 |
PDBsum entry 1h0a
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
419:361-366
(2002)
|
|
PubMed id:
|
|
|
|
|
| |
|
Curvature of clathrin-coated pits driven by epsin.
|
|
M.G.Ford,
I.G.Mills,
B.J.Peter,
Y.Vallis,
G.J.Praefcke,
P.R.Evans,
H.T.McMahon.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Clathrin-mediated endocytosis involves cargo selection and membrane budding into
vesicles with the aid of a protein coat. Formation of invaginated pits on the
plasma membrane and subsequent budding of vesicles is an energetically demanding
process that involves the cooperation of clathrin with many different proteins.
Here we investigate the role of the brain-enriched protein epsin 1 in this
process. Epsin is targeted to areas of endocytosis by binding the membrane lipid
phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)). We show here that epsin
1 directly modifies membrane curvature on binding to PtdIns(4,5)P(2) in
conjunction with clathrin polymerization. We have discovered that formation of
an amphipathic alpha-helix in epsin is coupled to PtdIns(4,5)P(2) binding.
Mutation of residues on the hydrophobic region of this helix abolishes the
ability to curve membranes. We propose that this helix is inserted into one
leaflet of the lipid bilayer, inducing curvature. On lipid monolayers epsin
alone is sufficient to facilitate the formation of clathrin-coated invaginations.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1: Epsin 1 ENTH domain tubulates liposomes. a, Modular
arrangement of endocytic proteins. The epsin family can be
recognized by the presence of an N-terminal lipid-binding ENTH
domain and a clathrin/adaptor-binding domain. The ENTH domain is
homologous over the first 150 residues to the ANTH domains of
AP180, CALM and HIP1, although the lipid-binding residues are
very different (see Fig. 2d). The ENTH domain is followed by
ubiquitin-interacting motifs. The adaptor-binding motifs in
epsin 1 (eight DPW motifs) and DPF-like motifs in other
endocytic proteins bind to the appendage domains of the AP2
complex25. NPF motifs at the C terminus of epsin 1 interact with
the Eps15 homology (EH) domain of Eps15 (refs 7 -9). The scale
bar is in amino acid residues. b, Electron microscopy of
liposomes in the presence of the domains indicated. dAmphN,
Drosophila amphiphysin N-terminus26. The outer diameter of
tubules formed with epsin ENTH domain was 15 1
nm, that of tubules formed with full-length epsin was 19 3
nm, and that in the presence of dAmphN was 46 2
nm.
|
 |
Figure 2.
Figure 2: Structure of epsin ENTH bound to Ins(1,4,5)P[3]. a,
Ribbon diagrams of epsin ENTH bound to Ins(1,4,5)P[3] (Protein
DataBank (PDB) accession number 1H0A), and for comparison the
previous structures of epsin ENTH solved in the absence of
Ins(1,4,5)P[3] (PDB 1EDU14) and CALM ANTH bound to
diC[8]PtdIns(4,5)P[2] (PDB 1HFA^13). The structures are coloured
red to blue from N- to C-termini, with corresponding helices
having the same colour. Surface electrostatic potentials (red -
10 kT e^-1; blue + 10 kT e^-1) of each structure are shown
below. Ins(1,4,5)P[3] binds to CALM on a positively charged
surface not present in epsin. b, Schematic diagram of the
interactions responsible for binding the Ins(1,4,5)P[3]
molecule. c, Close-up view of the Ins(1,4,5)P[3] binding site,
showing the residues responsible for interaction with the
ligand. The hydrophobic residues L6, M10 and I13 exposed on
formation of helix 0 are also marked. The structure shows that
lipid binding and an interaction of helix 0 with the bilayer
could happen simultaneously. The electron density for the ligand
is shown, contoured at 0.168 e Å-3. d, Sequence alignments
comparing the lipid-binding residues of all the epsin family
members with corresponding residues from the ANTH domains of
AP180, CALM and LAP (the Drosophila AP180 homologue). Critical
residues for Ins(1,4,5)P[3] binding to epsin 1 are coloured in
blue and are conserved in epsins 1, 2 and 3 and in Drosophila
epsin (liquid facets). The lipid-binding residues are not well
conserved in epsinR/Drosophila epsin-like (see residues coloured
green), suggesting a different lipid specificity of this epsin.
The epsin Ins(1,4,5)P[3]-binding residues are not conserved in
AP180 and CALM, where a different set of residues have been
identified as being involved in Ins(1,4,5)P[3] binding, coloured
in purple^13. h, human; d, Drosophila; r, rat.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2002,
419,
361-366)
copyright 2002.
|
|
| |
Figures were
selected
by the author.
|
|
|
| |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
|
| |
The ENTH domain binds to PtdIns(4,5)P2. On binding to the lipid, the otherwise unstructured N-terminal residues fold into a helix (termed helix 0 to keep with the naming convention of the previously solved ENTH domain - pdb id 1EDU). Helix 0 is amphipathic and the hydrophobic residues on the outer surface of helix 0 can insert into PtdIns(4,5)P2-containing membranes and function like a wedge to generate curvature. In in vitro experiments using liposomes, the result is extensive tubulation and in the presence of an epsin binding partner, clathrin, it generates clathrin-coated pits. Though the ENTH domain shares some sequence conservation with the ANTH domain (pdb id 1HFA), and both bind to PtdIns(4,5)P2, yet the modes of binding, and the functional consequences thereof, are very different.
Harvey McMahon
Marijn Ford
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
J.C.Stachowiak,
E.M.Schmid,
C.J.Ryan,
H.S.Ann,
D.Y.Sasaki,
M.B.Sherman,
P.L.Geissler,
D.A.Fletcher,
and
C.C.Hayden
(2012).
Membrane bending by protein-protein crowding.
|
| |
Nat Cell Biol,
14,
944-949.
|
 |
|
|
|
|
 |
P.N.Dannhauser,
and
E.J.Ungewickell
(2012).
Reconstitution of clathrin-coated bud and vesicle formation with minimal components.
|
| |
Nat Cell Biol,
14,
634-639.
|
 |
|
|
|
|
 |
T.Kirchhausen
(2012).
Bending membranes.
|
| |
Nat Cell Biol,
14,
906-908.
|
 |
|
|
|
|
 |
A.Chaudhuri,
G.Battaglia,
and
R.Golestanian
(2011).
The effect of interactions on the cellular uptake of nanoparticles.
|
| |
Phys Biol,
8,
046002.
|
 |
|
|
|
|
 |
H.T.McMahon,
and
E.Boucrot
(2011).
Molecular mechanism and physiological functions of clathrin-mediated endocytosis.
|
| |
Nat Rev Mol Cell Biol,
12,
517-533.
|
 |
|
|
|
|
 |
R.Ramachandran
(2011).
Vesicle scission: dynamin.
|
| |
Semin Cell Dev Biol,
22,
10-17.
|
 |
|
|
|
|
 |
T.Baumgart,
B.R.Capraro,
C.Zhu,
and
S.L.Das
(2011).
Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids.
|
| |
Annu Rev Phys Chem,
62,
483-506.
|
 |
|
|
|
|
 |
W.Fan,
A.Nassiri,
and
Q.Zhong
(2011).
Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L).
|
| |
Proc Natl Acad Sci U S A,
108,
7769-7774.
|
 |
|
|
|
|
 |
Å..OpaliÅ„ski,
J.A.Kiel,
C.Williams,
M.Veenhuis,
and
I.J.van der Klei
(2011).
Membrane curvature during peroxisome fission requires Pex11.
|
| |
EMBO J,
30,
5.
|
 |
|
|
|
|
 |
A.J.Groffen,
S.Martens,
R.Díez Arazola,
L.N.Cornelisse,
N.Lozovaya,
A.P.de Jong,
N.A.Goriounova,
R.L.Habets,
Y.Takai,
J.G.Borst,
N.Brose,
H.T.McMahon,
and
M.Verhage
(2010).
Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release.
|
| |
Science,
327,
1614-1618.
|
 |
|
|
|
|
 |
C.F.Dibble,
J.A.Horst,
M.H.Malone,
K.Park,
B.Temple,
H.Cheeseman,
J.R.Barbaro,
G.L.Johnson,
and
S.Bencharit
(2010).
Defining the functional domain of programmed cell death 10 through its interactions with phosphatidylinositol-3,4,5-trisphosphate.
|
| |
PLoS One,
5,
e11740.
|
 |
|
|
|
|
 |
F.Liu,
and
K.J.Walters
(2010).
Multitasking with ubiquitin through multivalent interactions.
|
| |
Trends Biochem Sci,
35,
352-360.
|
 |
|
|
|
|
 |
G.Ko,
S.Paradise,
H.Chen,
M.Graham,
M.Vecchi,
F.Bianchi,
O.Cremona,
P.P.Di Fiore,
and
P.De Camilli
(2010).
Selective high-level expression of epsin 3 in gastric parietal cells, where it is localized at endocytic sites of apical canaliculi.
|
| |
Proc Natl Acad Sci U S A,
107,
21511-21516.
|
 |
|
|
|
|
 |
G.Sahay,
D.Y.Alakhova,
and
A.V.Kabanov
(2010).
Endocytosis of nanomedicines.
|
| |
J Control Release,
145,
182-195.
|
 |
|
|
|
|
 |
H.Gerlach,
V.Laumann,
S.Martens,
C.F.Becker,
R.S.Goody,
and
M.Geyer
(2010).
HIV-1 Nef membrane association depends on charge, curvature, composition and sequence.
|
| |
Nat Chem Biol,
6,
46-53.
|
 |
|
|
|
|
 |
J.C.Stachowiak,
C.C.Hayden,
and
D.Y.Sasaki
(2010).
Steric confinement of proteins on lipid membranes can drive curvature and tubulation.
|
| |
Proc Natl Acad Sci U S A,
107,
7781-7786.
|
 |
|
|
|
|
 |
J.H.Hurley,
E.Boura,
L.A.Carlson,
and
B.Różycki
(2010).
Membrane budding.
|
| |
Cell,
143,
875-887.
|
 |
|
|
|
|
 |
J.P.O'Bryan
(2010).
Intersecting pathways in cell biology.
|
| |
Sci Signal,
3,
re10.
|
 |
|
|
|
|
 |
J.Zimmermann,
S.Chidambaram,
and
G.Fischer von Mollard
(2010).
Dissecting Ent3p: the ENTH domain binds different SNAREs via distinct amino acid residues while the C-terminus is sufficient for retrograde transport from endosomes.
|
| |
Biochem J,
431,
123-134.
|
 |
|
|
|
|
 |
L.Johannes,
and
S.Mayor
(2010).
Induced domain formation in endocytic invagination, lipid sorting, and scission.
|
| |
Cell,
142,
507-510.
|
 |
|
|
|
|
 |
M.M.Kozlov,
H.T.McMahon,
and
L.V.Chernomordik
(2010).
Protein-driven membrane stresses in fusion and fission.
|
| |
Trends Biochem Sci,
35,
699-706.
|
 |
|
|
|
|
 |
M.Masuda,
and
N.Mochizuki
(2010).
Structural characteristics of BAR domain superfamily to sculpt the membrane.
|
| |
Semin Cell Dev Biol,
21,
391-398.
|
 |
|
|
|
|
 |
N.J.Agrawal,
J.Nukpezah,
and
R.Radhakrishnan
(2010).
Minimal mesoscale model for protein-mediated vesiculation in clathrin-dependent endocytosis.
|
| |
PLoS Comput Biol,
6,
0.
|
 |
|
|
|
|
 |
O.H.Shin,
J.Lu,
J.S.Rhee,
D.R.Tomchick,
Z.P.Pang,
S.M.Wojcik,
M.Camacho-Perez,
N.Brose,
M.Machius,
J.Rizo,
C.Rosenmund,
and
T.C.Südhof
(2010).
Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis.
|
| |
Nat Struct Mol Biol,
17,
280-288.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Lundmark,
and
S.R.Carlsson
(2010).
Driving membrane curvature in clathrin-dependent and clathrin-independent endocytosis.
|
| |
Semin Cell Dev Biol,
21,
363-370.
|
 |
|
|
|
|
 |
S.Kotova,
K.Prasad,
P.D.Smith,
E.M.Lafer,
R.Nossal,
and
A.J.Jin
(2010).
AFM visualization of clathrin triskelia under fluid and in air.
|
| |
FEBS Lett,
584,
44-48.
|
 |
|
|
|
|
 |
S.Schoebel,
W.Blankenfeldt,
R.S.Goody,
and
A.Itzen
(2010).
High-affinity binding of phosphatidylinositol 4-phosphate by Legionella pneumophila DrrA.
|
| |
EMBO Rep,
11,
598-604.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Suetsugu
(2010).
The proposed functions of membrane curvatures mediated by the BAR domain superfamily proteins.
|
| |
J Biochem,
148,
1.
|
 |
|
|
|
|
 |
S.Suetsugu,
K.Toyooka,
and
Y.Senju
(2010).
Subcellular membrane curvature mediated by the BAR domain superfamily proteins.
|
| |
Semin Cell Dev Biol,
21,
340-349.
|
 |
|
|
|
|
 |
T.G.Kutateladze
(2010).
Translation of the phosphoinositide code by PI effectors.
|
| |
Nat Chem Biol,
6,
507-513.
|
 |
|
|
|
|
 |
T.Takenawa
(2010).
Phosphoinositide-binding interface proteins involved in shaping cell membranes.
|
| |
Proc Jpn Acad Ser B Phys Biol Sci,
86,
509-523.
|
 |
|
|
|
|
 |
V.K.Bhatia,
N.S.Hatzakis,
and
D.Stamou
(2010).
A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins.
|
| |
Semin Cell Dev Biol,
21,
381-390.
|
 |
|
|
|
|
 |
Y.Yoon,
J.Tong,
P.J.Lee,
A.Albanese,
N.Bhardwaj,
M.Källberg,
M.A.Digman,
H.Lu,
E.Gratton,
Y.K.Shin,
and
W.Cho
(2010).
Molecular basis of the potent membrane-remodeling activity of the epsin 1 N-terminal homology domain.
|
| |
J Biol Chem,
285,
531-540.
|
 |
|
|
|
|
 |
A.Arkhipov,
Y.Yin,
and
K.Schulten
(2009).
Membrane-bending mechanism of amphiphysin N-BAR domains.
|
| |
Biophys J,
97,
2727-2735.
|
 |
|
|
|
|
 |
A.Reider,
S.L.Barker,
S.K.Mishra,
Y.J.Im,
L.Maldonado-Báez,
J.H.Hurley,
L.M.Traub,
and
B.Wendland
(2009).
Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation.
|
| |
EMBO J,
28,
3103-3116.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.V.Shnyrova,
V.A.Frolov,
and
J.Zimmerberg
(2009).
Domain-driven morphogenesis of cellular membranes.
|
| |
Curr Biol,
19,
R772-R780.
|
 |
|
|
|
|
 |
D.Mukherjee,
B.G.Coon,
D.F.Edwards,
C.B.Hanna,
S.A.Longhi,
J.M.McCaffery,
B.Wendland,
L.A.Retegui,
E.Bi,
and
R.C.Aguilar
(2009).
The yeast endocytic protein Epsin 2 functions in a cell-division signaling pathway.
|
| |
J Cell Sci,
122,
2453-2463.
|
 |
|
|
|
|
 |
F.Campelo
(2009).
Modeling morphological instabilities in lipid membranes with anchored amphiphilic polymers.
|
| |
J Chem Biol,
2,
65-80.
|
 |
|
|
|
|
 |
G.J.Doherty,
and
H.T.McMahon
(2009).
Mechanisms of endocytosis.
|
| |
Annu Rev Biochem,
78,
857-902.
|
 |
|
|
|
|
 |
G.Khelashvili,
D.Harries,
and
H.Weinstein
(2009).
Modeling membrane deformations and lipid demixing upon protein-membrane interaction: the BAR dimer adsorption.
|
| |
Biophys J,
97,
1626-1635.
|
 |
|
|
|
|
 |
H.Chen,
G.Ko,
A.Zatti,
G.Di Giacomo,
L.Liu,
E.Raiteri,
E.Perucco,
C.Collesi,
W.Min,
C.Zeiss,
P.De Camilli,
and
O.Cremona
(2009).
Embryonic arrest at midgestation and disruption of Notch signaling produced by the absence of both epsin 1 and epsin 2 in mice.
|
| |
Proc Natl Acad Sci U S A,
106,
13838-13843.
|
 |
|
|
|
|
 |
J.Dittman,
and
T.A.Ryan
(2009).
Molecular circuitry of endocytosis at nerve terminals.
|
| |
Annu Rev Cell Dev Biol,
25,
133-160.
|
 |
|
|
|
|
 |
J.H.Lee,
E.Overstreet,
E.Fitch,
S.Fleenor,
and
J.A.Fischer
(2009).
Drosophila liquid facets-Related encodes Golgi epsin and is an essential gene required for cell proliferation, growth, and patterning.
|
| |
Dev Biol,
331,
1.
|
 |
|
|
|
|
 |
L.M.Koharudin,
W.Furey,
H.Liu,
Y.J.Liu,
and
A.M.Gronenborn
(2009).
The phox domain of sorting nexin 5 lacks phosphatidylinositol 3-phosphate (PtdIns(3)P) specificity and preferentially binds to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2).
|
| |
J Biol Chem,
284,
23697-23707.
|
 |
|
|
|
|
 |
M.B.Butterworth,
R.S.Edinger,
R.A.Frizzell,
and
J.P.Johnson
(2009).
Regulation of the epithelial sodium channel by membrane trafficking.
|
| |
Am J Physiol Renal Physiol,
296,
F10-F24.
|
 |
|
|
|
|
 |
M.Mettlen,
M.Stoeber,
D.Loerke,
C.N.Antonescu,
G.Danuser,
and
S.L.Schmid
(2009).
Endocytic accessory proteins are functionally distinguished by their differential effects on the maturation of clathrin-coated pits.
|
| |
Mol Biol Cell,
20,
3251-3260.
|
 |
|
|
|
|
 |
M.S.Santos,
H.Li,
and
S.M.Voglmaier
(2009).
Synaptic vesicle protein trafficking at the glutamate synapse.
|
| |
Neuroscience,
158,
189-203.
|
 |
|
|
|
|
 |
N.Ay,
K.Irmler,
A.Fischer,
R.Uhlemann,
G.Reuter,
and
K.Humbeck
(2009).
Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana.
|
| |
Plant J,
58,
333-346.
|
 |
|
|
|
|
 |
N.S.Hatzakis,
V.K.Bhatia,
J.Larsen,
K.L.Madsen,
P.Y.Bolinger,
A.H.Kunding,
J.Castillo,
U.Gether,
P.Hedegård,
and
D.Stamou
(2009).
How curved membranes recruit amphipathic helices and protein anchoring motifs.
|
| |
Nat Chem Biol,
5,
835-841.
|
 |
|
|
|
|
 |
P.E.Smith,
J.R.Brender,
and
A.Ramamoorthy
(2009).
Induction of negative curvature as a mechanism of cell toxicity by amyloidogenic peptides: the case of islet amyloid polypeptide.
|
| |
J Am Chem Soc,
131,
4470-4478.
|
 |
|
|
|
|
 |
P.M.van Bergen En Henegouwen
(2009).
Eps15: a multifunctional adaptor protein regulating intracellular trafficking.
|
| |
Cell Commun Signal,
7,
24.
|
 |
|
|
|
|
 |
R.Ramachandran,
T.J.Pucadyil,
Y.W.Liu,
S.Acharya,
M.Leonard,
V.Lukiyanchuk,
and
S.L.Schmid
(2009).
Membrane insertion of the pleckstrin homology domain variable loop 1 is critical for dynamin-catalyzed vesicle scission.
|
| |
Mol Biol Cell,
20,
4630-4639.
|
 |
|
|
|
|
 |
S.Saffarian,
E.Cocucci,
and
T.Kirchhausen
(2009).
Distinct dynamics of endocytic clathrin-coated pits and coated plaques.
|
| |
PLoS Biol,
7,
e1000191.
|
 |
|
|
|
|
 |
T.Auth,
and
G.Gompper
(2009).
Budding and vesiculation induced by conical membrane inclusions.
|
| |
Phys Rev E Stat Nonlin Soft Matter Phys,
80,
031901.
|
 |
|
|
|
|
 |
T.Itoh,
and
T.Takenawa
(2009).
Mechanisms of membrane deformation by lipid-binding domains.
|
| |
Prog Lipid Res,
48,
298-305.
|
 |
|
|
|
|
 |
Y.Shibata,
J.Hu,
M.M.Kozlov,
and
T.A.Rapoport
(2009).
Mechanisms shaping the membranes of cellular organelles.
|
| |
Annu Rev Cell Dev Biol,
25,
329-354.
|
 |
|
|
|
|
 |
Y.Wen,
I.Stavrou,
K.Bersuker,
R.J.Brady,
A.De Lozanne,
and
T.J.O'Halloran
(2009).
AP180-mediated trafficking of Vamp7B limits homotypic fusion of Dictyostelium contractile vacuoles.
|
| |
Mol Biol Cell,
20,
4278-4288.
|
 |
|
|
|
|
 |
Y.Zwang,
and
Y.Yarden
(2009).
Systems biology of growth factor-induced receptor endocytosis.
|
| |
Traffic,
10,
349-363.
|
 |
|
|
|
|
 |
Z.Liu,
and
Y.Zheng
(2009).
A requirement for epsin in mitotic membrane and spindle organization.
|
| |
J Cell Biol,
186,
473-480.
|
 |
|
|
|
|
 |
A.Frost,
R.Perera,
A.Roux,
K.Spasov,
O.Destaing,
E.H.Egelman,
P.De Camilli,
and
V.M.Unger
(2008).
Structural basis of membrane invagination by F-BAR domains.
|
| |
Cell,
132,
807-817.
|
 |
|
|
|
|
 |
B.E.Steinberg,
and
S.Grinstein
(2008).
Pathogen destruction versus intracellular survival: the role of lipids as phagosomal fate determinants.
|
| |
J Clin Invest,
118,
2002-2011.
|
 |
|
|
|
|
 |
B.L.Dickinson,
S.M.Claypool,
J.A.D'Angelo,
M.L.Aiken,
N.Venu,
E.H.Yen,
J.S.Wagner,
J.A.Borawski,
A.T.Pierce,
R.Hershberg,
R.S.Blumberg,
and
W.I.Lencer
(2008).
Ca2+-dependent Calmodulin Binding to FcRn Affects Immunoglobulin G Transport in the Transcytotic Pathway.
|
| |
Mol Biol Cell,
19,
414-423.
|
 |
|
|
|
|
 |
C.Chen,
and
X.Zhuang
(2008).
Epsin 1 is a cargo-specific adaptor for the clathrin-mediated endocytosis of the influenza virus.
|
| |
Proc Natl Acad Sci U S A,
105,
11790-11795.
|
 |
|
|
|
|
 |
C.K.Min,
S.Y.Bang,
B.A.Cho,
Y.H.Choi,
J.S.Yang,
S.H.Lee,
S.Y.Seong,
K.W.Kim,
S.Kim,
J.U.Jung,
M.S.Choi,
I.S.Kim,
and
N.H.Cho
(2008).
Role of amphipathic helix of a herpesviral protein in membrane deformation and T cell receptor downregulation.
|
| |
PLoS Pathog,
4,
e1000209.
|
 |
|
|
|
|
 |
C.Löw,
U.Weininger,
H.Lee,
K.Schweimer,
I.Neundorf,
A.G.Beck-Sickinger,
R.W.Pastor,
and
J.Balbach
(2008).
Structure and dynamics of helix-0 of the N-BAR domain in lipid micelles and bilayers.
|
| |
Biophys J,
95,
4315-4323.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Connell,
P.Scott,
and
B.Davletov
(2008).
Real-time assay for monitoring membrane association of lipid-binding domains.
|
| |
Anal Biochem,
377,
83-88.
|
 |
|
|
|
|
 |
E.Díaz,
R.Sebastian,
G.Ayala,
M.E.Díaz,
R.Zoncu,
D.Toomre,
and
S.Gasman
(2008).
Measuring spatiotemporal dependencies in bivariate temporal random sets with applications to cell biology.
|
| |
IEEE Trans Pattern Anal Mach Intell,
30,
1659-1671.
|
 |
|
|
|
|
 |
E.R.May,
D.I.Kopelevich,
and
A.Narang
(2008).
Coarse-grained molecular dynamics simulations of phase transitions in mixed lipid systems containing LPA, DOPA, and DOPE lipids.
|
| |
Biophys J,
94,
878-890.
|
 |
|
|
|
|
 |
F.Campelo,
H.T.McMahon,
and
M.M.Kozlov
(2008).
The hydrophobic insertion mechanism of membrane curvature generation by proteins.
|
| |
Biophys J,
95,
2325-2339.
|
 |
|
|
|
|
 |
F.Fernandes,
L.M.Loura,
F.J.Chichón,
J.L.Carrascosa,
A.Fedorov,
and
M.Prieto
(2008).
Role of helix 0 of the N-BAR domain in membrane curvature generation.
|
| |
Biophys J,
94,
3065-3073.
|
 |
|
|
|
|
 |
G.J.Doherty,
and
H.T.McMahon
(2008).
Mediation, modulation, and consequences of membrane-cytoskeleton interactions.
|
| |
Annu Rev Biophys,
37,
65-95.
|
 |
|
|
|
|
 |
H.Heerssen,
R.D.Fetter,
and
G.W.Davis
(2008).
Clathrin dependence of synaptic-vesicle formation at the Drosophila neuromuscular junction.
|
| |
Curr Biol,
18,
401-409.
|
 |
|
|
|
|
 |
J.Hu,
Y.Shibata,
C.Voss,
T.Shemesh,
Z.Li,
M.Coughlin,
M.M.Kozlov,
T.A.Rapoport,
and
W.A.Prinz
(2008).
Membrane proteins of the endoplasmic reticulum induce high-curvature tubules.
|
| |
Science,
319,
1247-1250.
|
 |
|
|
|
|
 |
J.Jakobsson,
H.Gad,
F.Andersson,
P.Löw,
O.Shupliakov,
and
L.Brodin
(2008).
Role of epsin 1 in synaptic vesicle endocytosis.
|
| |
Proc Natl Acad Sci U S A,
105,
6445-6450.
|
 |
|
|
|
|
 |
K.Gehrig,
R.B.Cornell,
and
N.D.Ridgway
(2008).
Expansion of the Nucleoplasmic Reticulum Requires the Coordinated Activity of Lamins and CTP:Phosphocholine Cytidylyltransferase {alpha}.
|
| |
Mol Biol Cell,
19,
237-247.
|
 |
|
|
|
|
 |
K.Liu,
K.Surendhran,
S.F.Nothwehr,
and
T.R.Graham
(2008).
P4-ATPase requirement for AP-1/clathrin function in protein transport from the trans-Golgi network and early endosomes.
|
| |
Mol Biol Cell,
19,
3526-3535.
|
 |
|
|
|
|
 |
L.Demmel,
M.Gravert,
E.Ercan,
B.Habermann,
T.Müller-Reichert,
V.Kukhtina,
V.Haucke,
T.Baust,
M.Sohrmann,
Y.Kalaidzidis,
C.Klose,
M.Beck,
M.Peter,
and
C.Walch-Solimena
(2008).
The Clathrin Adaptor Gga2p Is a Phosphatidylinositol 4-phosphate Effector at the Golgi Exit.
|
| |
Mol Biol Cell,
19,
1991-2002.
|
 |
|
|
|
|
 |
L.E.Olesen,
M.G.Ford,
E.M.Schmid,
Y.Vallis,
M.M.Babu,
P.H.Li,
I.G.Mills,
H.T.McMahon,
and
G.J.Praefcke
(2008).
Solitary and repetitive binding motifs for the AP2 complex alpha-appendage in amphiphysin and other accessory proteins.
|
| |
J Biol Chem,
283,
5099-5109.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.G.Kwa,
D.Wegmann,
B.Brügger,
F.T.Wieland,
G.Wanner,
and
P.Braun
(2008).
Mutation of a single residue, beta-glutamate-20, alters protein-lipid interactions of light harvesting complex II.
|
| |
Mol Microbiol,
67,
63-77.
|
 |
|
|
|
|
 |
L.Maldonado-Báez,
M.R.Dores,
E.M.Perkins,
T.G.Drivas,
L.Hicke,
and
B.Wendland
(2008).
Interaction between Epsin/Yap180 adaptors and the scaffolds Ede1/Pan1 is required for endocytosis.
|
| |
Mol Biol Cell,
19,
2936-2948.
|
 |
|
|
|
|
 |
L.V.Chernomordik,
and
M.M.Kozlov
(2008).
Mechanics of membrane fusion.
|
| |
Nat Struct Mol Biol,
15,
675-683.
|
 |
|
|
|
|
 |
M.A.Lemmon
(2008).
Membrane recognition by phospholipid-binding domains.
|
| |
Nat Rev Mol Cell Biol,
9,
99.
|
 |
|
|
|
|
 |
M.E.Díaz,
G.Ayala,
T.León,
R.Zoncu,
and
D.Toomre
(2008).
Analyzing protein-protein spatial-temporal dependencies from image sequences using fuzzy temporal random sets.
|
| |
J Comput Biol,
15,
1221-1236.
|
 |
|
|
|
|
 |
M.Krauss,
J.Y.Jia,
A.Roux,
R.Beck,
F.T.Wieland,
P.De Camilli,
and
V.Haucke
(2008).
Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding.
|
| |
J Biol Chem,
283,
27717-27723.
|
 |
|
|
|
|
 |
N.J.Agrawal,
J.Weinstein,
and
R.Radhakrishnan
(2008).
Landscape of finite-temperature equilibrium behaviour of curvature-inducing proteins on a bilayer membrane explored using a linearized elastic free energy model.
|
| |
Mol Phys,
106,
1913-1923.
|
 |
|
|
|
|
 |
P.D.Blood,
R.D.Swenson,
and
G.A.Voth
(2008).
Factors influencing local membrane curvature induction by N-BAR domains as revealed by molecular dynamics simulations.
|
| |
Biophys J,
95,
1866-1876.
|
 |
|
|
|
|
 |
P.Qian,
P.A.Bullough,
and
C.N.Hunter
(2008).
Three-dimensional reconstruction of a membrane-bending complex: the RC-LH1-PufX core dimer of Rhodobacter sphaeroides.
|
| |
J Biol Chem,
283,
14002-14011.
|
 |
|
|
|
|
 |
R.K.Gill,
L.Shen,
J.R.Turner,
S.Saksena,
W.A.Alrefai,
N.Pant,
A.Esmaili,
A.Dwivedi,
K.Ramaswamy,
and
P.K.Dudeja
(2008).
Serotonin modifies cytoskeleton and brush-border membrane architecture in human intestinal epithelial cells.
|
| |
Am J Physiol Gastrointest Liver Physiol,
295,
G700-G708.
|
 |
|
|
|
|
 |
R.Lundmark,
G.J.Doherty,
Y.Vallis,
B.J.Peter,
and
H.T.McMahon
(2008).
Arf family GTP loading is activated by, and generates, positive membrane curvature.
|
| |
Biochem J,
414,
189-194.
|
 |
|
|
|
|
 |
R.Ramachandran,
and
S.L.Schmid
(2008).
Real-time detection reveals that effectors couple dynamin's GTP-dependent conformational changes to the membrane.
|
| |
EMBO J,
27,
27-37.
|
 |
|
|
|
|
 |
S.Martens,
and
H.T.McMahon
(2008).
Mechanisms of membrane fusion: disparate players and common principles.
|
| |
Nat Rev Mol Cell Biol,
9,
543-556.
|
 |
|
|
|
|
 |
A.Benmerah,
and
C.Lamaze
(2007).
Clathrin-coated pits: vive la différence?
|
| |
Traffic,
8,
970-982.
|
 |
|
|
|
|
 |
A.Rosenhouse-Dantsker,
and
D.E.Logothetis
(2007).
Molecular characteristics of phosphoinositide binding.
|
| |
Pflugers Arch,
455,
45-53.
|
 |
|
|
|
|
 |
A.Shimada,
H.Niwa,
K.Tsujita,
S.Suetsugu,
K.Nitta,
K.Hanawa-Suetsugu,
R.Akasaka,
Y.Nishino,
M.Toyama,
L.Chen,
Z.J.Liu,
B.C.Wang,
M.Yamamoto,
T.Terada,
A.Miyazawa,
A.Tanaka,
S.Sugano,
M.Shirouzu,
K.Nagayama,
T.Takenawa,
and
S.Yokoyama
(2007).
Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis.
|
| |
Cell,
129,
761-772.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Uezu,
A.Horiuchi,
K.Kanda,
N.Kikuchi,
K.Umeda,
K.Tsujita,
S.Suetsugu,
N.Araki,
H.Yamamoto,
T.Takenawa,
and
H.Nakanishi
(2007).
SGIP1alpha is an endocytic protein that directly interacts with phospholipids and Eps15.
|
| |
J Biol Chem,
282,
26481-26489.
|
 |
|
|
|
|
 |
A.Young
(2007).
Structural insights into the clathrin coat.
|
| |
Semin Cell Dev Biol,
18,
448-458.
|
 |
|
|
|
|
 |
E.J.Ungewickell,
and
L.Hinrichsen
(2007).
Endocytosis: clathrin-mediated membrane budding.
|
| |
Curr Opin Cell Biol,
19,
417-425.
|
 |
|
|
|
|
 |
G.Drin,
J.F.Casella,
R.Gautier,
T.Boehmer,
T.U.Schwartz,
and
B.Antonny
(2007).
A general amphipathic alpha-helical motif for sensing membrane curvature.
|
| |
Nat Struct Mol Biol,
14,
138-146.
|
 |
|
|
|
|
 |
G.O.Cory,
and
P.J.Cullen
(2007).
Membrane curvature: the power of bananas, zeppelins and boomerangs.
|
| |
Curr Biol,
17,
R455-R457.
|
 |
|
|
|
|
 |
G.R.Hammond,
and
G.Schiavo
(2007).
Polyphosphoinositol lipids: under-PPInning synaptic function in health and disease.
|
| |
Dev Neurobiol,
67,
1232-1247.
|
 |
|
|
|
|
 |
G.S.Ayton,
P.D.Blood,
and
G.A.Voth
(2007).
Membrane remodeling from N-BAR domain interactions: insights from multi-scale simulation.
|
| |
Biophys J,
92,
3595-3602.
|
 |
|
|
|
|
 |
H.Wallrabe,
G.Bonamy,
A.Periasamy,
and
M.Barroso
(2007).
Receptor complexes cotransported via polarized endocytic pathways form clusters with distinct organizations.
|
| |
Mol Biol Cell,
18,
2226-2243.
|
 |
|
|
|
|
 |
I.G.Mills
(2007).
The interplay between clathrin-coated vesicles and cell signalling.
|
| |
Semin Cell Dev Biol,
18,
459-470.
|
 |
|
|
|
|
 |
J.D.Dikeakos,
M.J.Lacombe,
C.Mercure,
M.Mireuta,
and
T.L.Reudelhuber
(2007).
A hydrophobic patch in a charged alpha-helix is sufficient to target proteins to dense core secretory granules.
|
| |
J Biol Chem,
282,
1136-1143.
|
 |
|
|
|
|
 |
K.Khatchadourian,
C.E.Smith,
M.Metzler,
M.Gregory,
M.R.Hayden,
D.G.Cyr,
and
L.Hermo
(2007).
Structural abnormalities in spermatids together with reduced sperm counts and motility underlie the reproductive defect in HIP1-/- mice.
|
| |
Mol Reprod Dev,
74,
341-359.
|
 |
|
|
|
|
 |
K.M.Weixel,
R.S.Edinger,
L.Kester,
C.J.Guerriero,
H.Wang,
L.Fang,
T.R.Kleyman,
P.A.Welling,
O.A.Weisz,
and
J.P.Johnson
(2007).
Phosphatidylinositol 4-phosphate 5-kinase reduces cell surface expression of the epithelial sodium channel (ENaC) in cultured collecting duct cells.
|
| |
J Biol Chem,
282,
36534-36542.
|
 |
|
|
|
|
 |
R.A.Hom,
M.Vora,
M.Regner,
O.M.Subach,
W.Cho,
V.V.Verkhusha,
R.V.Stahelin,
and
T.G.Kutateladze
(2007).
pH-dependent binding of the Epsin ENTH domain and the AP180 ANTH domain to PI(4,5)P2-containing bilayers.
|
| |
J Mol Biol,
373,
412-423.
|
 |
|
|
|
|
 |
R.C.Sarasij,
S.Mayor,
and
M.Rao
(2007).
Chirality-induced budding: a raft-mediated mechanism for endocytosis and morphology of caveolae?
|
| |
Biophys J,
92,
3140-3158.
|
 |
|
|
|
|
 |
S.E.Miller,
B.M.Collins,
A.J.McCoy,
M.S.Robinson,
and
D.J.Owen
(2007).
A SNARE-adaptor interaction is a new mode of cargo recognition in clathrin-coated vesicles.
|
| |
Nature,
450,
570-574.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Miller,
S.Kastner,
J.Krijnse-Locker,
S.Bühler,
and
R.Bartenschlager
(2007).
The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner.
|
| |
J Biol Chem,
282,
8873-8882.
|
 |
|
|
|
|
 |
T.Fischer,
L.Lu,
H.T.Haigler,
and
R.Langen
(2007).
Annexin B12 is a sensor of membrane curvature and undergoes major curvature-dependent structural changes.
|
| |
J Biol Chem,
282,
9996.
|
 |
|
|
|
|
 |
Y.Liu,
J.Purvis,
A.Shih,
J.Weinstein,
N.Agrawal,
and
R.Radhakrishnan
(2007).
A multiscale computational approach to dissect early events in the Erb family receptor mediated activation, differential signaling, and relevance to oncogenic transformations.
|
| |
Ann Biomed Eng,
35,
1012-1025.
|
 |
|
|
|
|
 |
A.J.Jin,
K.Prasad,
P.D.Smith,
E.M.Lafer,
and
R.Nossal
(2006).
Measuring the elasticity of clathrin-coated vesicles via atomic force microscopy.
|
| |
Biophys J,
90,
3333-3344.
|
 |
|
|
|
|
 |
B.Ritter,
and
P.S.McPherson
(2006).
There's a GAP in the ENTH domain.
|
| |
Proc Natl Acad Sci U S A,
103,
3953-3954.
|
 |
|
|
|
|
 |
G.Costaguta,
M.C.Duncan,
G.E.Fernández,
G.H.Huang,
and
G.S.Payne
(2006).
Distinct roles for TGN/endosome epsin-like adaptors Ent3p and Ent5p.
|
| |
Mol Biol Cell,
17,
3907-3920.
|
 |
|
|
|
|
 |
G.Ren,
P.Vajjhala,
J.S.Lee,
B.Winsor,
and
A.L.Munn
(2006).
The BAR domain proteins: molding membranes in fission, fusion, and phagy.
|
| |
Microbiol Mol Biol Rev,
70,
37.
|
 |
|
|
|
|
 |
H.Wang,
L.M.Traub,
K.M.Weixel,
M.J.Hawryluk,
N.Shah,
R.S.Edinger,
C.J.Perry,
L.Kester,
M.B.Butterworth,
K.W.Peters,
T.R.Kleyman,
R.A.Frizzell,
and
J.P.Johnson
(2006).
Clathrin-mediated endocytosis of the epithelial sodium channel. Role of epsin.
|
| |
J Biol Chem,
281,
14129-14135.
|
 |
|
|
|
|
 |
I.Stavrou,
and
T.J.O'Halloran
(2006).
The monomeric clathrin assembly protein, AP180, regulates contractile vacuole size in Dictyostelium discoideum.
|
| |
Mol Biol Cell,
17,
5381-5389.
|
 |
|
|
|
|
 |
J.Béthune,
F.Wieland,
and
J.Moelleken
(2006).
COPI-mediated transport.
|
| |
J Membr Biol,
211,
65-79.
|
 |
|
|
|
|
 |
J.H.Hurley
(2006).
Membrane binding domains.
|
| |
Biochim Biophys Acta,
1761,
805-811.
|
 |
|
|
|
|
 |
J.L.Gallop,
C.C.Jao,
H.M.Kent,
P.J.Butler,
P.R.Evans,
R.Langen,
and
H.T.McMahon
(2006).
Mechanism of endophilin N-BAR domain-mediated membrane curvature.
|
| |
EMBO J,
25,
2898-2910.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Liu,
M.Kaksonen,
D.G.Drubin,
and
G.Oster
(2006).
Endocytic vesicle scission by lipid phase boundary forces.
|
| |
Proc Natl Acad Sci U S A,
103,
10277-10282.
|
 |
|
|
|
|
 |
J.Y.Yang,
C.S.Zong,
W.Xia,
Y.Wei,
M.Ali-Seyed,
Z.Li,
K.Broglio,
D.A.Berry,
and
M.C.Hung
(2006).
MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation.
|
| |
Mol Cell Biol,
26,
7269-7282.
|
 |
|
|
|
|
 |
J.Zimmerberg,
and
M.M.Kozlov
(2006).
How proteins produce cellular membrane curvature.
|
| |
Nat Rev Mol Cell Biol,
7,
9.
|
 |
|
|
|
|
 |
K.Deinhardt,
O.Berninghausen,
H.J.Willison,
C.R.Hopkins,
and
G.Schiavo
(2006).
Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1.
|
| |
J Cell Biol,
174,
459-471.
|
 |
|
|
|
|
 |
K.S.Ramamurthi,
K.R.Clapham,
and
R.Losick
(2006).
Peptide anchoring spore coat assembly to the outer forespore membrane in Bacillus subtilis.
|
| |
Mol Microbiol,
62,
1547-1557.
|
 |
|
|
|
|
 |
K.Tsujita,
S.Suetsugu,
N.Sasaki,
M.Furutani,
T.Oikawa,
and
T.Takenawa
(2006).
Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis.
|
| |
J Cell Biol,
172,
269-279.
|
 |
|
|
|
|
 |
L.F.Archangelo,
J.Gläsner,
A.Krause,
and
S.K.Bohlander
(2006).
The novel CALM interactor CATS influences the subcellular localization of the leukemogenic fusion protein CALM/AF10.
|
| |
Oncogene,
25,
4099-4109.
|
 |
|
|
|
|
 |
L.Hinrichsen,
A.Meyerholz,
S.Groos,
and
E.J.Ungewickell
(2006).
Bending a membrane: how clathrin affects budding.
|
| |
Proc Natl Acad Sci U S A,
103,
8715-8720.
|
 |
|
|
|
|
 |
L.Maldonado-Báez,
and
B.Wendland
(2006).
Endocytic adaptors: recruiters, coordinators and regulators.
|
| |
Trends Cell Biol,
16,
505-513.
|
 |
|
|
|
|
 |
M.Krauss,
V.Kukhtina,
A.Pechstein,
and
V.Haucke
(2006).
Stimulation of phosphatidylinositol kinase type I-mediated phosphatidylinositol (4,5)-bisphosphate synthesis by AP-2mu-cargo complexes.
|
| |
Proc Natl Acad Sci U S A,
103,
11934-11939.
|
 |
|
|
|
|
 |
M.Masuda,
S.Takeda,
M.Sone,
T.Ohki,
H.Mori,
Y.Kamioka,
and
N.Mochizuki
(2006).
Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms.
|
| |
EMBO J,
25,
2889-2897.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.S.Gov,
and
A.Gopinathan
(2006).
Dynamics of membranes driven by actin polymerization.
|
| |
Biophys J,
90,
454-469.
|
 |
|
|
|
|
 |
P.D.Blood,
and
G.A.Voth
(2006).
Direct observation of Bin/amphiphysin/Rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations.
|
| |
Proc Natl Acad Sci U S A,
103,
15068-15072.
|
 |
|
|
|
|
 |
R.C.Aguilar,
S.A.Longhi,
J.D.Shaw,
L.Y.Yeh,
S.Kim,
A.Schön,
E.Freire,
A.Hsu,
W.K.McCormick,
H.A.Watson,
and
B.Wendland
(2006).
Epsin N-terminal homology domains perform an essential function regulating Cdc42 through binding Cdc42 GTPase-activating proteins.
|
| |
Proc Natl Acad Sci U S A,
103,
4116-4121.
|
 |
|
|
|
|
 |
R.V.Stahelin,
D.Karathanassis,
K.S.Bruzik,
M.D.Waterfield,
J.Bravo,
R.L.Williams,
and
W.Cho
(2006).
Structural and membrane binding analysis of the Phox homology domain of phosphoinositide 3-kinase-C2alpha.
|
| |
J Biol Chem,
281,
39396-39406.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.A.Lee,
J.Kovacs,
R.V.Stahelin,
M.L.Cheever,
M.Overduin,
T.G.Setty,
C.G.Burd,
W.Cho,
and
T.G.Kutateladze
(2006).
Molecular mechanism of membrane docking by the Vam7p PX domain.
|
| |
J Biol Chem,
281,
37091-37101.
|
 |
|
|
|
|
 |
S.Hasse,
E.J.Ungewickell,
and
S.Groos
(2006).
Clathrin and clathrin-accessory proteins in rat kidney cortex epithelia.
|
| |
Histochem Cell Biol,
126,
219-229.
|
 |
|
|
|
|
 |
S.M.Millard,
and
S.A.Wood
(2006).
Riding the DUBway: regulation of protein trafficking by deubiquitylating enzymes.
|
| |
J Cell Biol,
173,
463-468.
|
 |
|
|
|
|
 |
T.A.Ryan
(2006).
A pre-synaptic to-do list for coupling exocytosis to endocytosis.
|
| |
Curr Opin Cell Biol,
18,
416-421.
|
 |
|
|
|
|
 |
T.J.Brett,
and
L.M.Traub
(2006).
Molecular structures of coat and coat-associated proteins: function follows form.
|
| |
Curr Opin Cell Biol,
18,
395-406.
|
 |
|
|
|
|
 |
T.J.Brett,
V.Legendre-Guillemin,
P.S.McPherson,
and
D.H.Fremont
(2006).
Structural definition of the F-actin-binding THATCH domain from HIP1R.
|
| |
Nat Struct Mol Biol,
13,
121-130.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Jun,
N.Thorngren,
V.J.Starai,
R.A.Fratti,
K.Collins,
and
W.Wickner
(2006).
Reversible, cooperative reactions of yeast vacuole docking.
|
| |
EMBO J,
25,
5260-5269.
|
 |
|
|
|
|
 |
A.Bielli,
C.J.Haney,
G.Gabreski,
S.C.Watkins,
S.I.Bannykh,
and
M.Aridor
(2005).
Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission.
|
| |
J Cell Biol,
171,
919-924.
|
 |
|
|
|
|
 |
B.Malewicz,
J.T.Valiyaveettil,
K.Jacob,
H.S.Byun,
P.Mattjus,
W.J.Baumann,
R.Bittman,
and
R.E.Brown
(2005).
The 3-hydroxy group and 4,5-trans double bond of sphingomyelin are essential for modulation of galactosylceramide transmembrane asymmetry.
|
| |
Biophys J,
88,
2670-2680.
|
 |
|
|
|
|
 |
C.J.Stefan,
S.M.Padilla,
A.Audhya,
and
S.D.Emr
(2005).
The phosphoinositide phosphatase Sjl2 is recruited to cortical actin patches in the control of vesicle formation and fission during endocytosis.
|
| |
Mol Cell Biol,
25,
2910-2923.
|
 |
|
|
|
|
 |
C.Y.Chen,
and
F.M.Brodsky
(2005).
Huntingtin-interacting protein 1 (Hip1) and Hip1-related protein (Hip1R) bind the conserved sequence of clathrin light chains and thereby influence clathrin assembly in vitro and actin distribution in vivo.
|
| |
J Biol Chem,
280,
6109-6117.
|
 |
|
|
|
|
 |
G.Drin,
and
B.Antonny
(2005).
Cell biology: helices sculpt membrane.
|
| |
Nature,
437,
1247-1249.
|
 |
|
|
|
|
 |
H.Chen,
and
P.De Camilli
(2005).
The association of epsin with ubiquitinated cargo along the endocytic pathway is negatively regulated by its interaction with clathrin.
|
| |
Proc Natl Acad Sci U S A,
102,
2766-2771.
|
 |
|
|
|
|
 |
H.T.McMahon,
and
J.L.Gallop
(2005).
Membrane curvature and mechanisms of dynamic cell membrane remodelling.
|
| |
Nature,
438,
590-596.
|
 |
|
|
|
|
 |
J.B.Heymann,
K.Iwasaki,
Y.I.Yim,
N.Cheng,
D.M.Belnap,
L.E.Greene,
E.Eisenberg,
and
A.C.Steven
(2005).
Visualization of the binding of Hsc70 ATPase to clathrin baskets: implications for an uncoating mechanism.
|
| |
J Biol Chem,
280,
7156-7161.
|
 |
|
|
|
|
 |
J.Bigay,
J.F.Casella,
G.Drin,
B.Mesmin,
and
B.Antonny
(2005).
ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif.
|
| |
EMBO J,
24,
2244-2253.
|
 |
|
|
|
|
 |
J.G.Carlton,
and
P.J.Cullen
(2005).
Coincidence detection in phosphoinositide signaling.
|
| |
Trends Cell Biol,
15,
540-547.
|
 |
|
|
|
|
 |
J.Kim,
S.Sitaraman,
A.Hierro,
B.M.Beach,
G.Odorizzi,
and
J.H.Hurley
(2005).
Structural basis for endosomal targeting by the Bro1 domain.
|
| |
Dev Cell,
8,
937-947.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.C.Lee,
L.Orci,
S.Hamamoto,
E.Futai,
M.Ravazzola,
and
R.Schekman
(2005).
Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle.
|
| |
Cell,
122,
605-617.
|
 |
|
|
|
|
 |
N.Sauvonnet,
A.Dujeancourt,
and
A.Dautry-Varsat
(2005).
Cortactin and dynamin are required for the clathrin-independent endocytosis of gammac cytokine receptor.
|
| |
J Cell Biol,
168,
155-163.
|
 |
|
|
|
|
 |
P.J.Yao,
R.S.Petralia,
I.Bushlin,
Y.Wang,
and
K.Furukawa
(2005).
Synaptic distribution of the endocytic accessory proteins AP180 and CALM.
|
| |
J Comp Neurol,
481,
58-69.
|
 |
|
|
|
|
 |
R.Brunecky,
S.Lee,
P.W.Rzepecki,
M.Overduin,
G.D.Prestwich,
A.G.Kutateladze,
and
T.G.Kutateladze
(2005).
Investigation of the binding geometry of a peripheral membrane protein.
|
| |
Biochemistry,
44,
16064-16071.
|
 |
|
|
|
|
 |
S.K.Elkin,
D.Ivanov,
M.Ewalt,
C.G.Ferguson,
S.G.Hyberts,
Z.Y.Sun,
G.D.Prestwich,
J.Yuan,
G.Wagner,
M.A.Oettinger,
and
O.P.Gozani
(2005).
A PHD finger motif in the C terminus of RAG2 modulates recombination activity.
|
| |
J Biol Chem,
280,
28701-28710.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Sigismund,
T.Woelk,
C.Puri,
E.Maspero,
C.Tacchetti,
P.Transidico,
P.P.Di Fiore,
and
S.Polo
(2005).
Clathrin-independent endocytosis of ubiquitinated cargos.
|
| |
Proc Natl Acad Sci U S A,
102,
2760-2765.
|
 |
|
|
|
|
 |
T.A.Lagace,
and
N.D.Ridgway
(2005).
The rate-limiting enzyme in phosphatidylcholine synthesis regulates proliferation of the nucleoplasmic reticulum.
|
| |
Mol Biol Cell,
16,
1120-1130.
|
 |
|
|
|
|
 |
T.Meckel,
A.C.Hurst,
G.Thiel,
and
U.Homann
(2005).
Guard cells undergo constitutive and pressure-driven membrane turnover.
|
| |
Protoplasma,
226,
23-29.
|
 |
|
|
|
|
 |
V.I.Korolchuk,
G.Cozier,
and
G.Banting
(2005).
Regulation of CK2 activity by phosphatidylinositol phosphates.
|
| |
J Biol Chem,
280,
40796-40801.
|
 |
|
|
|
|
 |
V.Legendre-Guillemin,
M.Metzler,
J.F.Lemaire,
J.Philie,
L.Gan,
M.R.Hayden,
and
P.S.McPherson
(2005).
Huntingtin interacting protein 1 (HIP1) regulates clathrin assembly through direct binding to the regulatory region of the clathrin light chain.
|
| |
J Biol Chem,
280,
6101-6108.
|
 |
|
|
|
|
 |
W.Cho,
and
R.V.Stahelin
(2005).
Membrane-protein interactions in cell signaling and membrane trafficking.
|
| |
Annu Rev Biophys Biomol Struct,
34,
119-151.
|
 |
|
|
|
|
 |
Y.Sun,
M.Kaksonen,
D.T.Madden,
R.Schekman,
and
D.G.Drubin
(2005).
Interaction of Sla2p's ANTH domain with PtdIns(4,5)P2 is important for actin-dependent endocytic internalization.
|
| |
Mol Biol Cell,
16,
717-730.
|
 |
|
|
|
|
 |
A.Eugster,
E.I.Pécheur,
F.Michel,
B.Winsor,
F.Letourneur,
and
S.Friant
(2004).
Ent5p is required with Ent3p and Vps27p for ubiquitin-dependent protein sorting into the multivesicular body.
|
| |
Mol Biol Cell,
15,
3031-3041.
|
 |
|
|
|
|
 |
A.Jha,
N.R.Agostinelli,
S.K.Mishra,
P.A.Keyel,
M.J.Hawryluk,
and
L.M.Traub
(2004).
A novel AP-2 adaptor interaction motif initially identified in the long-splice isoform of synaptojanin 1, SJ170.
|
| |
J Biol Chem,
279,
2281-2290.
|
 |
|
|
|
|
 |
B.D.Song,
D.Yarar,
and
S.L.Schmid
(2004).
An assembly-incompetent mutant establishes a requirement for dynamin self-assembly in clathrin-mediated endocytosis in vivo.
|
| |
Mol Biol Cell,
15,
2243-2252.
|
 |
|
|
|
|
 |
B.J.Peter,
H.M.Kent,
I.G.Mills,
Y.Vallis,
P.J.Butler,
P.R.Evans,
and
H.T.McMahon
(2004).
BAR domains as sensors of membrane curvature: the amphiphysin BAR structure.
|
| |
Science,
303,
495-499.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.J.Merrifield
(2004).
Seeing is believing: imaging actin dynamics at single sites of endocytosis.
|
| |
Trends Cell Biol,
14,
352-358.
|
 |
|
|
|
|
 |
D.J.Owen,
B.M.Collins,
and
P.R.Evans
(2004).
Adaptors for clathrin coats: structure and function.
|
| |
Annu Rev Cell Dev Biol,
20,
153-191.
|
 |
|
|
|
|
 |
E.E.Heldwein,
E.Macia,
J.Wang,
H.L.Yin,
T.Kirchhausen,
and
S.C.Harrison
(2004).
Crystal structure of the clathrin adaptor protein 1 core.
|
| |
Proc Natl Acad Sci U S A,
101,
14108-14113.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Evergren,
M.Marcucci,
N.Tomilin,
P.Löw,
V.Slepnev,
F.Andersson,
H.Gad,
L.Brodin,
P.De Camilli,
and
O.Shupliakov
(2004).
Amphiphysin is a component of clathrin coats formed during synaptic vesicle recycling at the lamprey giant synapse.
|
| |
Traffic,
5,
514-528.
|
 |
|
|
|
|
 |
E.Smythe
(2004).
Cell biology: light on pits.
|
| |
Nature,
431,
641-642.
|
 |
|
|
|
|
 |
E.Stang,
F.D.Blystad,
M.Kazazic,
V.Bertelsen,
T.Brodahl,
C.Raiborg,
H.Stenmark,
and
I.H.Madshus
(2004).
Cbl-dependent ubiquitination is required for progression of EGF receptors into clathrin-coated pits.
|
| |
Mol Biol Cell,
15,
3591-3604.
|
 |
|
|
|
|
 |
F.Blondeau,
B.Ritter,
P.D.Allaire,
S.Wasiak,
M.Girard,
N.K.Hussain,
A.Angers,
V.Legendre-Guillemin,
L.Roy,
D.Boismenu,
R.E.Kearney,
A.W.Bell,
J.J.Bergeron,
and
P.S.McPherson
(2004).
Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling.
|
| |
Proc Natl Acad Sci U S A,
101,
3833-3838.
|
 |
|
|
|
|
 |
F.R.Maxfield,
and
T.E.McGraw
(2004).
Endocytic recycling.
|
| |
Nat Rev Mol Cell Biol,
5,
121-132.
|
 |
|
|
|
|
 |
G.Di Paolo,
H.S.Moskowitz,
K.Gipson,
M.R.Wenk,
S.Voronov,
M.Obayashi,
R.Flavell,
R.M.Fitzsimonds,
T.A.Ryan,
and
P.De Camilli
(2004).
Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking.
|
| |
Nature,
431,
415-422.
|
 |
|
|
|
|
 |
G.J.Praefcke,
M.G.Ford,
E.M.Schmid,
L.E.Olesen,
J.L.Gallop,
S.Y.Peak-Chew,
Y.Vallis,
M.M.Babu,
I.G.Mills,
and
H.T.McMahon
(2004).
Evolving nature of the AP2 alpha-appendage hub during clathrin-coated vesicle endocytosis.
|
| |
EMBO J,
23,
4371-4383.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Kenis,
H.van Genderen,
A.Bennaghmouch,
H.A.Rinia,
P.Frederik,
J.Narula,
L.Hofstra,
and
C.P.Reutelingsperger
(2004).
Cell surface-expressed phosphatidylserine and annexin A5 open a novel portal of cell entry.
|
| |
J Biol Chem,
279,
52623-52629.
|
 |
|
|
|
|
 |
H.T.McMahon,
and
I.G.Mills
(2004).
COP and clathrin-coated vesicle budding: different pathways, common approaches.
|
| |
Curr Opin Cell Biol,
16,
379-391.
|
 |
|
|
|
|
 |
J.Hirst,
S.E.Miller,
M.J.Taylor,
G.F.von Mollard,
and
M.S.Robinson
(2004).
EpsinR is an adaptor for the SNARE protein Vti1b.
|
| |
Mol Biol Cell,
15,
5593-5602.
|
 |
|
|
|
|
 |
J.Löwe,
F.van den Ent,
and
L.A.Amos
(2004).
Molecules of the bacterial cytoskeleton.
|
| |
Annu Rev Biophys Biomol Struct,
33,
177-198.
|
 |
|
|
|
|
 |
J.Lefman,
P.Zhang,
T.Hirai,
R.M.Weis,
J.Juliani,
D.Bliss,
M.Kessel,
E.Bos,
P.J.Peters,
and
S.Subramaniam
(2004).
Three-dimensional electron microscopic imaging of membrane invaginations in Escherichia coli overproducing the chemotaxis receptor Tsr.
|
| |
J Bacteriol,
186,
5052-5061.
|
 |
|
|
|
|
 |
J.S.Bonifacino
(2004).
The GGA proteins: adaptors on the move.
|
| |
Nat Rev Mol Cell Biol,
5,
23-32.
|
 |
|
|
|
|
 |
J.Z.Rappoport,
S.M.Simon,
and
A.Benmerah
(2004).
Understanding living clathrin-coated pits.
|
| |
Traffic,
5,
327-337.
|
 |
|
|
|
|
 |
M.A.De Matteis,
and
A.Godi
(2004).
PI-loting membrane traffic.
|
| |
Nat Cell Biol,
6,
487-492.
|
 |
|
|
|
|
 |
M.C.Lee,
and
R.Schekman
(2004).
Cell biology. BAR domains go on a bender.
|
| |
Science,
303,
479-480.
|
 |
|
|
|
|
 |
M.Kanzaki,
M.Furukawa,
W.Raab,
and
J.E.Pessin
(2004).
Phosphatidylinositol 4,5-bisphosphate regulates adipocyte actin dynamics and GLUT4 vesicle recycling.
|
| |
J Biol Chem,
279,
30622-30633.
|
 |
|
|
|
|
 |
M.R.Wenk,
and
P.De Camilli
(2004).
Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals.
|
| |
Proc Natl Acad Sci U S A,
101,
8262-8269.
|
 |
|
|
|
|
 |
M.S.Robinson
(2004).
Adaptable adaptors for coated vesicles.
|
| |
Trends Cell Biol,
14,
167-174.
|
 |
|
|
|
|
 |
S.Celton-Morizur,
N.Bordes,
V.Fraisier,
P.T.Tran,
and
A.Paoletti
(2004).
C-terminal anchoring of mid1p to membranes stabilizes cytokinetic ring position in early mitosis in fission yeast.
|
| |
Mol Cell Biol,
24,
10621-10635.
|
 |
|
|
|
|
 |
S.K.Mishra,
M.J.Hawryluk,
T.J.Brett,
P.A.Keyel,
A.L.Dupin,
A.Jha,
J.E.Heuser,
D.H.Fremont,
and
L.M.Traub
(2004).
Dual engagement regulation of protein interactions with the AP-2 adaptor alpha appendage.
|
| |
J Biol Chem,
279,
46191-46203.
|
 |
|
|
|
|
 |
S.Y.Lee,
M.R.Wenk,
Y.Kim,
A.C.Nairn,
and
P.De Camilli
(2004).
Regulation of synaptojanin 1 by cyclin-dependent kinase 5 at synapses.
|
| |
Proc Natl Acad Sci U S A,
101,
546-551.
|
 |
|
|
|
|
 |
T.G.Kutateladze,
D.G.Capelluto,
C.G.Ferguson,
M.L.Cheever,
A.G.Kutateladze,
G.D.Prestwich,
and
M.Overduin
(2004).
Multivalent mechanism of membrane insertion by the FYVE domain.
|
| |
J Biol Chem,
279,
3050-3057.
|
 |
|
|
|
|
 |
T.R.Dafforn,
and
C.J.Smith
(2004).
Natively unfolded domains in endocytosis: hooks, lines and linkers.
|
| |
EMBO Rep,
5,
1046-1052.
|
 |
|
|
|
|
 |
T.S.Hyun,
D.S.Rao,
D.Saint-Dic,
L.E.Michael,
P.D.Kumar,
S.V.Bradley,
I.F.Mizukami,
K.I.Oravecz-Wilson,
and
T.S.Ross
(2004).
HIP1 and HIP1r stabilize receptor tyrosine kinases and bind 3-phosphoinositides via epsin N-terminal homology domains.
|
| |
J Biol Chem,
279,
14294-14306.
|
 |
|
|
|
|
 |
T.S.Hyun,
L.Li,
K.I.Oravecz-Wilson,
S.V.Bradley,
M.M.Provot,
A.J.Munaco,
I.F.Mizukami,
H.Sun,
and
T.S.Ross
(2004).
Hip1-related mutant mice grow and develop normally but have accelerated spinal abnormalities and dwarfism in the absence of HIP1.
|
| |
Mol Cell Biol,
24,
4329-4340.
|
 |
|
|
|
|
 |
T.S.Hyun,
and
T.S.Ross
(2004).
HIP1: trafficking roles and regulation of tumorigenesis.
|
| |
Trends Mol Med,
10,
194-199.
|
 |
|
|
|
|
 |
T.Tsuboi,
H.T.McMahon,
and
G.A.Rutter
(2004).
Mechanisms of dense core vesicle recapture following "kiss and run" ("cavicapture") exocytosis in insulin-secreting cells.
|
| |
J Biol Chem,
279,
47115-47124.
|
 |
|
|
|
|
 |
A.E.Engqvist-Goldstein,
and
D.G.Drubin
(2003).
Actin assembly and endocytosis: from yeast to mammals.
|
| |
Annu Rev Cell Dev Biol,
19,
287-332.
|
 |
|
|
|
|
 |
A.Motley,
N.A.Bright,
M.N.Seaman,
and
M.S.Robinson
(2003).
Clathrin-mediated endocytosis in AP-2-depleted cells.
|
| |
J Cell Biol,
162,
909-918.
|
 |
|
|
|
|
 |
C.L.Allen,
D.Goulding,
and
M.C.Field
(2003).
Clathrin-mediated endocytosis is essential in Trypanosoma brucei.
|
| |
EMBO J,
22,
4991-5002.
|
 |
|
|
|
|
 |
C.Stockklausner,
and
N.Klocker
(2003).
Surface expression of inward rectifier potassium channels is controlled by selective Golgi export.
|
| |
J Biol Chem,
278,
17000-17005.
|
 |
|
|
|
|
 |
D.E.Wakeham,
C.Y.Chen,
B.Greene,
P.K.Hwang,
and
F.M.Brodsky
(2003).
Clathrin self-assembly involves coordinated weak interactions favorable for cellular regulation.
|
| |
EMBO J,
22,
4980-4990.
|
 |
|
|
|
|
 |
D.Padrón,
Y.J.Wang,
M.Yamamoto,
H.Yin,
and
M.G.Roth
(2003).
Phosphatidylinositol phosphate 5-kinase Ibeta recruits AP-2 to the plasma membrane and regulates rates of constitutive endocytosis.
|
| |
J Cell Biol,
162,
693-701.
|
 |
|
|
|
|
 |
E.Overstreet,
X.Chen,
B.Wendland,
and
J.A.Fischer
(2003).
Either part of a Drosophila epsin protein, divided after the ENTH domain, functions in endocytosis of delta in the developing eye.
|
| |
Curr Biol,
13,
854-860.
|
 |
|
|
|
|
 |
H.Zhou,
and
J.Lutkenhaus
(2003).
Membrane binding by MinD involves insertion of hydrophobic residues within the C-terminal amphipathic helix into the bilayer.
|
| |
J Bacteriol,
185,
4326-4335.
|
 |
|
|
|
|
 |
I.G.Mills,
G.J.Praefcke,
Y.Vallis,
B.J.Peter,
L.E.Olesen,
J.L.Gallop,
P.J.Butler,
P.R.Evans,
and
H.T.McMahon
(2003).
EpsinR: an AP1/clathrin interacting protein involved in vesicle trafficking.
|
| |
J Cell Biol,
160,
213-222.
|
 |
|
|
|
|
 |
I.Miwako,
T.Schröter,
and
S.L.Schmid
(2003).
Clathrin- and dynamin-dependent coated vesicle formation from isolated plasma membranes.
|
| |
Traffic,
4,
376-389.
|
 |
|
|
|
|
 |
J.Gruenberg
(2003).
Lipids in endocytic membrane transport and sorting.
|
| |
Curr Opin Cell Biol,
15,
382-388.
|
 |
|
|
|
|
 |
J.Guo,
M.R.Wenk,
L.Pellegrini,
F.Onofri,
F.Benfenati,
and
P.De Camilli
(2003).
Phosphatidylinositol 4-kinase type IIalpha is responsible for the phosphatidylinositol 4-kinase activity associated with synaptic vesicles.
|
| |
Proc Natl Acad Sci U S A,
100,
3995-4000.
|
 |
|
|
|
|
 |
J.Hirst,
A.Motley,
K.Harasaki,
S.Y.Peak Chew,
and
M.S.Robinson
(2003).
EpsinR: an ENTH domain-containing protein that interacts with AP-1.
|
| |
Mol Biol Cell,
14,
625-641.
|
 |
|
|
|
|
 |
J.J.Baggett,
K.E.D'Aquino,
and
B.Wendland
(2003).
The Sla2p talin domain plays a role in endocytosis in Saccharomyces cerevisiae.
|
| |
Genetics,
165,
1661-1674.
|
 |
|
|
|
|
 |
J.R.Morgan,
K.Prasad,
S.Jin,
G.J.Augustine,
and
E.M.Lafer
(2003).
Eps15 homology domain-NPF motif interactions regulate clathrin coat assembly during synaptic vesicle recycling.
|
| |
J Biol Chem,
278,
33583-33592.
|
 |
|
|
|
|
 |
J.S.Bonifacino,
and
J.Lippincott-Schwartz
(2003).
Coat proteins: shaping membrane transport.
|
| |
Nat Rev Mol Cell Biol,
4,
409-414.
|
 |
|
|
|
|
 |
K.Farsad,
and
P.De Camilli
(2003).
Mechanisms of membrane deformation.
|
| |
Curr Opin Cell Biol,
15,
372-381.
|
 |
|
|
|
|
 |
L.V.Chernomordik,
and
M.M.Kozlov
(2003).
Protein-lipid interplay in fusion and fission of biological membranes.
|
| |
Annu Rev Biochem,
72,
175-207.
|
 |
|
|
|
|
 |
M.A.Lemmon
(2003).
Phosphoinositide recognition domains.
|
| |
Traffic,
4,
201-213.
|
 |
|
|
|
|
 |
M.C.Duncan,
G.Costaguta,
and
G.S.Payne
(2003).
Yeast epsin-related proteins required for Golgi-endosome traffic define a gamma-adaptin ear-binding motif.
|
| |
Nat Cell Biol,
5,
77-81.
|
 |
|
|
|
|
 |
M.C.Duncan,
and
G.S.Payne
(2003).
ENTH/ANTH domains expand to the Golgi.
|
| |
Trends Cell Biol,
13,
211-215.
|
 |
|
|
|
|
 |
M.Metzler,
B.Li,
L.Gan,
J.Georgiou,
C.A.Gutekunst,
Y.Wang,
E.Torre,
R.S.Devon,
R.Oh,
V.Legendre-Guillemin,
M.Rich,
C.Alvarez,
M.Gertsenstein,
P.S.McPherson,
A.Nagy,
Y.T.Wang,
J.C.Roder,
L.A.Raymond,
and
M.R.Hayden
(2003).
Disruption of the endocytic protein HIP1 results in neurological deficits and decreased AMPA receptor trafficking.
|
| |
EMBO J,
22,
3254-3266.
|
 |
|
|
|
|
 |
M.Q.Wang,
W.Kim,
G.Gao,
T.A.Torrey,
H.C.Morse,
P.De Camilli,
and
S.P.Goff
(2003).
Endophilins interact with Moloney murine leukemia virus Gag and modulate virion production.
|
| |
J Biol,
3,
4.
|
 |
|
|
|
|
 |
N.K.Hussain,
M.Yamabhai,
A.L.Bhakar,
M.Metzler,
S.S.Ferguson,
M.R.Hayden,
P.S.McPherson,
and
B.K.Kay
(2003).
A role for epsin N-terminal homology/AP180 N-terminal homology (ENTH/ANTH) domains in tubulin binding.
|
| |
J Biol Chem,
278,
28823-28830.
|
 |
|
|
|
|
 |
O.Cremona,
C.Collesi,
and
E.Raiteri
(2003).
Protein ubiquitylation and synaptic function.
|
| |
Ann N Y Acad Sci,
998,
33-40.
|
 |
|
|
|
|
 |
O.Meier,
and
U.F.Greber
(2003).
Adenovirus endocytosis.
|
| |
J Gene Med,
5,
451-462.
|
 |
|
|
|
|
 |
P.Harjes,
and
E.E.Wanker
(2003).
The hunt for huntingtin function: interaction partners tell many different stories.
|
| |
Trends Biochem Sci,
28,
425-433.
|
 |
|
|
|
|
 |
R.C.Aguilar,
H.A.Watson,
and
B.Wendland
(2003).
The yeast Epsin Ent1 is recruited to membranes through multiple independent interactions.
|
| |
J Biol Chem,
278,
10737-10743.
|
 |
|
|
|
|
 |
R.V.Stahelin,
F.Long,
B.J.Peter,
D.Murray,
P.De Camilli,
H.T.McMahon,
and
W.Cho
(2003).
Contrasting membrane interaction mechanisms of AP180 N-terminal homology (ANTH) and epsin N-terminal homology (ENTH) domains.
|
| |
J Biol Chem,
278,
28993-28999.
|
 |
|
|
|
|
 |
S.D.Conner,
and
S.L.Schmid
(2003).
Regulated portals of entry into the cell.
|
| |
Nature,
422,
37-44.
|
 |
|
|
|
|
 |
S.D.Conner,
and
S.L.Schmid
(2003).
Differential requirements for AP-2 in clathrin-mediated endocytosis.
|
| |
J Cell Biol,
162,
773-779.
|
 |
|
|
|
|
 |
V.A.Bankaitis,
and
A.J.Morris
(2003).
Lipids and the exocytotic machinery of eukaryotic cells.
|
| |
Curr Opin Cell Biol,
15,
389-395.
|
 |
|
|
|
|
 |
V.N.Murthy,
and
P.De Camilli
(2003).
Cell biology of the presynaptic terminal.
|
| |
Annu Rev Neurosci,
26,
701-728.
|
 |
|
|
|
|
 |
Y.J.Wang,
J.Wang,
H.Q.Sun,
M.Martinez,
Y.X.Sun,
E.Macia,
T.Kirchhausen,
J.P.Albanesi,
M.G.Roth,
and
H.L.Yin
(2003).
Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi.
|
| |
Cell,
114,
299-310.
|
 |
|
|
|
|
 |
Y.Kozlovsky,
and
M.M.Kozlov
(2003).
Membrane fission: model for intermediate structures.
|
| |
Biophys J,
85,
85-96.
|
 |
|
|
|
|
 |
B.Wendland
(2002).
Epsins: adaptors in endocytosis?
|
| |
Nat Rev Mol Cell Biol,
3,
971-977.
|
 |
|
|
|
|
 |
J.H.Hurley,
and
B.Wendland
(2002).
Endocytosis: driving membranes around the bend.
|
| |
Cell,
111,
143-146.
|
 |
|
|
|
|
 |
K.Farsad,
and
P.De Camilli
(2002).
Neurotransmission and the synaptic vesicle cycle.
|
| |
Yale J Biol Med,
75,
261-284.
|
 |
|
|
|
|
 |
M.Lowe
(2002).
Membranes and motors.
|
| |
Trends Cell Biol,
12,
543-544.
|
 |
|
|
|
|
 |
R.Nossal,
and
J.Zimmerberg
(2002).
Endocytosis: curvature to the ENTH degree.
|
| |
Curr Biol,
12,
R770-R772.
|
 |
|
|
|
|
 |
W.T.Kim,
S.Chang,
L.Daniell,
O.Cremona,
G.Di Paolo,
and
P.De Camilli
(2002).
Delayed reentry of recycling vesicles into the fusion-competent synaptic vesicle pool in synaptojanin 1 knockout mice.
|
| |
Proc Natl Acad Sci U S A,
99,
17143-17148.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |