spacer
spacer

PDBsum entry 1i4d

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Signaling protein PDB id
1i4d

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
188 a.a. *
177 a.a. *
Ligands
GDP
Metals
_MG
Waters ×147
* Residue conservation analysis
PDB id:
1i4d
Name: Signaling protein
Title: Crystal structure analysis of rac1-gdp complexed with arfaptin (p21)
Structure: Arfaptin 2. Chain: a, b. Fragment: residues 118-341. Synonym: partner of rac1. Engineered: yes. Ras-related c3 botulinum toxin substrate 1. Chain: d. Synonym: p21-rac1. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562. Expression_system_taxid: 562
Biol. unit: Trimer (from PQS)
Resolution:
2.50Å     R-factor:   0.238     R-free:   0.298
Authors: C.Tarricone,B.Xiao,N.Justin,S.J.Gamblin,S.J.Smerdon
Key ref:
C.Tarricone et al. (2001). The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways. Nature, 411, 215-219. PubMed id: 11346801 DOI: 10.1038/35075620
Date:
20-Feb-01     Release date:   16-May-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P53365  (ARFP2_HUMAN) -  Arfaptin-2 from Homo sapiens
Seq:
Struc:
341 a.a.
188 a.a.
Protein chain
Pfam   ArchSchema ?
P63000  (RAC1_HUMAN) -  Ras-related C3 botulinum toxin substrate 1 from Homo sapiens
Seq:
Struc:
192 a.a.
177 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: Chains A, B: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 3: Chain D: E.C.3.6.5.2  - small monomeric GTPase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: GTP + H2O = GDP + phosphate + H+
GTP
+ H2O
=
GDP
Bound ligand (Het Group name = GDP)
corresponds exactly
+ phosphate
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1038/35075620 Nature 411:215-219 (2001)
PubMed id: 11346801  
 
 
The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways.
C.Tarricone, B.Xiao, N.Justin, P.A.Walker, K.Rittinger, S.J.Gamblin, S.J.Smerdon.
 
  ABSTRACT  
 
Small G proteins are GTP-dependent molecular switches that regulate numerous cellular functions. They can be classified into homologous subfamilies that are broadly associated with specific biological processes. Cross-talk between small G-protein families has an important role in signalling, but the mechanism by which it occurs is poorly understood. The coordinated action of Arf and Rho family GTPases is required to regulate many cellular processes including lipid signalling, cell motility and Golgi function. Arfaptin is a ubiquitously expressed protein implicated in mediating cross-talk between Rac (a member of the Rho family) and Arf small GTPases. Here we show that Arfaptin binds specifically to GTP-bound Arf1 and Arf6, but binds to Rac.GTP and Rac.GDP with similar affinities. The X-ray structure of Arfaptin reveals an elongated, crescent-shaped dimer of three-helix coiled-coils. Structures of Arfaptin with Rac bound to either GDP or the slowly hydrolysable analogue GMPPNP show that the switch regions adopt similar conformations in both complexes. Our data highlight fundamental differences between the molecular mechanisms of Rho and Ras family signalling, and suggest a model of Arfaptin-mediated synergy between the Arf and Rho family signalling pathways.
 
  Selected figure(s)  
 
Figure 1.
Figure 1: Sequence homology and structure of Arfaptin. a, Sequence homology between five Arfaptin homologues. The -helical elements derived from the crystal structure are indicated and coloured as in b. The N terminus of the Arfaptin fragment used in this study, which encompasses the entire predicted coiled-coil region of these molecules, is indicated by the black triangle. Residues absolutely conserved between the six Arfaptin homologues are indicated by blue circles. b, Three orthogonal views of the Arfaptin dimer in ribbons representation26. Top, Arfaptin dimer viewed along its dyad axis. Helices A, B and C of each monomer are red, green and blue, respectively, and the dimer-related helices are labelled A', B' and C'. Middle, Arfaptin dimer viewed along the long axis, illustrating the cavity created by the five-helix barrel at the dimer interface. Bottom, Arfaptin viewed with its long axis horizontal and the dyad axis vertical, showing the crescent-like shape of the dimer.
Figure 3.
Figure 3: Structure of the Rac -Arfaptin complex. a, Rac -Arfaptin complex shown in ribbons representation, with Arfaptin in the same orientation as shown in Fig. 1b, bottom. Helices of the Rac are red, -strands are green and the nucleotide is in yellow ball-and-stick representation. One monomer of the Arfaptin dimer is shown in blue, the other in pink. b, Arfaptin -Rac interface shown as an 'open book' representation. The C positions of residues that interact are indicated by white spheres. Residue type and number are shown in black type with interacting residues from the other protein indicated in red (hydrogen-bonding interactions) or green (non-polar/van der Waals interactions). Asterisk denotes His 57 from Arfaptin molecule 'B' of the dimer (blue); all other Arfaptin residues are contributed from molecule 'A' (yellow). The two 'switch' regions of Rac are highlighted in red.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2001, 411, 215-219) copyright 2001.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21685922 N.E.ZióÅ‚kowska, L.Karotki, M.Rehman, J.T.Huiskonen, and T.C.Walther (2011).
Eisosome-driven plasma membrane organization is mediated by BAR domains.
  Nat Struct Mol Biol, 18, 854-856.
PDB code: 3plt
20209138 A.G.Jung, C.Labarerra, A.M.Jansen, K.Qvortrup, K.Wild, and O.Kjaerulff (2010).
A mutational analysis of the endophilin-A N-BAR domain performed in living flies.
  PLoS One, 5, e9492.  
20604901 D.C.Prosser, D.Tran, A.Schooley, B.Wendland, and J.K.Ngsee (2010).
A novel, retromer-independent role for sorting nexins 1 and 2 in RhoG-dependent membrane remodeling.
  Traffic, 11, 1347-1362.  
20799348 E.Kwon, D.Y.Kim, C.A.Gross, J.D.Gross, and K.K.Kim (2010).
The crystal structure Escherichia coli Spy.
  Protein Sci, 19, 2252-2259.
PDB code: 3oeo
21054155 M.Anitei, T.Wassmer, C.Stange, and B.Hoflack (2010).
Bidirectional transport between the trans-Golgi network and the endosomal system.
  Mol Membr Biol, 27, 443-456.  
20083215 M.Masuda, and N.Mochizuki (2010).
Structural characteristics of BAR domain superfamily to sculpt the membrane.
  Semin Cell Dev Biol, 21, 391-398.  
20446344 S.H.Lee, and R.Dominguez (2010).
Regulation of actin cytoskeleton dynamics in cells.
  Mol Cells, 29, 311-325.  
19265520 A.F.Neuwald (2009).
The glycine brace: a component of Rab, Rho, and Ran GTPases associated with hinge regions of guanine- and phosphate-binding loops.
  BMC Struct Biol, 9, 11.  
19379681 A.Frost, V.M.Unger, and P.De Camilli (2009).
The BAR domain superfamily: membrane-molding macromolecules.
  Cell, 137, 191-196.  
19394299 T.D.Bunney, O.Opaleye, S.M.Roe, P.Vatter, R.W.Baxendale, C.Walliser, K.L.Everett, M.B.Josephs, C.Christow, F.Rodrigues-Lima, P.Gierschik, L.H.Pearl, and M.Katan (2009).
Structural insights into formation of an active signaling complex between Rac and phospholipase C gamma 2.
  Mol Cell, 34, 223-233.
PDB codes: 2w2t 2w2v 2w2w 2w2x
19017632 X.Jian, P.Brown, P.Schuck, J.M.Gruschus, A.Balbo, J.E.Hinshaw, and P.A.Randazzo (2009).
Autoinhibition of Arf GTPase-activating protein activity by the BAR domain in ASAP1.
  J Biol Chem, 284, 1652-1663.  
18329367 A.Frost, R.Perera, A.Roux, K.Spasov, O.Destaing, E.H.Egelman, P.De Camilli, and V.M.Unger (2008).
Structural basis of membrane invagination by F-BAR domains.
  Cell, 132, 807-817.  
18685082 H.Inoue, V.L.Ha, R.Prekeris, and P.A.Randazzo (2008).
Arf GTPase-activating protein ASAP1 interacts with Rab11 effector FIP3 and regulates pericentrosomal localization of transferrin receptor-positive recycling endosome.
  Mol Biol Cell, 19, 4224-4237.  
18466293 K.L.Madsen, J.Eriksen, L.Milan-Lobo, D.S.Han, M.Y.Niv, I.Ammendrup-Johnsen, U.Henriksen, V.K.Bhatia, D.Stamou, H.H.Sitte, H.T.McMahon, H.Weinstein, and U.Gether (2008).
Membrane localization is critical for activation of the PICK1 BAR domain.
  Traffic, 9, 1327-1343.  
18348980 M.J.Phillips, G.Calero, B.Chan, S.Ramachandran, and R.A.Cerione (2008).
Effector proteins exert an important influence on the signaling-active state of the small GTPase Cdc42.
  J Biol Chem, 283, 14153-14164.
PDB code: 2qrz
18006505 R.Modha, L.J.Campbell, D.Nietlispach, H.R.Buhecha, D.Owen, and H.R.Mott (2008).
The Rac1 polybasic region is required for interaction with its effector PRK1.
  J Biol Chem, 283, 1492-1500.
PDB code: 2rmk
18596235 S.Hara, E.Kiyokawa, S.Iemura, T.Natsume, T.Wassmer, P.J.Cullen, H.Hiai, and M.Matsuda (2008).
The DHR1 domain of DOCK180 binds to SNX5 and regulates cation-independent mannose 6-phosphate receptor transport.
  Mol Biol Cell, 19, 3823-3835.  
18326492 Z.A.Karim, W.Choi, and S.W.Whiteheart (2008).
Primary platelet signaling cascades and integrin-mediated signaling control ADP-ribosylation factor (Arf) 6-GTP levels during platelet activation and aggregation.
  J Biol Chem, 283, 11995-12003.  
17030088 C.A.Nechamen, R.M.Thomas, and J.A.Dias (2007).
APPL1, APPL2, Akt2 and FOXO1a interact with FSHR in a potential signaling complex.
  Mol Cell Endocrinol, 260, 93-99.  
17581628 G.Zhu, J.Chen, J.Liu, J.S.Brunzelle, B.Huang, N.Wakeham, S.Terzyan, X.Li, Z.Rao, G.Li, and X.C.Zhang (2007).
Structure of the APPL1 BAR-PH domain and characterization of its interaction with Rab5.
  EMBO J, 26, 3484-3493.
PDB codes: 2q12 2q13
17411433 J.B.Pereira-Leal, E.D.Levy, C.Kamp, and S.A.Teichmann (2007).
Evolution of protein complexes by duplication of homomeric interactions.
  Genome Biol, 8, R51.  
17502098 J.Li, X.Mao, L.Q.Dong, F.Liu, and L.Tong (2007).
Crystal structures of the BAR-PH and PTB domains of human APPL1.
  Structure, 15, 525-533.
PDB codes: 2ela 2elb
17512400 K.Fütterer, and L.M.Machesky (2007).
"Wunder" F-BAR domains: going from pits to vesicles.
  Cell, 129, 655-657.  
17387180 K.Saito, S.Williams, A.Bulankina, S.Höning, and T.Mustelin (2007).
Association of protein-tyrosine phosphatase MEG2 via its Sec14p homology domain with vesicle-trafficking proteins.
  J Biol Chem, 282, 15170-15178.  
17122362 M.Cotton, P.L.Boulay, T.Houndolo, N.Vitale, J.A.Pitcher, and A.Claing (2007).
Endogenous ARF6 interacts with Rac1 upon angiotensin II stimulation to regulate membrane ruffling and cell migration.
  Mol Biol Cell, 18, 501-511.  
17948057 O.Pylypenko, R.Lundmark, E.Rasmuson, S.R.Carlsson, and A.Rak (2007).
The PX-BAR membrane-remodeling unit of sorting nexin 9.
  EMBO J, 26, 4788-4800.
PDB codes: 2rai 2raj 2rak
17292833 S.H.Lee, F.Kerff, D.Chereau, F.Ferron, A.Klug, and R.Dominguez (2007).
Structural basis for the actin-binding function of missing-in-metastasis.
  Structure, 15, 145-155.
PDB codes: 2d1k 2d1l
17443712 T.C.Pham, R.W.Kriwacki, and A.L.Parrill (2007).
Peptide design and structural characterization of a GPCR loop mimetic.
  Biopolymers, 86, 298-310.
PDB code: 2dco
16949823 A.J.Ridley (2006).
Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking.
  Trends Cell Biol, 16, 522-529.  
17059209 E.Casal, L.Federici, W.Zhang, J.Fernandez-Recio, E.M.Priego, R.N.Miguel, J.B.DuHadaway, G.C.Prendergast, B.F.Luisi, and E.D.Laue (2006).
The crystal structure of the BAR domain from human Bin1/amphiphysin II and its implications for molecular recognition.
  Biochemistry, 45, 12917-12928.
PDB code: 2fic
16524918 G.Ren, P.Vajjhala, J.S.Lee, B.Winsor, and A.L.Munn (2006).
The BAR domain proteins: molding membranes in fission, fusion, and phagy.
  Microbiol Mol Biol Rev, 70, 37.  
16763557 M.Masuda, S.Takeda, M.Sone, T.Ohki, H.Mori, Y.Kamioka, and N.Mochizuki (2006).
Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms.
  EMBO J, 25, 2889-2897.
PDB codes: 1x03 1x04 2d4c
16669702 P.Beemiller, A.D.Hoppe, and J.A.Swanson (2006).
A phosphatidylinositol-3-kinase-dependent signal transition regulates ARF1 and ARF6 during Fcgamma receptor-mediated phagocytosis.
  PLoS Biol, 4, e162.  
17003044 S.Suetsugu, K.Murayama, A.Sakamoto, K.Hanawa-Suetsugu, A.Seto, T.Oikawa, C.Mishima, M.Shirouzu, T.Takenawa, and S.Yokoyama (2006).
The RAC binding domain/IRSp53-MIM homology domain of IRSp53 induces RAC-dependent membrane deformation.
  J Biol Chem, 281, 35347-35358.  
16492770 T.Baust, C.Czupalla, E.Krause, L.Bourel-Bonnet, and B.Hoflack (2006).
Proteomic analysis of adaptor protein 1A coats selectively assembled on liposomes.
  Proc Natl Acad Sci U S A, 103, 3159-3164.  
16702216 T.Jank, U.Pack, T.Giesemann, G.Schmidt, and K.Aktories (2006).
Exchange of a single amino acid switches the substrate properties of RhoA and RhoD toward glucosylating and transglutaminating toxins.
  J Biol Chem, 281, 19527-19535.  
16607289 V.Vogel, and M.Sheetz (2006).
Local force and geometry sensing regulate cell functions.
  Nat Rev Mol Cell Biol, 7, 265-275.  
16352809 W.Choi, Z.A.Karim, and S.W.Whiteheart (2006).
Arf6 plays an early role in platelet activation by collagen and convulxin.
  Blood, 107, 3145-3152.  
16190977 E.Dransart, B.Olofsson, and J.Cherfils (2005).
RhoGDIs revisited: novel roles in Rho regulation.
  Traffic, 6, 957-966.  
15389577 M.Hiroyama, and J.H.Exton (2005).
Studies of the roles of ADP-ribosylation factors and phospholipase D in phorbol ester-induced membrane ruffling.
  J Cell Physiol, 202, 608-622.  
15941407 N.Nassoury, Y.Wang, and D.Morse (2005).
Brefeldin a inhibits circadian remodeling of chloroplast structure in the dinoflagellate gonyaulax.
  Traffic, 6, 548-561.  
15793570 N.Nishiya, W.B.Kiosses, J.Han, and M.H.Ginsberg (2005).
An alpha4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge of migrating cells.
  Nat Cell Biol, 7, 343-352.  
15635447 T.H.Millard, G.Bompard, M.Y.Heung, T.R.Dafforn, D.J.Scott, L.M.Machesky, and K.Fütterer (2005).
Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53.
  EMBO J, 24, 240-250.
PDB code: 1y2o
14993925 B.Habermann (2004).
The BAR-domain family of proteins: a case of bending and binding?
  EMBO Rep, 5, 250-255.  
14645856 B.J.Peter, H.M.Kent, I.G.Mills, Y.Vallis, P.J.Butler, P.R.Evans, and H.T.McMahon (2004).
BAR domains as sensors of membrane curvature: the amphiphysin BAR structure.
  Science, 303, 495-499.
PDB code: 1uru
14761976 J.Y.Ahn, R.Rong, T.G.Kroll, E.G.Van Meir, S.H.Snyder, and K.Ye (2004).
PIKE (phosphatidylinositol 3-kinase enhancer)-A GTPase stimulates Akt activity and mediates cellular invasion.
  J Biol Chem, 279, 16441-16451.  
15573103 K.K.Dev (2004).
Making protein interactions druggable: targeting PDZ domains.
  Nat Rev Drug Discov, 3, 1047-1056.  
15016378 M.Miaczynska, S.Christoforidis, A.Giner, A.Shevchenko, S.Uttenweiler-Joseph, B.Habermann, M.Wilm, R.G.Parton, and M.Zerial (2004).
APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment.
  Cell, 116, 445-456.  
14660612 R.Dvorsky, L.Blumenstein, I.R.Vetter, and M.R.Ahmadian (2004).
Structural insights into the interaction of ROCKI with the switch regions of RhoA.
  J Biol Chem, 279, 7098-7104.
PDB code: 1s1c
15577926 R.Dvorsky, and M.R.Ahmadian (2004).
Always look on the bright site of Rho: structural implications for a conserved intermolecular interface.
  EMBO Rep, 5, 1130-1136.  
14580338 B.Panic, O.Perisic, D.B.Veprintsev, R.L.Williams, and S.Munro (2003).
Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus.
  Mol Cell, 12, 863-874.
PDB code: 1upt
14514689 D.Owen, P.N.Lowe, D.Nietlispach, C.E.Brosnan, D.Y.Chirgadze, P.J.Parker, T.L.Blundell, and H.R.Mott (2003).
Molecular dissection of the interaction between the small G proteins Rac1 and RhoA and protein kinase C-related kinase 1 (PRK1).
  J Biol Chem, 278, 50578-50587.
PDB code: 1urf
12682071 F.Spitzenberger, S.Pietropaolo, P.Verkade, B.Habermann, S.Lacas-Gervais, H.Mziaut, M.Pietropaolo, and M.Solimena (2003).
Islet cell autoantigen of 69 kDa is an arfaptin-related protein associated with the Golgi complex of insulinoma INS-1 cells.
  J Biol Chem, 278, 26166-26173.  
12624092 H.R.Mott, D.Nietlispach, L.J.Hopkins, G.Mirey, J.H.Camonis, and D.Owen (2003).
Structure of the GTPase-binding domain of Sec5 and elucidation of its Ral binding site.
  J Biol Chem, 278, 17053-17059.
PDB code: 1hk6
12777804 K.Longenecker, P.Read, S.K.Lin, A.P.Somlyo, R.K.Nakamoto, and Z.S.Derewenda (2003).
Structure of a constitutively activated RhoA mutant (Q63L) at 1.55 A resolution.
  Acta Crystallogr D Biol Crystallogr, 59, 876-880.
PDB code: 1kmq
14517325 K.N.Riley, A.E.Maldonado, P.Tellier, C.D'Souza-Schorey, and I.M.Herman (2003).
Betacap73-ARF6 interactions modulate cell shape and motility after injury in vitro.
  Mol Biol Cell, 14, 4155-4161.  
12932731 P.Harjes, and E.E.Wanker (2003).
The hunt for huntingtin function: interaction partners tell many different stories.
  Trends Biochem Sci, 28, 425-433.  
12892779 Z.Nie, D.S.Hirsch, and P.A.Randazzo (2003).
Arf and its many interactors.
  Curr Opin Cell Biol, 15, 396-404.  
11931741 J.G.Hanley, L.Khatri, P.I.Hanson, and E.B.Ziff (2002).
NSF ATPase and alpha-/beta-SNAPs disassemble the AMPA receptor-PICK1 complex.
  Neuron, 34, 53-67.  
12242347 L.Chang, R.D.Adams, and A.R.Saltiel (2002).
The TC10-interacting protein CIP4/2 is required for insulin-stimulated Glut4 translocation in 3T3L1 adipocytes.
  Proc Natl Acad Sci U S A, 99, 12835-12840.  
11980706 M.Hanzal-Bayer, L.Renault, P.Roversi, A.Wittinghofer, and R.C.Hillig (2002).
The complex of Arl2-GTP and PDE delta: from structure to function.
  EMBO J, 21, 2095-2106.
PDB codes: 1ksg 1ksh 1ksj
11854752 P.J.Peters, K.Ning, F.Palacios, R.L.Boshans, A.Kazantsev, L.M.Thompson, B.Woodman, G.P.Bates, and C.D'Souza-Schorey (2002).
Arfaptin 2 regulates the aggregation of mutant huntingtin protein.
  Nat Cell Biol, 4, 240-245.  
12501157 R.L.Rich, and D.G.Myszka (2002).
Survey of the year 2001 commercial optical biosensor literature.
  J Mol Recognit, 15, 352-376.  
11708889 D.Cox, and S.Greenberg (2001).
Phagocytic signaling strategies: Fc(gamma)receptor-mediated phagocytosis as a model system.
  Semin Immunol, 13, 339-345.  
11742976 E.Cabezón, M.J.Runswick, A.G.Leslie, and J.E.Walker (2001).
The structure of bovine IF(1), the regulatory subunit of mitochondrial F-ATPase.
  EMBO J, 20, 6990-6996.
PDB code: 1gmj
11701921 I.R.Vetter, and A.Wittinghofer (2001).
The guanine nucleotide-binding switch in three dimensions.
  Science, 294, 1299-1304.  
11738594 K.D.Corbett, and T.Alber (2001).
The many faces of Ras: recognition of small GTP-binding proteins.
  Trends Biochem Sci, 26, 710-716.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer