spacer
spacer

PDBsum entry 1e5h

Go to PDB code: 
protein ligands metals links
Oxidoreductase PDB id
1e5h

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
271 a.a. *
Ligands
SIN
CO2
Metals
FE2
Waters ×119
* Residue conservation analysis
PDB id:
1e5h
Name: Oxidoreductase
Title: Delta-r307a deacetoxycephalosporin c synthase complexed with succinate and carbon dioxide
Structure: Deacetoxycephalosporin c synthase. Chain: a. Synonym: ring expanding enzyme, ring expandase. Engineered: yes. Mutation: yes
Source: Streptomyces clavuligerus. Organism_taxid: 1901. Gene: cefe. Expressed in: escherichia coli. Expression_system_taxid: 469008. Other_details: recombinant e.Coli
Biol. unit: Trimer (from PDB file)
Resolution:
1.96Å     R-factor:   0.220     R-free:   0.252
Authors: H.J.Lee,M.D.Lloyd,K.Harlos,I.J.Clifton,J.E.Baldwin,C.J.Schofield
Key ref:
H.J.Lee et al. (2001). Kinetic and crystallographic studies on deacetoxycephalosporin C synthase (DAOCS). J Mol Biol, 308, 937-948. PubMed id: 11352583 DOI: 10.1006/jmbi.2001.4649
Date:
26-Jul-00     Release date:   26-Jul-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P18548  (CEFE_STRCL) -  Deacetoxycephalosporin C synthase from Streptomyces clavuligerus
Seq:
Struc:
311 a.a.
271 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.1.14.20.1  - deacetoxycephalosporin-C synthase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Penicillin N and Deacetoxycephalosporin C Biosynthesis
      Reaction: penicillin N + 2-oxoglutarate + O2 = deacetoxycephalosporin C + succinate + CO2 + H2O
penicillin N
+ 2-oxoglutarate
+ O2
=
deacetoxycephalosporin C
Bound ligand (Het Group name = CO2)
corresponds exactly
+ succinate
+ CO2
+ H2O
Bound ligand (Het Group name = SIN)
corresponds exactly
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1006/jmbi.2001.4649 J Mol Biol 308:937-948 (2001)
PubMed id: 11352583  
 
 
Kinetic and crystallographic studies on deacetoxycephalosporin C synthase (DAOCS).
H.J.Lee, M.D.Lloyd, K.Harlos, I.J.Clifton, J.E.Baldwin, C.J.Schofield.
 
  ABSTRACT  
 
Deacetoxycephalosporin C synthase (DAOCS) is an iron(II) and 2-oxoglutarate-dependent oxygenase that catalyzes the conversion of penicillin N to deacetoxycephalosporin C, the committed step in the biosynthesis of cephalosporin antibiotics. The crystal structure of DAOCS revealed that the C terminus of one molecule is inserted into the active site of its neighbor in a cyclical fashion within a trimeric unit. This arrangement has hindered the generation of crystalline enzyme-substrate complexes. Therefore, we constructed a series of DAOCS mutants with modified C termini. Oxidation of 2-oxoglutarate was significantly uncoupled from oxidation of the penicillin substrate in certain truncated mutants. The extent of uncoupling varied with the number of residues deleted and the penicillin substrate used. Crystal structures were determined for the DeltaR306 mutant complexed with iron(II) and 2-oxoglutarate (to 2.10 A) and the DeltaR306A mutant complexed with iron(II), succinate and unhydrated carbon dioxide (to 1.96 A). The latter may mimic a product complex, and supports proposals for a metal-bound CO(2) intermediate during catalysis.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Structure of (a) iron(II) and 2-oxoglutarate complex of wild-type enzyme [Valegard et al 1998]; (b) iron(II) and 2-oxoglutarate complex of the DR306 mutant; and (c) iron(II), succinate and CO[2] complex of the DR307A mutant. The jelly-roll motif is shown in red, C termini are shown in blue, and the C terminus from symmetry related molecules in green.
Figure 3.
Figure 3. A view of the structure of the DR307A mutant iron(II), succinate and CO[2] complex. (a) A similar view to that in Figure 2, with the above residues omitted for clarity. The electron density map is contoured to 1.29s; (b) close up view of the CO[2]-binding site with succinate and the side-chains of Val262 and Phe264 enclosing one face. The remaining face of the molecule is bordered by residues in the C terminus, the conformation of which may be significantly different in solution (see the text for a discussion). The electron density map is contoured to 1.69s.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2001, 308, 937-948) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21460794 R.Chowdhury, K.K.Yeoh, Y.M.Tian, L.Hillringhaus, E.A.Bagg, N.R.Rose, I.K.Leung, X.S.Li, E.C.Woon, M.Yang, M.A.McDonough, O.N.King, I.J.Clifton, R.J.Klose, T.D.Claridge, P.J.Ratcliffe, C.J.Schofield, and A.Kawamura (2011).
The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases.
  EMBO Rep, 12, 463-469.
PDB codes: 2ybk 2ybp 2ybs 2yc0 2yde
21190060 X.B.Wu, X.Y.Tian, J.J.Ji, W.B.Wu, K.Q.Fan, and K.Q.Yang (2011).
Saturation mutagenesis of Acremonium chrysogenum deacetoxy/deacetylcephalosporin C synthase R308 site confirms its role in controlling substrate specificity.
  Biotechnol Lett, 33, 805-812.  
18063574 E.Flashman, E.A.Bagg, R.Chowdhury, J.Mecinović, C.Loenarz, M.A.McDonough, K.S.Hewitson, and C.J.Schofield (2008).
Kinetic rationale for selectivity toward N- and C-terminal oxygen-dependent degradation domain substrates mediated by a loop region of hypoxia-inducible factor prolyl hydroxylases.
  J Biol Chem, 283, 3808-3815.  
17475535 J.J.Cotelesage, J.Puttick, H.Goldie, B.Rajabi, B.Novakovski, and L.T.Delbaere (2007).
How does an enzyme recognize CO2?
  Int J Biochem Cell Biol, 39, 1204-1210.
PDB codes: 2olq 2olr
17135241 K.S.Hewitson, B.M.Liénard, M.A.McDonough, I.J.Clifton, D.Butler, A.S.Soares, N.J.Oldham, L.A.McNeill, and C.J.Schofield (2007).
Structural and mechanistic studies on the inhibition of the hypoxia-inducible transcription factor hydroxylases by tricarboxylic acid cycle intermediates.
  J Biol Chem, 282, 3293-3301.
PDB codes: 2cgn 2cgo
17431691 V.Purpero, and G.R.Moran (2007).
The diverse and pervasive chemistries of the alpha-keto acid dependent enzymes.
  J Biol Inorg Chem, 12, 587-601.  
16550268 I.Castro-Rodríguez, and K.Meyer (2006).
Small molecule activation at uranium coordination complexes: control of reactivity via molecular architecture.
  Chem Commun (Camb), (), 1353-1368.  
16782814 M.A.McDonough, V.Li, E.Flashman, R.Chowdhury, C.Mohr, B.M.Liénard, J.Zondlo, N.J.Oldham, I.J.Clifton, J.Lewis, L.A.McNeill, R.J.Kurzeja, K.S.Hewitson, E.Yang, S.Jordan, R.S.Syed, and C.J.Schofield (2006).
Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2).
  Proc Natl Acad Sci U S A, 103, 9814-9819.
PDB codes: 2g19 2g1m
16920789 M.L.Neidig, A.Decker, O.W.Choroba, F.Huang, M.Kavana, G.R.Moran, J.B.Spencer, and E.I.Solomon (2006).
Spectroscopic and electronic structure studies of aromatic electrophilic attack and hydrogen-atom abstraction by non-heme iron enzymes.
  Proc Natl Acad Sci U S A, 103, 12966-12973.  
16469386 Y.Mishina, and C.He (2006).
Oxidative dealkylation DNA repair mediated by the mononuclear non-heme iron AlkB proteins.
  J Inorg Biochem, 100, 670-678.  
16464003 Y.Mishina, E.M.Duguid, and C.He (2006).
Direct reversal of DNA alkylation damage.
  Chem Rev, 106, 215-232.  
16332884 C.L.Wei, Y.B.Yang, C.H.Deng, W.C.Liu, J.S.Hsu, Y.C.Lin, S.H.Liaw, and Y.C.Tsai (2005).
Directed evolution of Streptomyces clavuligerus deacetoxycephalosporin C synthase for enhancement of penicillin G expansion.
  Appl Environ Microbiol, 71, 8873-8880.  
16186124 M.A.McDonough, K.L.Kavanagh, D.Butler, T.Searls, U.Oppermann, and C.J.Schofield (2005).
Structure of human phytanoyl-CoA 2-hydroxylase identifies molecular mechanisms of Refsum disease.
  J Biol Chem, 280, 41101-41110.
PDB code: 2a1x
16317455 M.L.Neidig, and E.I.Solomon (2005).
Structure-function correlations in oxygen activating non-heme iron enzymes.
  Chem Commun (Camb), (), 5843-5863.  
16113715 N.J.Kershaw, M.E.Caines, M.C.Sleeman, and C.J.Schofield (2005).
The enzymology of clavam and carbapenem biosynthesis.
  Chem Commun (Camb), (), 4251-4263.  
15869968 X.B.Wu, K.Q.Fan, Q.H.Wang, and K.Q.Yang (2005).
C-terminus mutations of Acremonium chrysogenum deacetoxy/deacetylcephalosporin C synthase with improved activity toward penicillin analogs.
  FEMS Microbiol Lett, 246, 103-110.  
15122348 C.J.Schofield, and P.J.Ratcliffe (2004).
Oxygen sensing by HIF hydroxylases.
  Nat Rev Mol Cell Biol, 5, 343-354.  
14711695 H.S.Chin, K.S.Goo, and T.S.Sim (2004).
A complete library of amino acid alterations at N304 in Streptomyces clavuligerus deacetoxycephalosporin C synthase elucidates the basis for enhanced penicillin analogue conversion.
  Appl Environ Microbiol, 70, 607-609.  
15375263 I.Castro-Rodriguez, H.Nakai, L.N.Zakharov, A.L.Rheingold, and K.Meyer (2004).
A linear, O-coordinated eta1-CO2 bound to uranium.
  Science, 305, 1757-1759.  
15466573 J.S.Hsu, Y.B.Yang, C.H.Deng, C.L.Wei, S.H.Liaw, and Y.C.Tsai (2004).
Family shuffling of expandase genes to enhance substrate specificity for penicillin G.
  Appl Environ Microbiol, 70, 6257-6263.  
14718929 K.Valegård, A.C.Terwisscha van Scheltinga, A.Dubus, G.Ranghino, L.M.Oster, J.Hajdu, and I.Andersson (2004).
The structural basis of cephalosporin formation in a mononuclear ferrous enzyme.
  Nat Struct Mol Biol, 11, 95.
PDB codes: 1unb 1uo9 1uob 1uof 1uog
14734549 M.D.Lloyd, S.J.Lipscomb, K.S.Hewitson, C.M.Hensgens, J.E.Baldwin, and C.J.Schofield (2004).
Controlling the substrate selectivity of deacetoxycephalosporin/deacetylcephalosporin C synthase.
  J Biol Chem, 279, 15420-15426.  
12676714 C.L.Wei, Y.B.Yang, W.C.Wang, W.C.Liu, J.S.Hsu, and Y.C.Tsai (2003).
Engineering Streptomyces clavuligerus deacetoxycephalosporin C synthase for optimal ring expansion activity toward penicillin G.
  Appl Environ Microbiol, 69, 2306-2312.  
12631288 H.J.Lee, Y.F.Dai, C.Y.Shiau, C.J.Schofield, and M.D.Lloyd (2003).
The kinetic properties of various R258 mutants of deacetoxycephalosporin C synthase.
  Eur J Biochem, 270, 1301-1307.  
12642663 M.J.Ryle, K.D.Koehntop, A.Liu, L.Que, and R.P.Hausinger (2003).
Interconversion of two oxidized forms of taurine/alpha-ketoglutarate dioxygenase, a non-heme iron hydroxylase: evidence for bicarbonate binding.
  Proc Natl Acad Sci U S A, 100, 3790-3795.  
12814641 M.Mukherji, C.J.Schofield, A.S.Wierzbicki, G.A.Jansen, R.J.Wanders, and M.D.Lloyd (2003).
The chemical biology of branched-chain lipid metabolism.
  Prog Lipid Res, 42, 359-376.  
12039004 M.J.Ryle, and R.P.Hausinger (2002).
Non-heme iron oxygenases.
  Curr Opin Chem Biol, 6, 193-201.  
12047382 S.J.Lipscomb, H.J.Lee, M.Mukherji, J.E.Baldwin, C.J.Schofield, and M.D.Lloyd (2002).
The role of arginine residues in substrate binding and catalysis by deacetoxycephalosporin C synthase.
  Eur J Biochem, 269, 2735-2739.  
12486230 T.Duncan, S.C.Trewick, P.Koivisto, P.A.Bates, T.Lindahl, and B.Sedgwick (2002).
Reversal of DNA alkylation damage by two human dioxygenases.
  Proc Natl Acad Sci U S A, 99, 16660-16665.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer