spacer
spacer

PDBsum entry 2d1k

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Structural protein PDB id
2d1k

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
371 a.a.
260 a.a. *
29 a.a. *
Ligands
NAG-NAG-BMA
ATP
Metals
_MG
_CA ×2
Waters ×103
* Residue conservation analysis
PDB id:
2d1k
Name: Structural protein
Title: Ternary complex of the wh2 domain of mim with actin-dnase i
Structure: Actin, alpha skeletal muscle. Chain: a. Synonym: alpha-actin 1. Deoxyribonuclease-1. Chain: b. Synonym: deoxyribonuclease i, dnase i. Metastasis suppressor protein 1. Chain: c. Fragment: wh2 domain (residues 724-755).
Source: Oryctolagus cuniculus. Rabbit. Organism_taxid: 9986. Tissue: skeletal muscle. Bos taurus. Cattle. Organism_taxid: 9913. Tissue: pancreas. Synthetic: yes.
Biol. unit: Trimer (from PQS)
Resolution:
2.50Å     R-factor:   0.220     R-free:   0.284
Authors: D.Chereau,F.Kerff,R.Dominguez
Key ref:
S.H.Lee et al. (2007). Structural basis for the actin-binding function of missing-in-metastasis. Structure, 15, 145-155. PubMed id: 17292833 DOI: 10.1016/j.str.2006.12.005
Date:
26-Aug-05     Release date:   12-Sep-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P68135  (ACTS_RABIT) -  Actin, alpha skeletal muscle from Oryctolagus cuniculus
Seq:
Struc:
377 a.a.
371 a.a.*
Protein chain
Pfam   ArchSchema ?
P00639  (DNAS1_BOVIN) -  Deoxyribonuclease-1 from Bos taurus
Seq:
Struc:
282 a.a.
260 a.a.
Protein chain
Pfam   ArchSchema ?
O43312  (MTSS1_HUMAN) -  Protein MTSS 1 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
755 a.a.
29 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: Chain B: E.C.3.1.21.1  - deoxyribonuclease I.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Endonucleolytic cleavage to 5'-phosphodinucleotide and 5'-phosphooligonucleotide end-products.

 

 
DOI no: 10.1016/j.str.2006.12.005 Structure 15:145-155 (2007)
PubMed id: 17292833  
 
 
Structural basis for the actin-binding function of missing-in-metastasis.
S.H.Lee, F.Kerff, D.Chereau, F.Ferron, A.Klug, R.Dominguez.
 
  ABSTRACT  
 
The adaptor protein missing-in-metastasis (MIM) contains independent F- and G-actin binding domains, consisting, respectively, of an N-terminal 250 aa IRSp53/MIM homology domain (IMD) and a C-terminal WASP-homology domain 2 (WH2). We determined the crystal structures of MIM's IMD and that of its WH2 bound to actin. The IMD forms a dimer, with each subunit folded as an antiparallel three-helix bundle. This fold is related to that of the BAR domain. Like the BAR domain, the IMD has been implicated in membrane binding. Yet, comparison of the structures reveals that the membrane binding surfaces of the two domains have opposite curvatures, which may determine the type of curvature of the interacting membrane. The WH2 of MIM is longer than the prototypical WH2, interacting with all four subdomains of actin. We characterize a similar WH2 at the C terminus of IRSp53 and propose that in these two proteins WH2 performs a scaffolding function.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Structural and Functional Relationship between the IMD and BAR Domains
(A) Electrostatic surface representation of the IMD dimer calculated with the program APBS (Baker et al., 2001) and displayed with the program PyMOL (http://www.pymol.org). Red and blue indicate negatively and positively charged regions, respectively (red, −6 kTe^−1; blue +6 kTe^−1). Note the positively charged and slightly convex surface, which is thought to mediate the interactions with membranes of the IMD (Suetsugu et al., 2006).
(B) Similar electrostatic representation of the BAR domain of amphiphysin (Peter et al., 2004). The orientation is the same as in (A). Note that the shape of the positively charged membrane binding surface of the BAR domain is concave.
(C) Superimposition of the structures of the IMD of MIM (blue, yellow) with that of the BAR domain of arfaptin complexed with Rac (Tarricone et al., 2001) (gray). The orientation is the same as in (A) and (B). The two folds have different curvatures, but superimpose well in the middle section where the dimers overlap, suggesting that this region may also mediate the binding of Rac in MIM and IRSp53.
Figure 4.
Figure 4. The WASP-Homology Domain 2 of MIM and IRSp53
(A) Comparison of a classical WH2 (represented by WASP, Wiskott-Aldrich syndrome protein) with the WH2s of MIM, ABBA, and IRSp53. Red, blue, green, and yellow correspond to negatively charged, positively charged, hydrophobic, and small (Thr, Val, Ser, Ala) conserved amino acids, respectively. The diagram above the sequences represents a secondary structure assignment based on the structure determined here (cylinder, α helix; arrow, β strand). Accession numbers are as in Figure 1, and WASP_HUMAN, P42768. Red arrows point to noncanonical amino acids present in the WH2 of IRSp53.
(B) Structure of the WH2 of MIM (red ribbon) bound to actin (gray surface). Numbers 1–4 indicate actin's four subdomains. The side chains of some of the amino acids involved in interactions with actin are shown (green, hydrophobic; blue, positively charged).
(C) Binding of the WH2 of IRSp53 to actin measured by ITC. The upper graph corresponds to the heat evolved upon repeated 10 μl injections of a 100 μM solution of the WH2 peptide into a 10 μM solution of actin in G buffer. The lower graph shows the binding isotherm produced by integration of the heat for each injection. The line represents a nonlinear least squares fit to the data using a single-site binding model. The following thermodynamic parameters were determined from the fitting: dissociation constant K[d] = 0.28 ± 0.04 μM; molar enthalpy ΔH = −7.2 ± 0.1 kcal.mol^−1; and stoichiometry n = 0.9.
 
  The above figures are reprinted from an Open Access publication published by Cell Press: Structure (2007, 15, 145-155) copyright 2007.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21743456 A.Pykäläinen, M.Boczkowska, H.Zhao, J.Saarikangas, G.Rebowski, M.Jansen, J.Hakanen, E.V.Koskela, J.Peränen, H.Vihinen, E.Jokitalo, M.Salminen, E.Ikonen, R.Dominguez, and P.Lappalainen (2011).
Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures.
  Nat Struct Mol Biol, 18, 902-907.
PDB code: 3ok8
21093245 H.Zhao, A.Pykäläinen, and P.Lappalainen (2011).
I-BAR domain proteins: linking actin and plasma membrane dynamics.
  Curr Opin Cell Biol, 23, 14-21.  
20538977 A.M.Ducka, P.Joel, G.M.Popowicz, K.M.Trybus, M.Schleicher, A.A.Noegel, R.Huber, T.A.Holak, and T.Sitar (2010).
Structures of actin-bound Wiskott-Aldrich syndrome protein homology 2 (WH2) domains of Spire and the implication for filament nucleation.
  Proc Natl Acad Sci U S A, 107, 11757-11762.
PDB codes: 3mmv 3mn5 3mn6 3mn7 3mn9
20536449 C.Husson, F.X.Cantrelle, P.Roblin, D.Didry, K.H.Le, J.Perez, E.Guittet, C.Van Heijenoort, L.Renault, and M.F.Carlier (2010).
Multifunctionality of the beta-thymosin/WH2 module: G-actin sequestration, actin filament growth, nucleation, and severing.
  Ann N Y Acad Sci, 1194, 44-52.  
20385776 G.A.Quinones, J.Jin, and A.E.Oro (2010).
I-BAR protein antagonism of endocytosis mediates directional sensing during guided cell migration.
  J Cell Biol, 189, 353-367.  
20610658 J.Y.Youn, H.Friesen, T.Kishimoto, W.M.Henne, C.F.Kurat, W.Ye, D.F.Ceccarelli, F.Sicheri, S.D.Kohlwein, H.T.McMahon, and B.J.Andrews (2010).
Dissecting BAR domain function in the yeast Amphiphysins Rvs161 and Rvs167 during endocytosis.
  Mol Biol Cell, 21, 3054-3069.  
20712855 K.Liu, G.Wang, H.Ding, Y.Chen, G.Yu, and J.Wang (2010).
Downregulation of metastasis suppressor 1(MTSS1) is associated with nodal metastasis and poor outcome in Chinese patients with gastric cancer.
  BMC Cancer, 10, 428.  
21124947 M.Guéroult, D.Picot, J.Abi-Ghanem, B.Hartmann, and M.Baaden (2010).
How cations can assist DNase I in DNA binding and hydrolysis.
  PLoS Comput Biol, 6, e1001000.  
20532239 M.Hertzog, F.Milanesi, L.Hazelwood, A.Disanza, H.Liu, E.Perlade, M.G.Malabarba, S.Pasqualato, A.Maiolica, S.Confalonieri, C.Le Clainche, N.Offenhauser, J.Block, K.Rottner, P.P.Di Fiore, M.F.Carlier, N.Volkmann, D.Hanein, and G.Scita (2010).
Molecular basis for the dual function of Eps8 on actin dynamics: bundling and capping.
  PLoS Biol, 8, e1000387.  
20083215 M.Masuda, and N.Mochizuki (2010).
Structural characteristics of BAR domain superfamily to sculpt the membrane.
  Semin Cell Dev Biol, 21, 391-398.  
20418908 P.S.Liu, T.H.Jong, M.C.Maa, and T.H.Leu (2010).
The interplay between Eps8 and IRSp53 contributes to Src-mediated transformation.
  Oncogene, 29, 3977-3989.  
  20585502 S.Ahmed, W.Bu, R.T.Lee, S.Maurer-Stroh, and W.I.Goh (2010).
F-BAR domain proteins: Families and function.
  Commun Integr Biol, 3, 116-121.  
19913105 S.Ahmed, W.I.Goh, and W.Bu (2010).
I-BAR domains, IRSp53 and filopodium formation.
  Semin Cell Dev Biol, 21, 350-356.  
20446344 S.H.Lee, and R.Dominguez (2010).
Regulation of actin cytoskeleton dynamics in cells.
  Mol Cells, 29, 311-325.  
19171758 B.Chandra Roy, N.Kakinuma, and R.Kiyama (2009).
Kank attenuates actin remodeling by preventing interaction between IRSp53 and Rac1.
  J Cell Biol, 184, 253-267.  
19798448 C.Giuliani, F.Troglio, Z.Bai, F.B.Patel, A.Zucconi, M.G.Malabarba, A.Disanza, T.B.Stradal, G.Cassata, S.Confalonieri, J.D.Hardin, M.C.Soto, B.D.Grant, and G.Scita (2009).
Requirements for F-BAR proteins TOCA-1 and TOCA-2 in actin dynamics and membrane trafficking during Caenorhabditis elegans oocyte growth and embryonic epidermal morphogenesis.
  PLoS Genet, 5, e1000675.  
19479071 C.Yang, M.Hoelzle, A.Disanza, G.Scita, and T.Svitkina (2009).
Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion.
  PLoS One, 4, e5678.  
19150238 J.Saarikangas, H.Zhao, A.Pykäläinen, P.Laurinmäki, P.K.Mattila, P.K.Kinnunen, S.J.Butcher, and P.Lappalainen (2009).
Molecular mechanisms of membrane deformation by I-BAR domain proteins.
  Curr Biol, 19, 95.  
19481110 T.Itoh, and T.Takenawa (2009).
Mechanisms of membrane deformation by lipid-binding domains.
  Prog Lipid Res, 48, 298-305.  
19816406 V.K.Bhatia, K.L.Madsen, P.Y.Bolinger, A.Kunding, P.Hedegård, U.Gether, and D.Stamou (2009).
Amphipathic motifs in BAR domains are essential for membrane curvature sensing.
  EMBO J, 28, 3303-3314.  
18329367 A.Frost, R.Perera, A.Roux, K.Spasov, O.Destaing, E.H.Egelman, P.De Camilli, and V.M.Unger (2008).
Structural basis of membrane invagination by F-BAR domains.
  Cell, 132, 807-817.  
18215522 G.Scita, S.Confalonieri, P.Lappalainen, and S.Suetsugu (2008).
IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions.
  Trends Cell Biol, 18, 52-60.  
18448434 K.B.Lim, W.Bu, W.I.Goh, E.Koh, S.H.Ong, T.Pawson, T.Sudhaharan, and S.Ahmed (2008).
The Cdc42 effector IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics.
  J Biol Chem, 283, 20454-20472.  
18464790 P.K.Mattila, and P.Lappalainen (2008).
Filopodia: molecular architecture and cellular functions.
  Nat Rev Mol Cell Biol, 9, 446-454.  
17925019 A.Glassmann, S.Molly, L.Surchev, T.A.Nazwar, M.Holst, W.Hartmann, S.L.Baader, J.Oberdick, T.Pietsch, and K.Schilling (2007).
Developmental expression and differentiation-related neuron-specific splicing of metastasis suppressor 1 (Mtss1) in normal and transformed cerebellar cells.
  BMC Dev Biol, 7, 111.  
17914456 F.Ferron, G.Rebowski, S.H.Lee, and R.Dominguez (2007).
Structural basis for the recruitment of profilin-actin complexes during filament elongation by Ena/VASP.
  EMBO J, 26, 4597-4606.
PDB codes: 2pav 2pbd
17580073 G.O.Cory, and P.J.Cullen (2007).
Membrane curvature: the power of bananas, zeppelins and boomerangs.
  Curr Biol, 17, R455-R457.  
17497115 L.M.Machesky, and S.A.Johnston (2007).
MIM: a multifunctional scaffold protein.
  J Mol Med, 85, 569-576.  
18042452 M.Bosch, K.H.Le, B.Bugyi, J.J.Correia, L.Renault, and M.F.Carlier (2007).
Analysis of the function of Spire in actin assembly and its synergy with formin and profilin.
  Mol Cell, 28, 555-568.  
17947587 M.F.Carlier, M.Hertzog, D.Didry, L.Renault, F.X.Cantrelle, C.van Heijenoort, M.Knossow, and E.Guittet (2007).
Structure, function, and evolution of the beta-thymosin/WH2 (WASP-Homology2) actin-binding module.
  Ann N Y Acad Sci, 1112, 67-75.  
17371834 P.K.Mattila, A.Pykäläinen, J.Saarikangas, V.O.Paavilainen, H.Vihinen, E.Jokitalo, and P.Lappalainen (2007).
Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism.
  J Cell Biol, 176, 953-964.  
17468236 R.Dominguez (2007).
The beta-thymosin/WH2 fold: multifunctionality and structure.
  Ann N Y Acad Sci, 1112, 86-94.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer