 |
PDBsum entry 2c08
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
EMBO J
25:2898-2910
(2006)
|
|
PubMed id:
|
|
|
|
|
| |
|
Mechanism of endophilin N-BAR domain-mediated membrane curvature.
|
|
J.L.Gallop,
C.C.Jao,
H.M.Kent,
P.J.Butler,
P.R.Evans,
R.Langen,
H.T.McMahon.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Endophilin-A1 is a BAR domain-containing protein enriched at synapses and is
implicated in synaptic vesicle endocytosis. It binds to dynamin and synaptojanin
via a C-terminal SH3 domain. We examine the mechanism by which the BAR domain
and an N-terminal amphipathic helix, which folds upon membrane binding, work as
a functional unit (the N-BAR domain) to promote dimerisation and membrane
curvature generation. By electron paramagnetic resonance spectroscopy, we show
that this amphipathic helix is peripherally bound in the plane of the membrane,
with the midpoint of insertion aligned with the phosphate level of headgroups.
This places the helix in an optimal position to effect membrane curvature
generation. We solved the crystal structure of rat endophilin-A1 BAR domain and
examined a distinctive insert protruding from the membrane interaction face.
This insert is predicted to form an additional amphipathic helix and is
important for curvature generation. Its presence defines an endophilin/nadrin
subclass of BAR domains. We propose that N-BAR domains function as low-affinity
dimers regulating binding partner recruitment to areas of high membrane
curvature.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2 Membrane insertion and orientation of endophilin
N-terminal amphipathic helix. (A) Oxygen (red circles) and
NiEDDA (green squares) accessibilities ( )
of membrane-bound N-BAR domain as a function of label position.
The graph below shows a ln( ratio)
plot ( )
showing the differential access of colliders to the spin label
and the penetration of hydrophobic residues into the membrane.
The periodic oscillation is indicative of a helical structure.
Equivalent maxima indicate that the helix lies planar to the
membrane. (B) Helical wheel representation showing hydrophobic
and charged faces. (C) Model of the amphipathic helix, residues
1–16 with hydrophobic residues coloured green and surface
charge potential also shown. (D) Model of the N-BAR amphipathic
helix to scale with PtdIns(4,5)P[2] and PtdSer lipids showing
the depth of penetration of the helix as calculated from data in
(A) and penetration measurements, described in Materials and
methods.
|
 |
Figure 7.
Figure 7 High membrane curvature promotes membrane fusion. (A)
Example of endophilin N-BAR tubules made from liposomes extruded
to a size cutoff of 400 nm. (B) Emission spectra from mixed
liposomes in the absence and presence of calcium (which promotes
fusion) and Triton (to obtain total donor fluorescence). See
Materials and methods for details of the assay. (C) FRET assay
of membrane fusion, showing dilution of the FRET pair into
unlabelled liposome in the presence of the N-BAR (see Results).
The N-BAR control has no unlabelled liposomes and thus there can
be no dilution of the FRET pair. The BAR domain does not lead to
membrane fusion. As highly curved membranes are more fusogenic,
we believe that the fusion seen with the N-BAR domain is a
readout of the efficiency of curvature generation. (D)
Comparison of mutants and WT N-BAR domains at 55 M
in the fusion assay. Values displayed in the bar chart s.e.m.
are the difference in the ratios of emission maxima between
experiment (mixed liposomes (530/585 nm)) and controls
(uniformly labelled liposomes (530/585 nm)) (see Results).
Studentʼs t-test ^*P<0.001, ^**P<0.2.
|
 |
|
|
|
| |
The above figures are
reprinted
from an Open Access publication published by Macmillan Publishers Ltd:
EMBO J
(2006,
25,
2898-2910)
copyright 2006.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
M.Galic,
S.Jeong,
F.C.Tsai,
L.M.Joubert,
Y.I.Wu,
K.M.Hahn,
Y.Cui,
and
T.Meyer
(2012).
External push and internal pull forces recruit curvature-sensing N-BAR domain proteins to the plasma membrane.
|
| |
Nat Cell Biol,
14,
874-881.
|
 |
|
|
|
|
 |
P.N.Dannhauser,
and
E.J.Ungewickell
(2012).
Reconstitution of clathrin-coated bud and vesicle formation with minimal components.
|
| |
Nat Cell Biol,
14,
634-639.
|
 |
|
|
|
|
 |
A.Pykäläinen,
M.Boczkowska,
H.Zhao,
J.Saarikangas,
G.Rebowski,
M.Jansen,
J.Hakanen,
E.V.Koskela,
J.Peränen,
H.Vihinen,
E.Jokitalo,
M.Salminen,
E.Ikonen,
R.Dominguez,
and
P.Lappalainen
(2011).
Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures.
|
| |
Nat Struct Mol Biol,
18,
902-907.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.S.Wong,
R.H.Lee,
A.Y.Cheung,
P.K.Yeung,
S.K.Chung,
Z.H.Cheung,
and
N.Y.Ip
(2011).
Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson's disease.
|
| |
Nat Cell Biol,
13,
568-579.
|
 |
|
|
|
|
 |
M.C.Weston,
R.B.Nehring,
S.M.Wojcik,
and
C.Rosenmund
(2011).
Interplay between VGLUT isoforms and endophilin A1 regulates neurotransmitter release and short-term plasticity.
|
| |
Neuron,
69,
1147-1159.
|
 |
|
|
|
|
 |
M.Loose,
K.Kruse,
and
P.Schwille
(2011).
Protein self-organization: lessons from the min system.
|
| |
Annu Rev Biophys,
40,
315-336.
|
 |
|
|
|
|
 |
N.Zurek,
L.Sparks,
and
G.Voeltz
(2011).
Reticulon short hairpin transmembrane domains are used to shape ER tubules.
|
| |
Traffic,
12,
28-41.
|
 |
|
|
|
|
 |
R.Ramachandran
(2011).
Vesicle scission: dynamin.
|
| |
Semin Cell Dev Biol,
22,
10-17.
|
 |
|
|
|
|
 |
T.Baumgart,
B.R.Capraro,
C.Zhu,
and
S.L.Das
(2011).
Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids.
|
| |
Annu Rev Phys Chem,
62,
483-506.
|
 |
|
|
|
|
 |
V.Lariccia,
M.Fine,
S.Magi,
M.J.Lin,
A.Yaradanakul,
M.C.Llaguno,
and
D.W.Hilgemann
(2011).
Massive calcium-activated endocytosis without involvement of classical endocytic proteins.
|
| |
J Gen Physiol,
137,
111-132.
|
 |
|
|
|
|
 |
Y.Takahashi,
C.L.Meyerkord,
T.Hori,
K.Runkle,
T.E.Fox,
M.Kester,
T.P.Loughran,
and
H.G.Wang
(2011).
Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy.
|
| |
Autophagy,
7,
61-73.
|
 |
|
|
|
|
 |
Å..OpaliÅ„ski,
J.A.Kiel,
C.Williams,
M.Veenhuis,
and
I.J.van der Klei
(2011).
Membrane curvature during peroxisome fission requires Pex11.
|
| |
EMBO J,
30,
5.
|
 |
|
|
|
|
 |
A.G.Jung,
C.Labarrera,
C.Labarerra,
A.M.Jansen,
K.Qvortrup,
K.Wild,
and
O.Kjaerulff
(2010).
A mutational analysis of the endophilin-A N-BAR domain performed in living flies.
|
| |
PLoS One,
5,
e9492.
|
 |
|
|
|
|
 |
B.Heller,
E.Adu-Gyamfi,
W.Smith-Kinnaman,
C.Babbey,
M.Vora,
Y.Xue,
R.Bittman,
R.V.Stahelin,
and
C.D.Wells
(2010).
Amot recognizes a juxtanuclear endocytic recycling compartment via a novel lipid binding domain.
|
| |
J Biol Chem,
285,
12308-12320.
|
 |
|
|
|
|
 |
F.Andersson,
P.Löw,
and
L.Brodin
(2010).
Selective perturbation of the BAR domain of endophilin impairs synaptic vesicle endocytosis.
|
| |
Synapse,
64,
556-560.
|
 |
|
|
|
|
 |
G.A.Quiñones,
and
A.E.Oro
(2010).
BAR domain competition during directional cellular migration.
|
| |
Cell Cycle,
9,
2522-2528.
|
 |
|
|
|
|
 |
G.S.Ayton,
and
G.A.Voth
(2010).
Multiscale simulation of protein mediated membrane remodeling.
|
| |
Semin Cell Dev Biol,
21,
357-362.
|
 |
|
|
|
|
 |
H.Gerlach,
V.Laumann,
S.Martens,
C.F.Becker,
R.S.Goody,
and
M.Geyer
(2010).
HIV-1 Nef membrane association depends on charge, curvature, composition and sequence.
|
| |
Nat Chem Biol,
6,
46-53.
|
 |
|
|
|
|
 |
H.J.Chial,
P.Lenart,
and
Y.Q.Chen
(2010).
APPL proteins FRET at the BAR: direct observation of APPL1 and APPL2 BAR domain-mediated interactions on cell membranes using FRET microscopy.
|
| |
PLoS One,
5,
e12471.
|
 |
|
|
|
|
 |
J.Bai,
Z.Hu,
J.S.Dittman,
E.C.Pym,
and
J.M.Kaplan
(2010).
Endophilin functions as a membrane-bending molecule and is delivered to endocytic zones by exocytosis.
|
| |
Cell,
143,
430-441.
|
 |
|
|
|
|
 |
J.Liu,
Y.Sun,
G.F.Oster,
and
D.G.Drubin
(2010).
Mechanochemical crosstalk during endocytic vesicle formation.
|
| |
Curr Opin Cell Biol,
22,
36-43.
|
 |
|
|
|
|
 |
J.R.van Weering,
P.Verkade,
and
P.J.Cullen
(2010).
SNX-BAR proteins in phosphoinositide-mediated, tubular-based endosomal sorting.
|
| |
Semin Cell Dev Biol,
21,
371-380.
|
 |
|
|
|
|
 |
J.Y.Youn,
H.Friesen,
T.Kishimoto,
W.M.Henne,
C.F.Kurat,
W.Ye,
D.F.Ceccarelli,
F.Sicheri,
S.D.Kohlwein,
H.T.McMahon,
and
B.J.Andrews
(2010).
Dissecting BAR domain function in the yeast Amphiphysins Rvs161 and Rvs167 during endocytosis.
|
| |
Mol Biol Cell,
21,
3054-3069.
|
 |
|
|
|
|
 |
M.M.Kozlov,
H.T.McMahon,
and
L.V.Chernomordik
(2010).
Protein-driven membrane stresses in fusion and fission.
|
| |
Trends Biochem Sci,
35,
699-706.
|
 |
|
|
|
|
 |
M.Masuda,
and
N.Mochizuki
(2010).
Structural characteristics of BAR domain superfamily to sculpt the membrane.
|
| |
Semin Cell Dev Biol,
21,
391-398.
|
 |
|
|
|
|
 |
N.Pawlowski
(2010).
Dynamin self-assembly and the vesicle scission mechanism: how dynamin oligomers cleave the membrane neck of clathrin-coated pits during endocytosis.
|
| |
Bioessays,
32,
1033-1039.
|
 |
|
|
|
|
 |
N.Shimokawa,
K.Haglund,
S.M.Hölter,
C.Grabbe,
V.Kirkin,
N.Koibuchi,
C.Schultz,
J.Rozman,
D.Hoeller,
C.H.Qiu,
M.B.Londoño,
J.Ikezawa,
P.Jedlicka,
B.Stein,
S.W.Schwarzacher,
D.P.Wolfer,
N.Ehrhardt,
R.Heuchel,
I.Nezis,
A.Brech,
M.H.Schmidt,
H.Fuchs,
V.Gailus-Durner,
M.Klingenspor,
O.Bogler,
W.Wurst,
T.Deller,
M.H.de Angelis,
and
I.Dikic
(2010).
CIN85 regulates dopamine receptor endocytosis and governs behaviour in mice.
|
| |
EMBO J,
29,
2421-2432.
|
 |
|
|
|
|
 |
N.Vijayakrishnan,
S.E.Phillips,
and
K.Broadie
(2010).
Drosophila rolling blackout displays lipase domain-dependent and -independent endocytic functions downstream of dynamin.
|
| |
Traffic,
11,
1567-1578.
|
 |
|
|
|
|
 |
R.Lundmark,
and
S.R.Carlsson
(2010).
Driving membrane curvature in clathrin-dependent and clathrin-independent endocytosis.
|
| |
Semin Cell Dev Biol,
21,
363-370.
|
 |
|
|
|
|
 |
R.Zaidel-Bar,
M.J.Joyce,
A.M.Lynch,
K.Witte,
A.Audhya,
and
J.Hardin
(2010).
The F-BAR domain of SRGP-1 facilitates cell-cell adhesion during C. elegans morphogenesis.
|
| |
J Cell Biol,
191,
761-769.
|
 |
|
|
|
|
 |
S.H.Lee,
and
R.Dominguez
(2010).
Regulation of actin cytoskeleton dynamics in cells.
|
| |
Mol Cells,
29,
311-325.
|
 |
|
|
|
|
 |
S.I.Galkina,
V.I.Stadnichuk,
J.G.Molotkovsky,
J.M.Romanova,
G.F.Sud'ina,
and
T.Klein
(2010).
Microbial alkaloid staurosporine induces formation of nanometer-wide membrane tubular extensions (cytonemes, membrane tethers) in human neutrophils.
|
| |
Cell Adh Migr,
4,
32-38.
|
 |
|
|
|
|
 |
S.Suetsugu
(2010).
The proposed functions of membrane curvatures mediated by the BAR domain superfamily proteins.
|
| |
J Biochem,
148,
1.
|
 |
|
|
|
|
 |
S.Suetsugu,
K.Toyooka,
and
Y.Senju
(2010).
Subcellular membrane curvature mediated by the BAR domain superfamily proteins.
|
| |
Semin Cell Dev Biol,
21,
340-349.
|
 |
|
|
|
|
 |
T.Takenawa
(2010).
Phosphoinositide-binding interface proteins involved in shaping cell membranes.
|
| |
Proc Jpn Acad Ser B Phys Biol Sci,
86,
509-523.
|
 |
|
|
|
|
 |
V.K.Bhatia,
N.S.Hatzakis,
and
D.Stamou
(2010).
A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins.
|
| |
Semin Cell Dev Biol,
21,
381-390.
|
 |
|
|
|
|
 |
Y.Yoon,
J.Tong,
P.J.Lee,
A.Albanese,
N.Bhardwaj,
M.Källberg,
M.A.Digman,
H.Lu,
E.Gratton,
Y.K.Shin,
and
W.Cho
(2010).
Molecular basis of the potent membrane-remodeling activity of the epsin 1 N-terminal homology domain.
|
| |
J Biol Chem,
285,
531-540.
|
 |
|
|
|
|
 |
A.Arkhipov,
Y.Yin,
and
K.Schulten
(2009).
Membrane-bending mechanism of amphiphysin N-BAR domains.
|
| |
Biophys J,
97,
2727-2735.
|
 |
|
|
|
|
 |
A.Etxebarria,
O.Terrones,
H.Yamaguchi,
A.Landajuela,
O.Landeta,
B.Antonsson,
H.G.Wang,
and
G.Basañez
(2009).
Endophilin B1/Bif-1 Stimulates BAX Activation Independently from Its Capacity to Produce Large Scale Membrane Morphological Rearrangements.
|
| |
J Biol Chem,
284,
4200-4212.
|
 |
|
|
|
|
 |
A.Frost,
V.M.Unger,
and
P.De Camilli
(2009).
The BAR domain superfamily: membrane-molding macromolecules.
|
| |
Cell,
137,
191-196.
|
 |
|
|
|
|
 |
A.Nakano-Kobayashi,
N.N.Kasri,
S.E.Newey,
and
L.Van Aelst
(2009).
The Rho-linked mental retardation protein OPHN1 controls synaptic vesicle endocytosis via endophilin A1.
|
| |
Curr Biol,
19,
1133-1139.
|
 |
|
|
|
|
 |
A.V.Shnyrova,
V.A.Frolov,
and
J.Zimmerberg
(2009).
Domain-driven morphogenesis of cellular membranes.
|
| |
Curr Biol,
19,
R772-R780.
|
 |
|
|
|
|
 |
E.Hui,
C.P.Johnson,
J.Yao,
F.M.Dunning,
and
E.R.Chapman
(2009).
Synaptotagmin-mediated bending of the target membrane is a critical step in Ca(2+)-regulated fusion.
|
| |
Cell,
138,
709-721.
|
 |
|
|
|
|
 |
G.Khelashvili,
D.Harries,
and
H.Weinstein
(2009).
Modeling membrane deformations and lipid demixing upon protein-membrane interaction: the BAR dimer adsorption.
|
| |
Biophys J,
97,
1626-1635.
|
 |
|
|
|
|
 |
G.S.Ayton,
and
G.A.Voth
(2009).
Hybrid coarse-graining approach for lipid bilayers at large length and time scales.
|
| |
J Phys Chem B,
113,
4413-4424.
|
 |
|
|
|
|
 |
H.Cui,
G.S.Ayton,
and
G.A.Voth
(2009).
Membrane binding by the endophilin N-BAR domain.
|
| |
Biophys J,
97,
2746-2753.
|
 |
|
|
|
|
 |
J.A.Heymann,
and
J.E.Hinshaw
(2009).
Dynamins at a glance.
|
| |
J Cell Sci,
122,
3427-3431.
|
 |
|
|
|
|
 |
J.F.Trempe,
C.X.Chen,
K.Grenier,
E.M.Camacho,
G.Kozlov,
P.S.McPherson,
K.Gehring,
and
E.A.Fon
(2009).
SH3 domains from a subset of BAR proteins define a Ubl-binding domain and implicate parkin in synaptic ubiquitination.
|
| |
Mol Cell,
36,
1034-1047.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Saarikangas,
H.Zhao,
A.Pykäläinen,
P.Laurinmäki,
P.K.Mattila,
P.K.Kinnunen,
S.J.Butcher,
and
P.Lappalainen
(2009).
Molecular mechanisms of membrane deformation by I-BAR domain proteins.
|
| |
Curr Biol,
19,
95.
|
 |
|
|
|
|
 |
M.Ge,
and
J.H.Freed
(2009).
Fusion peptide from influenza hemagglutinin increases membrane surface order: an electron-spin resonance study.
|
| |
Biophys J,
96,
4925-4934.
|
 |
|
|
|
|
 |
M.Mettlen,
M.Stoeber,
D.Loerke,
C.N.Antonescu,
G.Danuser,
and
S.L.Schmid
(2009).
Endocytic accessory proteins are functionally distinguished by their differential effects on the maturation of clathrin-coated pits.
|
| |
Mol Biol Cell,
20,
3251-3260.
|
 |
|
|
|
|
 |
N.S.Hatzakis,
V.K.Bhatia,
J.Larsen,
K.L.Madsen,
P.Y.Bolinger,
A.H.Kunding,
J.Castillo,
U.Gether,
P.Hedegård,
and
D.Stamou
(2009).
How curved membranes recruit amphipathic helices and protein anchoring motifs.
|
| |
Nat Chem Biol,
5,
835-841.
|
 |
|
|
|
|
 |
Q.Wang,
M.V.Navarro,
G.Peng,
E.Molinelli,
S.Lin Goh,
B.L.Judson,
K.R.Rajashankar,
and
H.Sondermann
(2009).
Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin.
|
| |
Proc Natl Acad Sci U S A,
106,
12700-12705.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.M.Ferguson,
S.Ferguson,
A.Raimondi,
S.Paradise,
H.Shen,
K.Mesaki,
A.Ferguson,
O.Destaing,
G.Ko,
J.Takasaki,
O.Cremona,
E.O' Toole,
and
P.De Camilli
(2009).
Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits.
|
| |
Dev Cell,
17,
811-822.
|
 |
|
|
|
|
 |
S.S.Deepa,
and
L.Q.Dong
(2009).
APPL1: role in adiponectin signaling and beyond.
|
| |
Am J Physiol Endocrinol Metab,
296,
E22-E36.
|
 |
|
|
|
|
 |
T.Itoh,
and
T.Takenawa
(2009).
Mechanisms of membrane deformation by lipid-binding domains.
|
| |
Prog Lipid Res,
48,
298-305.
|
 |
|
|
|
|
 |
T.K.Rostovtseva,
H.Boukari,
A.Antignani,
B.Shiu,
S.Banerjee,
A.Neutzner,
and
R.J.Youle
(2009).
Bax activates endophilin B1 oligomerization and lipid membrane vesiculation.
|
| |
J Biol Chem,
284,
34390-34399.
|
 |
|
|
|
|
 |
V.K.Bhatia,
K.L.Madsen,
P.Y.Bolinger,
A.Kunding,
P.Hedegård,
U.Gether,
and
D.Stamou
(2009).
Amphipathic motifs in BAR domains are essential for membrane curvature sensing.
|
| |
EMBO J,
28,
3303-3314.
|
 |
|
|
|
|
 |
Y.Shibata,
J.Hu,
M.M.Kozlov,
and
T.A.Rapoport
(2009).
Mechanisms shaping the membranes of cellular organelles.
|
| |
Annu Rev Cell Dev Biol,
25,
329-354.
|
 |
|
|
|
|
 |
Y.Takahashi,
C.L.Meyerkord,
and
H.G.Wang
(2009).
Bif-1/endophilin B1: a candidate for crescent driving force in autophagy.
|
| |
Cell Death Differ,
16,
947-955.
|
 |
|
|
|
|
 |
Y.Yin,
A.Arkhipov,
and
K.Schulten
(2009).
Simulations of membrane tubulation by lattices of amphiphysin N-BAR domains.
|
| |
Structure,
17,
882-892.
|
 |
|
|
|
|
 |
Y.Zwang,
and
Y.Yarden
(2009).
Systems biology of growth factor-induced receptor endocytosis.
|
| |
Traffic,
10,
349-363.
|
 |
|
|
|
|
 |
A.Arkhipov,
Y.Yin,
and
K.Schulten
(2008).
Four-scale description of membrane sculpting by BAR domains.
|
| |
Biophys J,
95,
2806-2821.
|
 |
|
|
|
|
 |
A.Frost,
R.Perera,
A.Roux,
K.Spasov,
O.Destaing,
E.H.Egelman,
P.De Camilli,
and
V.M.Unger
(2008).
Structural basis of membrane invagination by F-BAR domains.
|
| |
Cell,
132,
807-817.
|
 |
|
|
|
|
 |
C.A.Heyward,
T.R.Pettitt,
S.E.Leney,
G.I.Welsh,
J.M.Tavaré,
and
M.J.Wakelam
(2008).
An intracellular motif of GLUT4 regulates fusion of GLUT4-containing vesicles.
|
| |
BMC Cell Biol,
9,
25.
|
 |
|
|
|
|
 |
C.K.Min,
S.Y.Bang,
B.A.Cho,
Y.H.Choi,
J.S.Yang,
S.H.Lee,
S.Y.Seong,
K.W.Kim,
S.Kim,
J.U.Jung,
M.S.Choi,
I.S.Kim,
and
N.H.Cho
(2008).
Role of amphipathic helix of a herpesviral protein in membrane deformation and T cell receptor downregulation.
|
| |
PLoS Pathog,
4,
e1000209.
|
 |
|
|
|
|
 |
C.Löw,
U.Weininger,
H.Lee,
K.Schweimer,
I.Neundorf,
A.G.Beck-Sickinger,
R.W.Pastor,
and
J.Balbach
(2008).
Structure and dynamics of helix-0 of the N-BAR domain in lipid micelles and bilayers.
|
| |
Biophys J,
95,
4315-4323.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Yarar,
M.C.Surka,
M.C.Leonard,
and
S.L.Schmid
(2008).
SNX9 Activities are Regulated by Multiple Phosphoinositides Through both PX and BAR Domains.
|
| |
Traffic,
9,
133-146.
|
 |
|
|
|
|
 |
E.Hanssen,
P.Hawthorne,
M.W.Dixon,
K.R.Trenholme,
P.J.McMillan,
T.Spielmann,
D.L.Gardiner,
and
L.Tilley
(2008).
Targeted mutagenesis of the ring-exported protein-1 of Plasmodium falciparum disrupts the architecture of Maurer's cleft organelles.
|
| |
Mol Microbiol,
69,
938-953.
|
 |
|
|
|
|
 |
E.Marza,
T.Long,
A.Saiardi,
M.Sumakovic,
S.Eimer,
D.H.Hall,
and
G.M.Lesa
(2008).
Polyunsaturated Fatty Acids Influence Synaptojanin Localization to Regulate Synaptic Vesicle Recycling.
|
| |
Mol Biol Cell,
19,
833-842.
|
 |
|
|
|
|
 |
F.Campelo,
H.T.McMahon,
and
M.M.Kozlov
(2008).
The hydrophobic insertion mechanism of membrane curvature generation by proteins.
|
| |
Biophys J,
95,
2325-2339.
|
 |
|
|
|
|
 |
F.Fernandes,
L.M.Loura,
F.J.Chichón,
J.L.Carrascosa,
A.Fedorov,
and
M.Prieto
(2008).
Role of helix 0 of the N-BAR domain in membrane curvature generation.
|
| |
Biophys J,
94,
3065-3073.
|
 |
|
|
|
|
 |
G.J.Doherty,
and
H.T.McMahon
(2008).
Mediation, modulation, and consequences of membrane-cytoskeleton interactions.
|
| |
Annu Rev Biophys,
37,
65-95.
|
 |
|
|
|
|
 |
H.Fei,
A.Grygoruk,
E.S.Brooks,
A.Chen,
and
D.E.Krantz
(2008).
Trafficking of vesicular neurotransmitter transporters.
|
| |
Traffic,
9,
1425-1436.
|
 |
|
|
|
|
 |
H.Yamaguchi,
N.T.Woods,
J.F.Dorsey,
Y.Takahashi,
N.R.Gjertsen,
T.Yeatman,
J.Wu,
and
H.G.Wang
(2008).
SRC directly phosphorylates Bif-1 and prevents its interaction with Bax and the initiation of anoikis.
|
| |
J Biol Chem,
283,
19112-19118.
|
 |
|
|
|
|
 |
J.Hu,
Y.Shibata,
C.Voss,
T.Shemesh,
Z.Li,
M.Coughlin,
M.M.Kozlov,
T.A.Rapoport,
and
W.A.Prinz
(2008).
Membrane proteins of the endoplasmic reticulum induce high-curvature tubules.
|
| |
Science,
319,
1247-1250.
|
 |
|
|
|
|
 |
M.A.Lemmon
(2008).
Membrane recognition by phospholipid-binding domains.
|
| |
Nat Rev Mol Cell Biol,
9,
99.
|
 |
|
|
|
|
 |
M.Krauss,
J.Y.Jia,
A.Roux,
R.Beck,
F.T.Wieland,
P.De Camilli,
and
V.Haucke
(2008).
Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding.
|
| |
J Biol Chem,
283,
27717-27723.
|
 |
|
|
|
|
 |
P.D.Blood,
R.D.Swenson,
and
G.A.Voth
(2008).
Factors influencing local membrane curvature induction by N-BAR domains as revealed by molecular dynamics simulations.
|
| |
Biophys J,
95,
1866-1876.
|
 |
|
|
|
|
 |
P.V.Bashkirov,
S.A.Akimov,
A.I.Evseev,
S.L.Schmid,
J.Zimmerberg,
and
V.A.Frolov
(2008).
GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission.
|
| |
Cell,
135,
1276-1286.
|
 |
|
|
|
|
 |
R.Beck,
Z.Sun,
F.Adolf,
C.Rutz,
J.Bassler,
K.Wild,
I.Sinning,
E.Hurt,
B.Brügger,
J.Béthune,
and
F.Wieland
(2008).
Membrane curvature induced by Arf1-GTP is essential for vesicle formation.
|
| |
Proc Natl Acad Sci U S A,
105,
11731-11736.
|
 |
|
|
|
|
 |
V.A.Frolov,
and
J.Zimmerberg
(2008).
Flexible scaffolding made of rigid BARs.
|
| |
Cell,
132,
727-729.
|
 |
|
|
|
|
 |
Y.Shibata,
C.Voss,
J.M.Rist,
J.Hu,
T.A.Rapoport,
W.A.Prinz,
and
G.K.Voeltz
(2008).
The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum.
|
| |
J Biol Chem,
283,
18892-18904.
|
 |
|
|
|
|
 |
A.Shimada,
H.Niwa,
K.Tsujita,
S.Suetsugu,
K.Nitta,
K.Hanawa-Suetsugu,
R.Akasaka,
Y.Nishino,
M.Toyama,
L.Chen,
Z.J.Liu,
B.C.Wang,
M.Yamamoto,
T.Terada,
A.Miyazawa,
A.Tanaka,
S.Sugano,
M.Shirouzu,
K.Nagayama,
T.Takenawa,
and
S.Yokoyama
(2007).
Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis.
|
| |
Cell,
129,
761-772.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.J.Ungewickell,
and
L.Hinrichsen
(2007).
Endocytosis: clathrin-mediated membrane budding.
|
| |
Curr Opin Cell Biol,
19,
417-425.
|
 |
|
|
|
|
 |
G.Drin,
J.F.Casella,
R.Gautier,
T.Boehmer,
T.U.Schwartz,
and
B.Antonny
(2007).
A general amphipathic alpha-helical motif for sensing membrane curvature.
|
| |
Nat Struct Mol Biol,
14,
138-146.
|
 |
|
|
|
|
 |
G.O.Cory,
and
P.J.Cullen
(2007).
Membrane curvature: the power of bananas, zeppelins and boomerangs.
|
| |
Curr Biol,
17,
R455-R457.
|
 |
|
|
|
|
 |
G.S.Ayton,
P.D.Blood,
and
G.A.Voth
(2007).
Membrane remodeling from N-BAR domain interactions: insights from multi-scale simulation.
|
| |
Biophys J,
92,
3595-3602.
|
 |
|
|
|
|
 |
G.Zhu,
J.Chen,
J.Liu,
J.S.Brunzelle,
B.Huang,
N.Wakeham,
S.Terzyan,
X.Li,
Z.Rao,
G.Li,
and
X.C.Zhang
(2007).
Structure of the APPL1 BAR-PH domain and characterization of its interaction with Rab5.
|
| |
EMBO J,
26,
3484-3493.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.G.Mills
(2007).
The interplay between clathrin-coated vesicles and cell signalling.
|
| |
Semin Cell Dev Biol,
18,
459-470.
|
 |
|
|
|
|
 |
J.Li,
X.Mao,
L.Q.Dong,
F.Liu,
and
L.Tong
(2007).
Crystal structures of the BAR-PH and PTB domains of human APPL1.
|
| |
Structure,
15,
525-533.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Fütterer,
and
L.M.Machesky
(2007).
"Wunder" F-BAR domains: going from pits to vesicles.
|
| |
Cell,
129,
655-657.
|
 |
|
|
|
|
 |
O.Pylypenko,
R.Lundmark,
E.Rasmuson,
S.R.Carlsson,
and
A.Rak
(2007).
The PX-BAR membrane-remodeling unit of sorting nexin 9.
|
| |
EMBO J,
26,
4788-4800.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.K.Mattila,
A.Pykäläinen,
J.Saarikangas,
V.O.Paavilainen,
H.Vihinen,
E.Jokitalo,
and
P.Lappalainen
(2007).
Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism.
|
| |
J Cell Biol,
176,
953-964.
|
 |
|
|
|
|
 |
S.Hoppins,
L.Lackner,
and
J.Nunnari
(2007).
The machines that divide and fuse mitochondria.
|
| |
Annu Rev Biochem,
76,
751-780.
|
 |
|
|
|
|
 |
T.Fischer,
L.Lu,
H.T.Haigler,
and
R.Langen
(2007).
Annexin B12 is a sensor of membrane curvature and undergoes major curvature-dependent structural changes.
|
| |
J Biol Chem,
282,
9996.
|
 |
|
|
|
|
 |
T.Saito,
C.C.Jones,
S.Huang,
M.P.Czech,
and
P.F.Pilch
(2007).
The interaction of Akt with APPL1 is required for insulin-stimulated Glut4 translocation.
|
| |
J Biol Chem,
282,
32280-32287.
|
 |
|
|
|
|
 |
V.Anggono,
and
P.J.Robinson
(2007).
Syndapin I and endophilin I bind overlapping proline-rich regions of dynamin I: role in synaptic vesicle endocytosis.
|
| |
J Neurochem,
102,
931-943.
|
 |
|
|
|
|
 |
Y.Takahashi,
D.Coppola,
N.Matsushita,
H.D.Cualing,
M.Sun,
Y.Sato,
C.Liang,
J.U.Jung,
J.Q.Cheng,
J.J.Mul,
W.J.Pledger,
and
H.G.Wang
(2007).
Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis.
|
| |
Nat Cell Biol,
9,
1142-1151.
|
 |
|
|
|
|
 |
J.C.Dawson,
J.A.Legg,
and
L.M.Machesky
(2006).
Bar domain proteins: a role in tubulation, scission and actin assembly in clathrin-mediated endocytosis.
|
| |
Trends Cell Biol,
16,
493-498.
|
 |
|
|
|
|
 |
P.D.Blood,
and
G.A.Voth
(2006).
Direct observation of Bin/amphiphysin/Rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations.
|
| |
Proc Natl Acad Sci U S A,
103,
15068-15072.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |