spacer
spacer

PDBsum entry 1dp0

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase PDB id
1dp0

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
1011 a.a. *
Ligands
DMS ×112
Metals
_MG ×16
_NA ×20
Waters ×4424
* Residue conservation analysis
PDB id:
1dp0
Name: Hydrolase
Title: E. Coli beta-galactosidase at 1.7 angstrom
Structure: Beta-galactosidase. Chain: a, b, c, d. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Tetramer (from PQS)
Resolution:
1.70Å     R-factor:   0.158     R-free:   0.211
Authors: D.H.Juers,R.H.Jacobson,D.Wigley,X.J.Zhang,R.E.Huber,D.E.Tronrud, B.W.Matthews
Key ref: D.H.Juers et al. (2000). High resolution refinement of beta-galactosidase in a new crystal form reveals multiple metal-binding sites and provides a structural basis for alpha-complementation. Protein Sci, 9, 1685-1699. PubMed id: 11045615 DOI: 10.1110/ps.9.9.1685
Date:
22-Dec-99     Release date:   21-Feb-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P00722  (BGAL_ECOLI) -  Beta-galactosidase from Escherichia coli (strain K12)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1024 a.a.
1011 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.2.1.23  - beta-galactosidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-D-galactosides.

 

 
DOI no: 10.1110/ps.9.9.1685 Protein Sci 9:1685-1699 (2000)
PubMed id: 11045615  
 
 
High resolution refinement of beta-galactosidase in a new crystal form reveals multiple metal-binding sites and provides a structural basis for alpha-complementation.
D.H.Juers, R.H.Jacobson, D.Wigley, X.J.Zhang, R.E.Huber, D.E.Tronrud, B.W.Matthews.
 
  ABSTRACT  
 
The unrefined fold of Escherichia coli beta-galactosidase based on a monoclinic crystal form with four independent tetramers has been reported previously. Here, we describe a new, orthorhombic form with one tetramer per asymmetric unit that has permitted refinement of the structure at 1.7 A resolution. This high-resolution analysis has confirmed the original description of the structure and revealed new details. An essential magnesium ion, identified at the active site in the monoclinic crystals, is also seen in the orthorhombic form. Additional putative magnesium binding sites are also seen. Sodium ions are also known to affect catalysis, and five putative binding sites have been identified, one close to the active site. In a crevice on the protein surface, five linked five-membered solvent rings form a partial clathrate-like structure. Some other unusual aspects of the structure include seven apparent cis-peptide bonds, four of which are proline, and several internal salt-bridge networks. Deep solvent-filled channels and tunnels extend across the surface of the molecule and pass through the center of the tetramer. Because of these departures from a compact globular shape, the molecule is not well characterized by prior empirical relationships between the mass and surface area of proteins. The 50 or so residues at the amino terminus have a largely extended conformation and mostly lie across the surface of the protein. At the same time, however, segment 13-21 contributes to a subunit interface, and residues 29-33 pass through a "tunnel" formed by a domain interface. Taken together, the overall arrangement provides a structural basis for the phenomenon of alpha-complementation.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21130883 M.Maksimainen, N.Hakulinen, J.M.Kallio, T.Timoharju, O.Turunen, and J.Rouvinen (2011).
Crystal structures of Trichoderma reesei β-galactosidase reveal conformational changes in the active site.
  J Struct Biol, 174, 156-163.
PDB codes: 3og2 3ogr 3ogs 3ogv
20662765 E.Yoshida, M.Hidaka, S.Fushinobu, T.Koyanagi, H.Minami, H.Tamaki, M.Kitaoka, T.Katayama, and H.Kumagai (2010).
Role of a PA14 domain in determining substrate specificity of a glycoside hydrolase family 3 β-glucosidase from Kluyveromyces marxianus.
  Biochem J, 431, 39-49.
PDB codes: 3abz 3ac0
20077037 J.Krahulec, T.Szemes, and J.Krahulcová (2010).
Bioinformatics characterization of potential new beta-glucuronidase from Streptococcus equi subsp. zooepidemicus.
  Mol Biotechnol, 44, 232-241.  
20921997 M.L.Dugdale, D.L.Dymianiw, B.K.Minhas, I.D'Angelo, and R.E.Huber (2010).
Role of Met-542 as a guide for the conformational changes of Phe-601 that occur during the reaction of β-galactosidase (Escherichia coli).
  Biochem Cell Biol, 88, 861-869.
PDB codes: 3i3b 3i3d 3i3e
21102659 M.L.Dugdale, M.L.Vance, R.W.Wheatley, M.R.Driedger, A.Nibber, A.Tran, and R.E.Huber (2010).
Importance of Arg-599 of β-galactosidase (Escherichia coli) as an anchor for the open conformations of Phe-601 and the active-site loop.
  Biochem Cell Biol, 88, 969-979.
PDB code: 3muy
19936901 S.Lo, M.L.Dugdale, N.Jeerh, T.Ku, N.J.Roth, and R.E.Huber (2010).
Studies of Glu-416 variants of beta-galactosidase (E. coli) show that the active site Mg(2+) is not important for structure and indicate that the main role of Mg (2+) is to mediate optimization of active site chemistry.
  Protein J, 29, 26-31.
PDB codes: 3iap 3iaq
19472413 D.H.Juers, B.Rob, M.L.Dugdale, N.Rahimzadeh, C.Giang, M.Lee, B.W.Matthews, and R.E.Huber (2009).
Direct and indirect roles of His-418 in metal binding and in the activity of beta-galactosidase (E. coli).
  Protein Sci, 18, 1281-1292.
PDB codes: 3dym 3dyo 3dyp 3e1f
19448745 E.R.Nichols, E.Shadabi, and D.B.Craig (2009).
Effect of alteration of translation error rate on enzyme microheterogeneity as assessed by variation in single molecule electrophoretic mobility and catalytic activity.
  Biochem Cell Biol, 87, 517-529.  
19888458 L.Martin, A.Che, and D.Endy (2009).
Gemini, a bifunctional enzymatic and fluorescent reporter of gene expression.
  PLoS One, 4, e7569.  
18007029 D.H.Juers, J.Lovelace, H.D.Bellamy, E.H.Snell, B.W.Matthews, and G.E.Borgstahl (2007).
Changes to crystals of Escherichia coli beta-galactosidase during room-temperature/low-temperature cycling and their relation to cryo-annealing.
  Acta Crystallogr D Biol Crystallogr, 63, 1139-1153.  
17253128 E.R.Nichols, J.M.Gavina, R.G.McLeod, and D.B.Craig (2007).
Single molecule assays of beta-galactosidase from two wild-type strains of E. coli: effects of protease inhibitors on microheterogeneity and different relative activities with differing substrates.
  Protein J, 26, 95.  
17355206 K.R.Olson, and R.M.Eglen (2007).
Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery.
  Assay Drug Dev Technol, 5, 137-144.  
16193277 H.P.Sørensen, T.K.Porsgaard, R.A.Kahn, P.Stougaard, K.K.Mortensen, and M.G.Johnsen (2006).
Secreted beta-galactosidase from a Flavobacterium sp. isolated from a low-temperature environment.
  Appl Microbiol Biotechnol, 70, 548-557.  
15972803 A.Griffiths, and D.M.Coen (2005).
An unusual internal ribosome entry site in the herpes simplex virus thymidine kinase gene.
  Proc Natl Acad Sci U S A, 102, 9667-9672.  
15973423 T.S.Wehrman, C.L.Casipit, N.M.Gewertz, and H.M.Blau (2005).
Enzymatic detection of protein translocation.
  Nat Methods, 2, 521-527.  
  16233714 A.Hoyoux, V.Blaise, T.Collins, S.D'Amico, E.Gratia, A.L.Huston, J.C.Marx, G.Sonan, Y.Zeng, G.Feller, and C.Gerday (2004).
Extreme catalysts from low-temperature environments.
  J Biosci Bioeng, 98, 317-330.  
15247421 A.R.Buskirk, Y.C.Ong, Z.J.Gartner, and D.R.Liu (2004).
Directed evolution of ligand dependence: small-molecule-activated protein splicing.
  Proc Natl Acad Sci U S A, 101, 10505-10510.  
14993664 D.H.Juers, and B.W.Matthews (2004).
The role of solvent transport in cryo-annealing of macromolecular crystals.
  Acta Crystallogr D Biol Crystallogr, 60, 412-421.  
14997564 E.Poussu, M.Vihinen, L.Paulin, and H.Savilahti (2004).
Probing the alpha-complementing domain of E. coli beta-galactosidase with use of an insertional pentapeptide mutagenesis strategy based on Mu in vitro DNA transposition.
  Proteins, 54, 681-692.  
15060622 J.Xu, M.A.McRae, S.Harron, B.Rob, and R.E.Huber (2004).
A study of the relationships of interactions between Asp-201, Na+ or K+, and galactosyl C6 hydroxyl and their effects on binding and reactivity of beta-galactosidase.
  Biochem Cell Biol, 82, 275-284.  
15274915 M.Hidaka, Y.Honda, M.Kitaoka, S.Nirasawa, K.Hayashi, T.Wakagi, H.Shoun, and S.Fushinobu (2004).
Chitobiose phosphorylase from Vibrio proteolyticus, a member of glycosyl transferase family 36, has a clan GH-L-like (alpha/alpha)(6) barrel fold.
  Structure, 12, 937-947.
PDB codes: 1v7v 1v7w 1v7x
15606918 P.Philibert, and P.Martineau (2004).
Directed evolution of single-chain Fv for cytoplasmic expression using the beta-galactosidase complementation assay results in proteins highly susceptible to protease degradation and aggregation.
  Microb Cell Fact, 3, 16.  
15109803 R.E.Campbell (2004).
Realization of beta-lactamase as a versatile fluorogenic reporter.
  Trends Biotechnol, 22, 208-211.  
14621996 D.H.Juers, S.Hakda, B.W.Matthews, and R.E.Huber (2003).
Structural basis for the altered activity of Gly794 variants of Escherichia coli beta-galactosidase.
  Biochemistry, 42, 13505-13511.
PDB codes: 1px3 1px4
12949099 J.A.Coker, P.P.Sheridan, J.Loveland-Curtze, K.R.Gutshall, A.J.Auman, and J.E.Brenchley (2003).
Biochemical characterization of a beta-galactosidase with a low temperature optimum obtained from an Antarctic arthrobacter isolate.
  J Bacteriol, 185, 5473-5482.  
  11973303 F.Mongelard, M.Labrador, E.M.Baxter, T.I.Gerasimova, and V.G.Corces (2002).
Trans-splicing as a novel mechanism to explain interallelic complementation in Drosophila.
  Genetics, 160, 1481-1487.  
  16233252 M.Inohara-Ochiai, S.Hasegawa, S.Iguchi, T.Ashikari, Y.Shibano, H.Hemmi, T.Nakayama, and T.Nishino (2002).
Deletion and insertion of a 192-residue peptide in the active-site domain of glycosyl hydrolase family-2 beta-galactosidases.
  J Biosci Bioeng, 93, 575-583.  
12446654 N.Lopes Ferreira, and J.H.Alix (2002).
The DnaK chaperone is necessary for alpha-complementation of beta-galactosidase in Escherichia coli.
  J Bacteriol, 184, 7047-7054.  
11310566 R.E.Huber, I.Y.Hlede, N.J.Roth, K.C.McKenzie, and K.K.Ghumman (2001).
His-391 of beta-galactosidase (Escherichia coli) promotes catalyses by strong interactions with the transition state.
  Biochem Cell Biol, 79, 183-193.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer