 |
PDBsum entry 1d6h
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.2.3.1.74
- chalcone synthase.
|
|
 |
 |
 |
 |
 |

Pathway:
|
 |
Chalcone and Stilbene Biosynthesis
|
 |
 |
 |
 |
 |
Reaction:
|
 |
(E)-4-coumaroyl-CoA + 3 malonyl-CoA + 3 H+ = 2',4,4',6'-tetrahydroxychalcone + 3 CO2 + 4 CoA
|
 |
 |
 |
 |
 |
(E)-4-coumaroyl-CoA
|
+
|
3
×
malonyl-CoA
|
+
|
3
×
H(+)
|
=
|
2',4,4',6'-tetrahydroxychalcone
|
+
|
3
×
CO2
|
+
|
4
×
CoA
Bound ligand (Het Group name = )
corresponds exactly
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Biochemistry
39:890-902
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase.
|
|
J.M.Jez,
J.L.Ferrer,
M.E.Bowman,
R.A.Dixon,
J.P.Noel.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Chalcone synthase (CHS) catalyzes formation of the phenylpropanoid chalcone from
one p-coumaroyl-CoA and three malonyl-coenzyme A (CoA) thioesters. The
three-dimensional structure of CHS [Ferrer, J.-L., Jez, J. M., Bowman, M. E.,
Dixon, R. A., and Noel, J. P. (1999) Nat. Struct. Biol. 6, 775-784] suggests
that four residues (Cys164, Phe215, His303, and Asn336) participate in the
multiple decarboxylation and condensation reactions catalyzed by this enzyme.
Here, we functionally characterize 16 point mutants of these residues for
chalcone production, malonyl-CoA decarboxylation, and the ability to bind CoA
and acetyl-CoA. Our results confirm Cys164's role as the active-site nucleophile
in polyketide formation and elucidate the importance of His303 and Asn336 in the
malonyl-CoA decarboxylation reaction. We suggest that Phe215 may help orient
substrates at the active site during elongation of the polyketide intermediate.
To better understand the structure-function relationships in some of these
mutants, we also determined the crystal structures of the CHS C164A, H303Q, and
N336A mutants refined to 1.69, 2.0, and 2.15 A resolution, respectively. The
structure of the C164A mutant reveals that the proposed oxyanion hole formed by
His303 and Asn336 remains undisturbed, allowing this mutant to catalyze
malonyl-CoA decarboxylation without chalcone formation. The structures of the
H303Q and N336A mutants support the importance of His303 and Asn336 in
polarizing the thioester carbonyl of malonyl-CoA during the decarboxylation
reaction. In addition, both of these residues may also participate in
stabilizing the tetrahedral transition state during polyketide elongation.
Conservation of the catalytic functions of the active-site residues may occur
across a wide variety of condensing enzymes, including other polyketide and
fatty acid synthases.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
M.N.Ngaki,
G.V.Louie,
R.N.Philippe,
G.Manning,
F.Pojer,
M.E.Bowman,
L.Li,
E.Larsen,
E.S.Wurtele,
and
J.P.Noel
(2012).
Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis.
|
| |
Nature,
485,
530-533.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Boll,
S.Hennig,
C.Xie,
J.K.Sohng,
and
L.Heide
(2011).
Adenylate-forming enzymes of rubradirin biosynthesis: RubC1 is a bifunctional enzyme with aminocoumarin acyl ligase and tyrosine-activating domains.
|
| |
Chembiochem,
12,
1105-1114.
|
 |
|
|
|
|
 |
I.Höfer,
M.Crüsemann,
M.Radzom,
B.Geers,
D.Flachshaar,
X.Cai,
A.Zeeck,
and
J.Piel
(2011).
Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite.
|
| |
Chem Biol,
18,
381-391.
|
 |
|
|
|
|
 |
A.W.Schultz,
C.A.Lewis,
M.R.Luzung,
P.S.Baran,
and
B.S.Moore
(2010).
Functional characterization of the cyclomarin/cyclomarazine prenyltransferase CymD directs the biosynthesis of unnatural cyclic peptides.
|
| |
J Nat Prod,
73,
373-377.
|
 |
|
|
|
|
 |
C.Crocoll,
J.Asbach,
J.Novak,
J.Gershenzon,
and
J.Degenhardt
(2010).
Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis.
|
| |
Plant Mol Biol,
73,
587-603.
|
 |
|
|
|
|
 |
E.Okamura,
T.Tomita,
R.Sawa,
M.Nishiyama,
and
T.Kuzuyama
(2010).
Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway.
|
| |
Proc Natl Acad Sci U S A,
107,
11265-11270.
|
 |
|
|
|
|
 |
F.Lopez-Gallego,
S.A.Agger,
D.Abate-Pella,
M.D.Distefano,
and
C.Schmidt-Dannert
(2010).
Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: catalytic promiscuity and cyclization of farnesyl pyrophosphate geometric isomers.
|
| |
Chembiochem,
11,
1093-1106.
|
 |
|
|
|
|
 |
I.Abe,
and
H.Morita
(2010).
Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases.
|
| |
Nat Prod Rep,
27,
809-838.
|
 |
|
|
|
|
 |
L.Kaysser,
E.Wemakor,
S.Siebenberg,
J.A.Salas,
J.K.Sohng,
B.Kammerer,
and
B.Gust
(2010).
Formation and attachment of the deoxysugar moiety and assembly of the gene cluster for caprazamycin biosynthesis.
|
| |
Appl Environ Microbiol,
76,
4008-4018.
|
 |
|
|
|
|
 |
M.Guttman,
J.H.Prieto,
J.E.Croy,
and
E.A.Komives
(2010).
Decoding of lipoprotein-receptor interactions: properties of ligand binding modules governing interactions with apolipoprotein E.
|
| |
Biochemistry,
49,
1207-1216.
|
 |
|
|
|
|
 |
P.K.Koduri,
G.S.Gordon,
E.I.Barker,
C.C.Colpitts,
N.W.Ashton,
and
D.Y.Suh
(2010).
Genome-wide analysis of the chalcone synthase superfamily genes of Physcomitrella patens.
|
| |
Plant Mol Biol,
72,
247-263.
|
 |
|
|
|
|
 |
T.Hochmuth,
H.Niederkrüger,
C.Gernert,
A.Siegl,
S.Taudien,
M.Platzer,
P.Crews,
U.Hentschel,
and
J.Piel
(2010).
Linking chemical and microbial diversity in marine sponges: possible role for poribacteria as producers of methyl-branched fatty acids.
|
| |
Chembiochem,
11,
2572-2578.
|
 |
|
|
|
|
 |
T.Kumano,
T.Tomita,
M.Nishiyama,
and
T.Kuzuyama
(2010).
Functional characterization of the promiscuous prenyltransferase responsible for furaquinocin biosynthesis: identification of a physiological polyketide substrate and its prenylated reaction products.
|
| |
J Biol Chem,
285,
39663-39671.
|
 |
|
|
|
|
 |
T.Okada,
T.Tomita,
A.P.Wulandari,
T.Kuzuyama,
and
M.Nishiyama
(2010).
Mechanism of substrate recognition and insight into feedback inhibition of homocitrate synthase from Thermus thermophilus.
|
| |
J Biol Chem,
285,
4195-4205.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.J.Son,
J.Y.Bae,
S.H.Chong,
H.S.Lee,
S.H.Mo,
T.Y.Kim,
and
H.Choe
(2010).
Expression, high cell density culture and purification of recombinant EC-SOD in Escherichia coli.
|
| |
Appl Biochem Biotechnol,
162,
1585-1598.
|
 |
|
|
|
|
 |
A.K.Bera,
V.Atanasova,
H.Robinson,
E.Eisenstein,
J.P.Coleman,
E.C.Pesci,
and
J.F.Parsons
(2009).
Structure of PqsD, a Pseudomonas quinolone signal biosynthetic enzyme, in complex with anthranilate.
|
| |
Biochemistry,
48,
8644-8655.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.L.Waite,
P.Schaner,
N.Richards,
B.Balci-Peynircioglu,
S.L.Masters,
S.D.Brydges,
M.Fox,
A.Hong,
E.Yilmaz,
D.L.Kastner,
E.L.Reinherz,
and
D.L.Gumucio
(2009).
Pyrin Modulates the Intracellular Distribution of PSTPIP1.
|
| |
PLoS One,
4,
e6147.
|
 |
|
|
|
|
 |
E.K.Bomati,
G.Manning,
and
D.D.Deheyn
(2009).
Amphioxus encodes the largest known family of green fluorescent proteins, which have diversified into distinct functional classes.
|
| |
BMC Evol Biol,
9,
77.
|
 |
|
|
|
|
 |
H.Deng,
S.A.McMahon,
A.S.Eustáquio,
B.S.Moore,
J.H.Naismith,
and
D.O'Hagan
(2009).
Mechanistic insights into water activation in SAM hydroxide adenosyltransferase (duf-62).
|
| |
Chembiochem,
10,
2455-2459.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.D.Marks,
L.Tian,
J.P.Wenger,
S.N.Omburo,
W.Soto-Fuentes,
J.He,
D.R.Gang,
G.D.Weiblen,
and
R.A.Dixon
(2009).
Identification of candidate genes affecting Delta9-tetrahydrocannabinol biosynthesis in Cannabis sativa.
|
| |
J Exp Bot,
60,
3715-3726.
|
 |
|
|
|
|
 |
M.Tosin,
D.Spiteller,
and
J.B.Spencer
(2009).
Malonyl carba(dethia)- and malonyl oxa(dethia)-coenzyme A as tools for trapping polyketide intermediates.
|
| |
Chembiochem,
10,
1714-1723.
|
 |
|
|
|
|
 |
N.D.Adhikari,
R.Orler,
J.Chory,
J.E.Froehlich,
and
R.M.Larkin
(2009).
Porphyrins promote the association of GENOMES UNCOUPLED 4 and a Mg-chelatase subunit with chloroplast membranes.
|
| |
J Biol Chem,
284,
24783-24796.
|
 |
|
|
|
|
 |
O.Saleh,
B.Gust,
B.Boll,
H.P.Fiedler,
and
L.Heide
(2009).
Aromatic Prenylation in Phenazine Biosynthesis: DIHYDROPHENAZINE-1-CARBOXYLATE DIMETHYLALLYLTRANSFERASE FROM STREPTOMYCES ANULATUS.
|
| |
J Biol Chem,
284,
14439-14447.
|
 |
|
|
|
|
 |
S.Agger,
F.Lopez-Gallego,
and
C.Schmidt-Dannert
(2009).
Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus.
|
| |
Mol Microbiol,
72,
1181-1195.
|
 |
|
|
|
|
 |
S.Kumaran,
H.Yi,
H.B.Krishnan,
and
J.M.Jez
(2009).
Assembly of the cysteine synthase complex and the regulatory role of protein-protein interactions.
|
| |
J Biol Chem,
284,
10268-10275.
|
 |
|
|
|
|
 |
S.Y.Kim,
P.Zhao,
M.Igarashi,
R.Sawa,
T.Tomita,
M.Nishiyama,
and
T.Kuzuyama
(2009).
Cloning and heterologous expression of the cyclooctatin biosynthetic gene cluster afford a diterpene cyclase and two p450 hydroxylases.
|
| |
Chem Biol,
16,
736-743.
|
 |
|
|
|
|
 |
T.Ozaki,
S.Mishima,
M.Nishiyama,
and
T.Kuzuyama
(2009).
NovQ is a prenyltransferase capable of catalyzing the addition of a dimethylallyl group to both phenylpropanoids and flavonoids.
|
| |
J Antibiot (Tokyo),
62,
385-392.
|
 |
|
|
|
|
 |
Y.Katsuyama,
T.Kita,
N.Funa,
and
S.Horinouchi
(2009).
Curcuminoid Biosynthesis by Two Type III Polyketide Synthases in the Herb Curcuma longa.
|
| |
J Biol Chem,
284,
11160-11170.
|
 |
|
|
|
|
 |
A.S.Eustáquio,
F.Pojer,
J.P.Noel,
and
B.S.Moore
(2008).
Discovery and characterization of a marine bacterial SAM-dependent chlorinase.
|
| |
Nat Chem Biol,
4,
69-74.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.S.Eustáquio,
J.Härle,
J.P.Noel,
and
B.S.Moore
(2008).
S-Adenosyl-L-methionine hydrolase (adenosine-forming), a conserved bacterial and archaeal protein related to SAM-dependent halogenases.
|
| |
Chembiochem,
9,
2215-2219.
|
 |
|
|
|
|
 |
G.Arimura,
S.Garms,
M.Maffei,
S.Bossi,
B.Schulze,
M.Leitner,
A.Mithöfer,
and
W.Boland
(2008).
Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling.
|
| |
Planta,
227,
453-464.
|
 |
|
|
|
|
 |
G.Wu,
Y.Wu,
L.Xiao,
X.Li,
and
C.Lu
(2008).
Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene.
|
| |
Theor Appl Genet,
116,
491-499.
|
 |
|
|
|
|
 |
H.Morita,
M.Tanio,
S.Kondo,
R.Kato,
K.Wanibuchi,
H.Noguchi,
S.Sugio,
I.Abe,
and
T.Kohno
(2008).
Crystallization and preliminary crystallographic analysis of a plant type III polyketide synthase that produces benzalacetone.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
64,
304-306.
|
 |
|
|
|
|
 |
I.Abe
(2008).
Engineering of plant polyketide biosynthesis.
|
| |
Chem Pharm Bull (Tokyo),
56,
1505-1514.
|
 |
|
|
|
|
 |
O.Yu,
and
J.M.Jez
(2008).
Nature's assembly line: biosynthesis of simple phenylpropanoids and polyketides.
|
| |
Plant J,
54,
750-762.
|
 |
|
|
|
|
 |
G.V.Louie,
T.J.Baiga,
M.E.Bowman,
T.Koeduka,
J.H.Taylor,
S.M.Spassova,
E.Pichersky,
and
J.P.Noel
(2007).
Structure and reaction mechanism of basil eugenol synthase.
|
| |
PLoS ONE,
2,
e993.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Morita,
S.Kondo,
S.Oguro,
H.Noguchi,
S.Sugio,
I.Abe,
and
T.Kohno
(2007).
Structural insight into chain-length control and product specificity of pentaketide chromone synthase from Aloe arborescens.
|
| |
Chem Biol,
14,
359-369.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Beekwilder,
I.M.van der Meer,
O.Sibbesen,
M.Broekgaarden,
I.Qvist,
J.D.Mikkelsen,
and
R.D.Hall
(2007).
Microbial production of natural raspberry ketone.
|
| |
Biotechnol J,
2,
1270-1279.
|
 |
|
|
|
|
 |
K.Springob,
S.Samappito,
A.Jindaprasert,
J.Schmidt,
J.E.Page,
W.De-Eknamkul,
and
T.M.Kutchan
(2007).
A polyketide synthase of Plumbago indica that catalyzes the formation of hexaketide pyrones.
|
| |
FEBS J,
274,
406-417.
|
 |
|
|
|
|
 |
K.Watanabe,
A.P.Praseuth,
and
C.C.Wang
(2007).
A comprehensive and engaging overview of the type III family of polyketide synthases.
|
| |
Curr Opin Chem Biol,
11,
279-286.
|
 |
|
|
|
|
 |
M.C.Moffitt,
G.V.Louie,
M.E.Bowman,
J.Pence,
J.P.Noel,
and
B.S.Moore
(2007).
Discovery of two cyanobacterial phenylalanine ammonia lyases: kinetic and structural characterization.
|
| |
Biochemistry,
46,
1004-1012.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Steffan,
I.A.Unsöld,
and
S.M.Li
(2007).
Chemoenzymatic synthesis of prenylated indole derivatives by using a 4-dimethylallyltryptophan synthase from Aspergillus fumigatus.
|
| |
Chembiochem,
8,
1298-1307.
|
 |
|
|
|
|
 |
C.D.Dana,
D.R.Bevan,
and
B.S.Winkel
(2006).
Molecular modeling of the effects of mutant alleles on chalcone synthase protein structure.
|
| |
J Mol Model,
12,
905-914.
|
 |
|
|
|
|
 |
D.Xie,
Z.Shao,
J.Achkar,
W.Zha,
J.W.Frost,
and
H.Zhao
(2006).
Microbial synthesis of triacetic acid lactone.
|
| |
Biotechnol Bioeng,
93,
727-736.
|
 |
|
|
|
|
 |
G.V.Louie,
M.E.Bowman,
M.C.Moffitt,
T.J.Baiga,
B.S.Moore,
and
J.P.Noel
(2006).
Structural determinants and modulation of substrate specificity in phenylalanine-tyrosine ammonia-lyases.
|
| |
Chem Biol,
13,
1327-1338.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Singh,
and
R.H.Ashley
(2006).
Redox regulation of CLIC1 by cysteine residues associated with the putative channel pore.
|
| |
Biophys J,
90,
1628-1638.
|
 |
|
|
|
|
 |
I.Abe,
T.Watanabe,
W.Lou,
and
H.Noguchi
(2006).
Active site residues governing substrate selectivity and polyketide chain length in aloesone synthase.
|
| |
FEBS J,
273,
208-218.
|
 |
|
|
|
|
 |
M.B.Austin,
T.Saito,
M.E.Bowman,
S.Haydock,
A.Kato,
B.S.Moore,
R.R.Kay,
and
J.P.Noel
(2006).
Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase.
|
| |
Nat Chem Biol,
2,
494-502.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Brand,
D.Hölscher,
A.Schierhorn,
A.Svatos,
J.Schröder,
and
B.Schneider
(2006).
A type III polyketide synthase from Wachendorfia thyrsiflora and its role in diarylheptanoid and phenylphenalenone biosynthesis.
|
| |
Planta,
224,
413-428.
|
 |
|
|
|
|
 |
E.K.Bomati,
M.B.Austin,
M.E.Bowman,
R.A.Dixon,
and
J.P.Noel
(2005).
Structural elucidation of chalcone reductase and implications for deoxychalcone biosynthesis.
|
| |
J Biol Chem,
280,
30496-30503.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.R.Bonner,
R.E.Cahoon,
S.M.Knapke,
and
J.M.Jez
(2005).
Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana.
|
| |
J Biol Chem,
280,
38803-38813.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Xiang,
and
B.S.Moore
(2005).
Biochemical characterization of a prokaryotic phenylalanine ammonia lyase.
|
| |
J Bacteriol,
187,
4286-4289.
|
 |
|
|
|
|
 |
T.Kuzuyama,
J.P.Noel,
and
S.B.Richard
(2005).
Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products.
|
| |
Nature,
435,
983-987.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.S.Winkel
(2004).
Metabolic channeling in plants.
|
| |
Annu Rev Plant Biol,
55,
85.
|
 |
|
|
|
|
 |
J.M.Jez,
R.E.Cahoon,
and
S.Chen
(2004).
Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity.
|
| |
J Biol Chem,
279,
33463-33470.
|
 |
|
|
|
|
 |
J.M.Jez,
and
R.E.Cahoon
(2004).
Kinetic mechanism of glutathione synthetase from Arabidopsis thaliana.
|
| |
J Biol Chem,
279,
42726-42731.
|
 |
|
|
|
|
 |
M.B.Austin,
M.Izumikawa,
M.E.Bowman,
D.W.Udwary,
J.L.Ferrer,
B.S.Moore,
and
J.P.Noel
(2004).
Crystal structure of a bacterial type III polyketide synthase and enzymatic control of reactive polyketide intermediates.
|
| |
J Biol Chem,
279,
45162-45174.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Weid,
J.Ziegler,
and
T.M.Kutchan
(2004).
The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum.
|
| |
Proc Natl Acad Sci U S A,
101,
13957-13962.
|
 |
|
|
|
|
 |
V.Hemleben,
A.Dressel,
B.Epping,
R.Lukacin,
S.Martens,
and
M.Austin
(2004).
Characterization and structural features of a chalcone synthase mutation in a white-flowering line of Matthiola incana R. Br. (Brassicaceae).
|
| |
Plant Mol Biol,
55,
455-465.
|
 |
|
|
|
|
 |
C.D.Reeves
(2003).
The enzymology of combinatorial biosynthesis.
|
| |
Crit Rev Biotechnol,
23,
95.
|
 |
|
|
|
|
 |
I.Abe,
Y.Sano,
Y.Takahashi,
and
H.Noguchi
(2003).
Site-directed mutagenesis of benzalacetone synthase. The role of the Phe215 in plant type III polyketide synthases.
|
| |
J Biol Chem,
278,
25218-25226.
|
 |
|
|
|
|
 |
J.H.Dawe,
C.T.Porter,
J.M.Thornton,
and
A.B.Tabor
(2003).
A template search reveals mechanistic similarities and differences in beta-ketoacyl synthases (KAS) and related enzymes.
|
| |
Proteins,
52,
427-435.
|
 |
|
|
|
|
 |
T.Brautaset,
S.E.Borgos,
H.Sletta,
T.E.Ellingsen,
and
S.B.Zotchev
(2003).
Site-specific mutagenesis and domain substitutions in the loading module of the nystatin polyketide synthase, and their effects on nystatin biosynthesis in Streptomyces noursei.
|
| |
J Biol Chem,
278,
14913-14919.
|
 |
|
|
|
|
 |
A.Kodan,
H.Kuroda,
and
F.Sakai
(2002).
A stilbene synthase from Japanese red pine (Pinus densiflora): implications for phytoalexin accumulation and down-regulation of flavonoid biosynthesis.
|
| |
Proc Natl Acad Sci U S A,
99,
3335-3339.
|
 |
|
|
|
|
 |
B.J.Blacklock,
and
J.G.Jaworski
(2002).
Studies into factors contributing to substrate specificity of membrane-bound 3-ketoacyl-CoA synthases.
|
| |
Eur J Biochem,
269,
4789-4798.
|
 |
|
|
|
|
 |
H.J.Kwon,
W.C.Smith,
A.J.Scharon,
S.H.Hwang,
M.J.Kurth,
and
B.Shen
(2002).
C-O bond formation by polyketide synthases.
|
| |
Science,
297,
1327-1330.
|
 |
|
|
|
|
 |
J.M.Jez,
M.E.Bowman,
and
J.P.Noel
(2002).
Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity.
|
| |
Proc Natl Acad Sci U S A,
99,
5319-5324.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Funa,
Y.Ohnishi,
Y.Ebizuka,
and
S.Horinouchi
(2002).
Properties and substrate specificity of RppA, a chalcone synthase-related polyketide synthase in Streptomyces griseus.
|
| |
J Biol Chem,
277,
4628-4635.
|
 |
|
|
|
|
 |
T.P.Roosild,
S.Miller,
I.R.Booth,
and
S.Choe
(2002).
A mechanism of regulating transmembrane potassium flux through a ligand-mediated conformational switch.
|
| |
Cell,
109,
781-791.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.A.Pfeifer,
and
C.Khosla
(2001).
Biosynthesis of polyketides in heterologous hosts.
|
| |
Microbiol Mol Biol Rev,
65,
106-118.
|
 |
|
|
|
|
 |
B.S.Moore,
and
J.N.Hopke
(2001).
Discovery of a new bacterial polyketide biosynthetic pathway.
|
| |
Chembiochem,
2,
35-38.
|
 |
|
|
|
|
 |
H.Chen,
C.C.Tseng,
B.K.Hubbard,
and
C.T.Walsh
(2001).
Glycopeptide antibiotic biosynthesis: enzymatic assembly of the dedicated amino acid monomer (S)-3,5-dihydroxyphenylglycine.
|
| |
Proc Natl Acad Sci U S A,
98,
14901-14906.
|
 |
|
|
|
|
 |
H.Morita,
H.Noguchi,
J.Schröder,
and
I.Abe
(2001).
Novel polyketides synthesized with a higher plant stilbene synthase.
|
| |
Eur J Biochem,
268,
3759-3766.
|
 |
|
|
|
|
 |
I.Abe,
Y.Takahashi,
H.Morita,
and
H.Noguchi
(2001).
Benzalacetone synthase. A novel polyketide synthase that plays a crucial role in the biosynthesis of phenylbutanones in Rheum palmatum.
|
| |
Eur J Biochem,
268,
3354-3359.
|
 |
|
|
|
|
 |
J.G.Olsen,
A.Kadziola,
P.von Wettstein-Knowles,
M.Siggaard-Andersen,
and
S.Larsen
(2001).
Structures of beta-ketoacyl-acyl carrier protein synthase I complexed with fatty acids elucidate its catalytic machinery.
|
| |
Structure,
9,
233-243.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Ghanevati,
and
J.G.Jaworski
(2001).
Active-site residues of a plant membrane-bound fatty acid elongase beta-ketoacyl-CoA synthase, FAE1 KCS.
|
| |
Biochim Biophys Acta,
1530,
77-85.
|
 |
|
|
|
|
 |
J.D.Leverson,
C.A.Joazeiro,
A.M.Page,
H.Huang,
P.Hieter,
and
T.Hunter
(2000).
The APC11 RING-H2 finger mediates E2-dependent ubiquitination.
|
| |
Mol Biol Cell,
11,
2315-2325.
|
 |
|
|
|
|
 |
J.M.Jez,
M.B.Austin,
J.Ferrer,
M.E.Bowman,
J.Schröder,
and
J.P.Noel
(2000).
Structural control of polyketide formation in plant-specific polyketide synthases.
|
| |
Chem Biol,
7,
919-930.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Springob,
R.Lukacin,
C.Ernwein,
I.Gröning,
and
U.Matern
(2000).
Specificities of functionally expressed chalcone and acridone synthases from Ruta graveolens.
|
| |
Eur J Biochem,
267,
6552-6559.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |