 |
PDBsum entry 2d4c
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
EMBO J
25:2889-2897
(2006)
|
|
PubMed id:
|
|
|
|
|
| |
|
Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms.
|
|
M.Masuda,
S.Takeda,
M.Sone,
T.Ohki,
H.Mori,
Y.Kamioka,
N.Mochizuki.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The crescent-shaped BAR (Bin/Amphiphysin/Rvs-homology) domain dimer is a
versatile protein module that senses and generates positive membrane curvature.
The BAR domain dimer of human endophilin-A1, solved at 3.1 A, has a unique
structure consisting of a pair of helix-loop appendages sprouting out from the
crescent. The appendage's short helices form a hydrophobic ridge, which runs
across the concave surface at its center. Examining liposome binding and
tubulation in vitro using purified BAR domain and its mutants indicated that the
ridge penetrates into the membrane bilayer and enhances liposome tubulation. BAR
domain-expressing cells exhibited marked plasma membrane tubulation in vivo.
Furthermore, a swinging-arm mutant lost liposome tubulation activity yet
retaining liposome binding. These data suggested that the rigid crescent dimer
shape is crucial for the tubulation. We here propose that the BAR domain drives
membrane curvature by coordinate action of the crescent's scaffold mechanism and
the ridge's membrane insertion in addition to membrane binding via
amino-terminal amphipathic helix.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 6.
Figure 6 Close-up of helix 0 in an a4 mutant monomer (orange).
The same superimposition as in Figure 5C but viewed from the
side and displays the helix 0. The helix 0 is disordered in the
wild-type structure (blue). The side chains of N-terminal
residues are shown (H11KATQKVSEKVGGAEGTKL29 in the a4 and G26TKL
in the wild type). The amphipathic helix 0 is stabilized by
hydrophobic interactions with the helix II and III and also by
hydrogen bonds with a symmetrical molecule.
|
 |
Figure 8.
Figure 8 Two potential mechanisms for driving membrane curvature
by endophilin-A1. (A) Kissing adhesion of an N-BAR domain on
planar lipid bilayer. The helix 0 is essential for the membrane
binding. Membrane insertion of the helix 0 is supposed. (B)
Insertion of hydrophobic portions of macromolocules into one
leaflet can create bilayer surface discrepancy that causes
membrane curvature. (C) The simple N-BAR domain, such as
amphiphysin and App,
induces membrane curvature by impressing the concave surface
onto the membrane. The rigidity of the molecule is required for
this mechanism. (D) To drive membrane curvature, the endophilin
N-BAR domain uses both the rigid crescent shape-mediated
deformation and the insertion of hydrophobic ridge on the
concave surface in addition to kissing adhesion of N-BAR to
membrane surface.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
EMBO J
(2006,
25,
2889-2897)
copyright 2006.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
M.Galic,
S.Jeong,
F.C.Tsai,
L.M.Joubert,
Y.I.Wu,
K.M.Hahn,
Y.Cui,
and
T.Meyer
(2012).
External push and internal pull forces recruit curvature-sensing N-BAR domain proteins to the plasma membrane.
|
| |
Nat Cell Biol,
14,
874-881.
|
 |
|
|
|
|
 |
M.C.Weston,
R.B.Nehring,
S.M.Wojcik,
and
C.Rosenmund
(2011).
Interplay between VGLUT isoforms and endophilin A1 regulates neurotransmitter release and short-term plasticity.
|
| |
Neuron,
69,
1147-1159.
|
 |
|
|
|
|
 |
R.Ramachandran
(2011).
Vesicle scission: dynamin.
|
| |
Semin Cell Dev Biol,
22,
10-17.
|
 |
|
|
|
|
 |
T.Baumgart,
B.R.Capraro,
C.Zhu,
and
S.L.Das
(2011).
Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids.
|
| |
Annu Rev Phys Chem,
62,
483-506.
|
 |
|
|
|
|
 |
Y.Takahashi,
C.L.Meyerkord,
T.Hori,
K.Runkle,
T.E.Fox,
M.Kester,
T.P.Loughran,
and
H.G.Wang
(2011).
Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy.
|
| |
Autophagy,
7,
61-73.
|
 |
|
|
|
|
 |
Å..OpaliÅ„ski,
J.A.Kiel,
C.Williams,
M.Veenhuis,
and
I.J.van der Klei
(2011).
Membrane curvature during peroxisome fission requires Pex11.
|
| |
EMBO J,
30,
5.
|
 |
|
|
|
|
 |
A.G.Jung,
C.Labarrera,
C.Labarerra,
A.M.Jansen,
K.Qvortrup,
K.Wild,
and
O.Kjaerulff
(2010).
A mutational analysis of the endophilin-A N-BAR domain performed in living flies.
|
| |
PLoS One,
5,
e9492.
|
 |
|
|
|
|
 |
G.A.Quiñones,
and
A.E.Oro
(2010).
BAR domain competition during directional cellular migration.
|
| |
Cell Cycle,
9,
2522-2528.
|
 |
|
|
|
|
 |
G.S.Ayton,
and
G.A.Voth
(2010).
Multiscale simulation of protein mediated membrane remodeling.
|
| |
Semin Cell Dev Biol,
21,
357-362.
|
 |
|
|
|
|
 |
H.J.Chial,
P.Lenart,
and
Y.Q.Chen
(2010).
APPL proteins FRET at the BAR: direct observation of APPL1 and APPL2 BAR domain-mediated interactions on cell membranes using FRET microscopy.
|
| |
PLoS One,
5,
e12471.
|
 |
|
|
|
|
 |
J.Bai,
Z.Hu,
J.S.Dittman,
E.C.Pym,
and
J.M.Kaplan
(2010).
Endophilin functions as a membrane-bending molecule and is delivered to endocytic zones by exocytosis.
|
| |
Cell,
143,
430-441.
|
 |
|
|
|
|
 |
J.Y.Youn,
H.Friesen,
T.Kishimoto,
W.M.Henne,
C.F.Kurat,
W.Ye,
D.F.Ceccarelli,
F.Sicheri,
S.D.Kohlwein,
H.T.McMahon,
and
B.J.Andrews
(2010).
Dissecting BAR domain function in the yeast Amphiphysins Rvs161 and Rvs167 during endocytosis.
|
| |
Mol Biol Cell,
21,
3054-3069.
|
 |
|
|
|
|
 |
M.Masuda,
and
N.Mochizuki
(2010).
Structural characteristics of BAR domain superfamily to sculpt the membrane.
|
| |
Semin Cell Dev Biol,
21,
391-398.
|
 |
|
|
|
|
 |
N.Shimokawa,
K.Haglund,
S.M.Hölter,
C.Grabbe,
V.Kirkin,
N.Koibuchi,
C.Schultz,
J.Rozman,
D.Hoeller,
C.H.Qiu,
M.B.Londoño,
J.Ikezawa,
P.Jedlicka,
B.Stein,
S.W.Schwarzacher,
D.P.Wolfer,
N.Ehrhardt,
R.Heuchel,
I.Nezis,
A.Brech,
M.H.Schmidt,
H.Fuchs,
V.Gailus-Durner,
M.Klingenspor,
O.Bogler,
W.Wurst,
T.Deller,
M.H.de Angelis,
and
I.Dikic
(2010).
CIN85 regulates dopamine receptor endocytosis and governs behaviour in mice.
|
| |
EMBO J,
29,
2421-2432.
|
 |
|
|
|
|
 |
R.Lundmark,
and
S.R.Carlsson
(2010).
Driving membrane curvature in clathrin-dependent and clathrin-independent endocytosis.
|
| |
Semin Cell Dev Biol,
21,
363-370.
|
 |
|
|
|
|
 |
R.Zaidel-Bar,
M.J.Joyce,
A.M.Lynch,
K.Witte,
A.Audhya,
and
J.Hardin
(2010).
The F-BAR domain of SRGP-1 facilitates cell-cell adhesion during C. elegans morphogenesis.
|
| |
J Cell Biol,
191,
761-769.
|
 |
|
|
|
|
 |
S.H.Lee,
and
R.Dominguez
(2010).
Regulation of actin cytoskeleton dynamics in cells.
|
| |
Mol Cells,
29,
311-325.
|
 |
|
|
|
|
 |
S.Suetsugu
(2010).
The proposed functions of membrane curvatures mediated by the BAR domain superfamily proteins.
|
| |
J Biochem,
148,
1.
|
 |
|
|
|
|
 |
S.Suetsugu,
K.Toyooka,
and
Y.Senju
(2010).
Subcellular membrane curvature mediated by the BAR domain superfamily proteins.
|
| |
Semin Cell Dev Biol,
21,
340-349.
|
 |
|
|
|
|
 |
T.Takenawa
(2010).
Phosphoinositide-binding interface proteins involved in shaping cell membranes.
|
| |
Proc Jpn Acad Ser B Phys Biol Sci,
86,
509-523.
|
 |
|
|
|
|
 |
V.K.Bhatia,
N.S.Hatzakis,
and
D.Stamou
(2010).
A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins.
|
| |
Semin Cell Dev Biol,
21,
381-390.
|
 |
|
|
|
|
 |
Y.Yoon,
J.Tong,
P.J.Lee,
A.Albanese,
N.Bhardwaj,
M.Källberg,
M.A.Digman,
H.Lu,
E.Gratton,
Y.K.Shin,
and
W.Cho
(2010).
Molecular basis of the potent membrane-remodeling activity of the epsin 1 N-terminal homology domain.
|
| |
J Biol Chem,
285,
531-540.
|
 |
|
|
|
|
 |
A.Arkhipov,
Y.Yin,
and
K.Schulten
(2009).
Membrane-bending mechanism of amphiphysin N-BAR domains.
|
| |
Biophys J,
97,
2727-2735.
|
 |
|
|
|
|
 |
A.Etxebarria,
O.Terrones,
H.Yamaguchi,
A.Landajuela,
O.Landeta,
B.Antonsson,
H.G.Wang,
and
G.Basañez
(2009).
Endophilin B1/Bif-1 Stimulates BAX Activation Independently from Its Capacity to Produce Large Scale Membrane Morphological Rearrangements.
|
| |
J Biol Chem,
284,
4200-4212.
|
 |
|
|
|
|
 |
A.Nakano-Kobayashi,
N.N.Kasri,
S.E.Newey,
and
L.Van Aelst
(2009).
The Rho-linked mental retardation protein OPHN1 controls synaptic vesicle endocytosis via endophilin A1.
|
| |
Curr Biol,
19,
1133-1139.
|
 |
|
|
|
|
 |
A.Reider,
S.L.Barker,
S.K.Mishra,
Y.J.Im,
L.Maldonado-Báez,
J.H.Hurley,
L.M.Traub,
and
B.Wendland
(2009).
Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation.
|
| |
EMBO J,
28,
3103-3116.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Khelashvili,
D.Harries,
and
H.Weinstein
(2009).
Modeling membrane deformations and lipid demixing upon protein-membrane interaction: the BAR dimer adsorption.
|
| |
Biophys J,
97,
1626-1635.
|
 |
|
|
|
|
 |
G.S.Ayton,
E.Lyman,
V.Krishna,
R.D.Swenson,
C.Mim,
V.M.Unger,
and
G.A.Voth
(2009).
New insights into BAR domain-induced membrane remodeling.
|
| |
Biophys J,
97,
1616-1625.
|
 |
|
|
|
|
 |
G.S.Ayton,
and
G.A.Voth
(2009).
Hybrid coarse-graining approach for lipid bilayers at large length and time scales.
|
| |
J Phys Chem B,
113,
4413-4424.
|
 |
|
|
|
|
 |
H.Cui,
G.S.Ayton,
and
G.A.Voth
(2009).
Membrane binding by the endophilin N-BAR domain.
|
| |
Biophys J,
97,
2746-2753.
|
 |
|
|
|
|
 |
H.Xiao,
Y.Shi,
J.Yuan,
Y.Huang,
and
J.Wang
(2009).
Over-expression, Rapid Preparation and Some Properties of C-terminal BARc Region in PICK1.
|
| |
Int J Mol Sci,
10,
28-36.
|
 |
|
|
|
|
 |
J.F.Trempe,
C.X.Chen,
K.Grenier,
E.M.Camacho,
G.Kozlov,
P.S.McPherson,
K.Gehring,
and
E.A.Fon
(2009).
SH3 domains from a subset of BAR proteins define a Ubl-binding domain and implicate parkin in synaptic ubiquitination.
|
| |
Mol Cell,
36,
1034-1047.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Morgan,
P.McCourt,
L.Rankin,
E.Swain,
L.M.Rice,
and
J.T.Nickels
(2009).
Altering sphingolipid metabolism in Saccharomyces cerevisiae cells lacking the amphiphysin ortholog Rvs161 reinitiates sugar transporter endocytosis.
|
| |
Eukaryot Cell,
8,
779-789.
|
 |
|
|
|
|
 |
J.Saarikangas,
H.Zhao,
A.Pykäläinen,
P.Laurinmäki,
P.K.Mattila,
P.K.Kinnunen,
S.J.Butcher,
and
P.Lappalainen
(2009).
Molecular mechanisms of membrane deformation by I-BAR domain proteins.
|
| |
Curr Biol,
19,
95.
|
 |
|
|
|
|
 |
Q.Wang,
M.V.Navarro,
G.Peng,
E.Molinelli,
S.Lin Goh,
B.L.Judson,
K.R.Rajashankar,
and
H.Sondermann
(2009).
Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin.
|
| |
Proc Natl Acad Sci U S A,
106,
12700-12705.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Itoh,
and
T.Takenawa
(2009).
Mechanisms of membrane deformation by lipid-binding domains.
|
| |
Prog Lipid Res,
48,
298-305.
|
 |
|
|
|
|
 |
T.K.Rostovtseva,
H.Boukari,
A.Antignani,
B.Shiu,
S.Banerjee,
A.Neutzner,
and
R.J.Youle
(2009).
Bax activates endophilin B1 oligomerization and lipid membrane vesiculation.
|
| |
J Biol Chem,
284,
34390-34399.
|
 |
|
|
|
|
 |
V.K.Bhatia,
K.L.Madsen,
P.Y.Bolinger,
A.Kunding,
P.Hedegård,
U.Gether,
and
D.Stamou
(2009).
Amphipathic motifs in BAR domains are essential for membrane curvature sensing.
|
| |
EMBO J,
28,
3303-3314.
|
 |
|
|
|
|
 |
Y.Shibata,
J.Hu,
M.M.Kozlov,
and
T.A.Rapoport
(2009).
Mechanisms shaping the membranes of cellular organelles.
|
| |
Annu Rev Cell Dev Biol,
25,
329-354.
|
 |
|
|
|
|
 |
Y.Takahashi,
C.L.Meyerkord,
and
H.G.Wang
(2009).
Bif-1/endophilin B1: a candidate for crescent driving force in autophagy.
|
| |
Cell Death Differ,
16,
947-955.
|
 |
|
|
|
|
 |
Y.Yin,
A.Arkhipov,
and
K.Schulten
(2009).
Simulations of membrane tubulation by lattices of amphiphysin N-BAR domains.
|
| |
Structure,
17,
882-892.
|
 |
|
|
|
|
 |
A.Arkhipov,
Y.Yin,
and
K.Schulten
(2008).
Four-scale description of membrane sculpting by BAR domains.
|
| |
Biophys J,
95,
2806-2821.
|
 |
|
|
|
|
 |
A.Frost,
R.Perera,
A.Roux,
K.Spasov,
O.Destaing,
E.H.Egelman,
P.De Camilli,
and
V.M.Unger
(2008).
Structural basis of membrane invagination by F-BAR domains.
|
| |
Cell,
132,
807-817.
|
 |
|
|
|
|
 |
C.K.Min,
S.Y.Bang,
B.A.Cho,
Y.H.Choi,
J.S.Yang,
S.H.Lee,
S.Y.Seong,
K.W.Kim,
S.Kim,
J.U.Jung,
M.S.Choi,
I.S.Kim,
and
N.H.Cho
(2008).
Role of amphipathic helix of a herpesviral protein in membrane deformation and T cell receptor downregulation.
|
| |
PLoS Pathog,
4,
e1000209.
|
 |
|
|
|
|
 |
C.Löw,
U.Weininger,
H.Lee,
K.Schweimer,
I.Neundorf,
A.G.Beck-Sickinger,
R.W.Pastor,
and
J.Balbach
(2008).
Structure and dynamics of helix-0 of the N-BAR domain in lipid micelles and bilayers.
|
| |
Biophys J,
95,
4315-4323.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Marza,
T.Long,
A.Saiardi,
M.Sumakovic,
S.Eimer,
D.H.Hall,
and
G.M.Lesa
(2008).
Polyunsaturated Fatty Acids Influence Synaptojanin Localization to Regulate Synaptic Vesicle Recycling.
|
| |
Mol Biol Cell,
19,
833-842.
|
 |
|
|
|
|
 |
H.Heerssen,
R.D.Fetter,
and
G.W.Davis
(2008).
Clathrin dependence of synaptic-vesicle formation at the Drosophila neuromuscular junction.
|
| |
Curr Biol,
18,
401-409.
|
 |
|
|
|
|
 |
H.Inoue,
V.L.Ha,
R.Prekeris,
and
P.A.Randazzo
(2008).
Arf GTPase-activating protein ASAP1 interacts with Rab11 effector FIP3 and regulates pericentrosomal localization of transferrin receptor-positive recycling endosome.
|
| |
Mol Biol Cell,
19,
4224-4237.
|
 |
|
|
|
|
 |
H.Yamaguchi,
N.T.Woods,
J.F.Dorsey,
Y.Takahashi,
N.R.Gjertsen,
T.Yeatman,
J.Wu,
and
H.G.Wang
(2008).
SRC directly phosphorylates Bif-1 and prevents its interaction with Bax and the initiation of anoikis.
|
| |
J Biol Chem,
283,
19112-19118.
|
 |
|
|
|
|
 |
J.Hu,
Y.Shibata,
C.Voss,
T.Shemesh,
Z.Li,
M.Coughlin,
M.M.Kozlov,
T.A.Rapoport,
and
W.A.Prinz
(2008).
Membrane proteins of the endoplasmic reticulum induce high-curvature tubules.
|
| |
Science,
319,
1247-1250.
|
 |
|
|
|
|
 |
J.Urbanija,
B.Babnik,
M.Frank,
N.Tomsic,
B.Rozman,
V.Kralj-Iglic,
and
A.Iglic
(2008).
Attachment of beta 2-glycoprotein I to negatively charged liposomes may prevent the release of daughter vesicles from the parent membrane.
|
| |
Eur Biophys J,
37,
1085-1095.
|
 |
|
|
|
|
 |
M.A.Lemmon
(2008).
Membrane recognition by phospholipid-binding domains.
|
| |
Nat Rev Mol Cell Biol,
9,
99.
|
 |
|
|
|
|
 |
P.D.Blood,
R.D.Swenson,
and
G.A.Voth
(2008).
Factors influencing local membrane curvature induction by N-BAR domains as revealed by molecular dynamics simulations.
|
| |
Biophys J,
95,
1866-1876.
|
 |
|
|
|
|
 |
V.A.Frolov,
and
J.Zimmerberg
(2008).
Flexible scaffolding made of rigid BARs.
|
| |
Cell,
132,
727-729.
|
 |
|
|
|
|
 |
A.Shimada,
H.Niwa,
K.Tsujita,
S.Suetsugu,
K.Nitta,
K.Hanawa-Suetsugu,
R.Akasaka,
Y.Nishino,
M.Toyama,
L.Chen,
Z.J.Liu,
B.C.Wang,
M.Yamamoto,
T.Terada,
A.Miyazawa,
A.Tanaka,
S.Sugano,
M.Shirouzu,
K.Nagayama,
T.Takenawa,
and
S.Yokoyama
(2007).
Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis.
|
| |
Cell,
129,
761-772.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.J.Ungewickell,
and
L.Hinrichsen
(2007).
Endocytosis: clathrin-mediated membrane budding.
|
| |
Curr Opin Cell Biol,
19,
417-425.
|
 |
|
|
|
|
 |
G.Drin,
J.F.Casella,
R.Gautier,
T.Boehmer,
T.U.Schwartz,
and
B.Antonny
(2007).
A general amphipathic alpha-helical motif for sensing membrane curvature.
|
| |
Nat Struct Mol Biol,
14,
138-146.
|
 |
|
|
|
|
 |
G.S.Ayton,
P.D.Blood,
and
G.A.Voth
(2007).
Membrane remodeling from N-BAR domain interactions: insights from multi-scale simulation.
|
| |
Biophys J,
92,
3595-3602.
|
 |
|
|
|
|
 |
J.Li,
X.Mao,
L.Q.Dong,
F.Liu,
and
L.Tong
(2007).
Crystal structures of the BAR-PH and PTB domains of human APPL1.
|
| |
Structure,
15,
525-533.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Fütterer,
and
L.M.Machesky
(2007).
"Wunder" F-BAR domains: going from pits to vesicles.
|
| |
Cell,
129,
655-657.
|
 |
|
|
|
|
 |
O.Pylypenko,
R.Lundmark,
E.Rasmuson,
S.R.Carlsson,
and
A.Rak
(2007).
The PX-BAR membrane-remodeling unit of sorting nexin 9.
|
| |
EMBO J,
26,
4788-4800.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.K.Mattila,
A.Pykäläinen,
J.Saarikangas,
V.O.Paavilainen,
H.Vihinen,
E.Jokitalo,
and
P.Lappalainen
(2007).
Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism.
|
| |
J Cell Biol,
176,
953-964.
|
 |
|
|
|
|
 |
T.Fischer,
L.Lu,
H.T.Haigler,
and
R.Langen
(2007).
Annexin B12 is a sensor of membrane curvature and undergoes major curvature-dependent structural changes.
|
| |
J Biol Chem,
282,
9996.
|
 |
|
|
|
|
 |
V.Anggono,
and
P.J.Robinson
(2007).
Syndapin I and endophilin I bind overlapping proline-rich regions of dynamin I: role in synaptic vesicle endocytosis.
|
| |
J Neurochem,
102,
931-943.
|
 |
|
|
|
|
 |
Y.Takahashi,
D.Coppola,
N.Matsushita,
H.D.Cualing,
M.Sun,
Y.Sato,
C.Liang,
J.U.Jung,
J.Q.Cheng,
J.J.Mul,
W.J.Pledger,
and
H.G.Wang
(2007).
Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis.
|
| |
Nat Cell Biol,
9,
1142-1151.
|
 |
|
|
|
|
 |
E.Casal,
L.Federici,
W.Zhang,
J.Fernandez-Recio,
E.M.Priego,
R.N.Miguel,
J.B.DuHadaway,
G.C.Prendergast,
B.F.Luisi,
and
E.D.Laue
(2006).
The crystal structure of the BAR domain from human Bin1/amphiphysin II and its implications for molecular recognition.
|
| |
Biochemistry,
45,
12917-12928.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.C.Dawson,
J.A.Legg,
and
L.M.Machesky
(2006).
Bar domain proteins: a role in tubulation, scission and actin assembly in clathrin-mediated endocytosis.
|
| |
Trends Cell Biol,
16,
493-498.
|
 |
|
|
|
|
 |
P.D.Blood,
and
G.A.Voth
(2006).
Direct observation of Bin/amphiphysin/Rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations.
|
| |
Proc Natl Acad Sci U S A,
103,
15068-15072.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |