRES likely operates through a Shine-Dalgarno-like interaction with the G961 loop (E-site) of the 18S rRNA and is kinetically modulated by a naturally polymorphic polyU loop.
  J Cell Biochem, 110, 531-544.  
19706509 A.C.Lamanna, and K.Karbstein (2009).
Nob1 binds the single-stranded cleavage site D at the 3'-end of 18S rRNA with its PIN domain.
  Proc Natl Acad Sci U S A, 106, 14259-14264.  
19095617 A.Devaraj, S.Shoji, E.D.Holbrook, and K.Fredrick (2009).
A role for the 30S subunit E site in maintenance of the translational reading frame.
  RNA, 15, 255-265.  
19861425 D.Hasenöhrl, A.Fabbretti, P.Londei, C.O.Gualerzi, and U.Bläsi (2009).
Translation initiation complex formation in the crenarchaeon Sulfolobus solfataricus.
  RNA, 15, 2288-2298.  
19154330 D.Qin, and K.Fredrick (2009).
Control of translation initiation involves a factor-induced rearrangement of helix 44 of 16S ribosomal RNA.
  Mol Microbiol, 71, 1239-1249.  
19156357 F.Cava, A.Hidalgo, and J.Berenguer (2009).
Thermus thermophilus as biological model.
  Extremophiles, 13, 213-231.  
19708923 N.Malys, and R.Nivinskas (2009).
Non-canonical RNA arrangement in T4-even phages: accommodated ribosome binding site at the gene 26-25 intercistronic junction.
  Mol Microbiol, 73, 1115-1127.  
19545171 X.Shi, K.Chiu, S.Ghosh, and S.Joseph (2009).
Bases in 16S rRNA important for subunit association, tRNA binding, and translocation.
  Biochemistry, 48, 6772-6782.  
18648071 L.V.Aseev, A.A.Levandovskaya, L.S.Tchufistova, N.V.Scaptsova, and I.V.Boni (2008).
A new regulatory circuit in ribosomal protein operons: S2-mediated control of the rpsB-tsf expression in vivo.
  RNA, 14, 1882-1894.  
19111662 M.Bouvier, C.M.Sharma, F.Mika, K.H.Nierhaus, and J.Vogel (2008).
Small RNA binding to 5' mRNA coding region inhibits translational initiation.
  Mol Cell, 32, 827-837.  
17764954 A.Korostelev, and H.F.Noller (2007).
The ribosome in focus: new structures bring new insights.
  Trends Biochem Sci, 32, 434-441.  
17868695 C.Grigoriadou, S.Marzi, D.Pan, C.O.Gualerzi, and B.S.Cooperman (2007).
The translational fidelity function of IF3 during transition from the 30 S initiation complex to the 70 S initiation complex.
  J Mol Biol, 373, 551-561.  
18072984 C.S.Fraser, and J.A.Doudna (2007).
Quantitative studies of ribosome conformational dynamics.
  Q Rev Biophys, 40, 163-189.  
17973990 V.Vimberg, A.Tats, M.Remm, and T.Tenson (2007).
Translation initiation region sequence preferences in Escherichia coli.
  BMC Mol Biol, 8, 100.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time.

 

spacer

spacer