spacer
spacer

PDBsum entry 1tvr

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Aspartyl protease PDB id
1tvr

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
558 a.a. *
427 a.a. *
Ligands
TB9
* Residue conservation analysis
PDB id:
1tvr
Name: Aspartyl protease
Title: HIV-1 rt/9-cl tibo
Structure: Reverse transcriptase. Chain: a. Engineered: yes. Mutation: yes. Reverse transcriptase. Chain: b. Engineered: yes. Mutation: yes
Source: Human immunodeficiency virus type 1 (clone 12). Organism_taxid: 11679. Strain: bh10. Cell_line: 293. Atcc: accession number 1065288. Expressed in: escherichia coli. Expression_system_taxid: 562. Other_details: human immunodeficiency virus type 1 (HIV-1) subcloned from bh10 isolate. Expressed and processed by bacterial escherichia
Biol. unit: Dimer (from PQS)
Resolution:
3.00Å     R-factor:   0.259    
Authors: K.Das,J.Ding,Y.Hsiou,E.Arnold
Key ref:
K.Das et al. (1996). Crystal structures of 8-Cl and 9-Cl TIBO complexed with wild-type HIV-1 RT and 8-Cl TIBO complexed with the Tyr181Cys HIV-1 RT drug-resistant mutant. J Mol Biol, 264, 1085-1100. PubMed id: 9000632 DOI: 10.1006/jmbi.1996.0698
Date:
16-Apr-96     Release date:   12-Mar-97    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P03366  (POL_HV1B1) -  Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BH10)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1447 a.a.
558 a.a.*
Protein chain
Pfam   ArchSchema ?
P03366  (POL_HV1B1) -  Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BH10)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1447 a.a.
427 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 1: Chains A, B: E.C.2.7.7.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: Chains A, B: E.C.2.7.7.49  - RNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 3: Chains A, B: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 4: Chains A, B: E.C.3.1.-.-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 5: Chains A, B: E.C.3.1.13.2  - exoribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
   Enzyme class 6: Chains A, B: E.C.3.1.26.13  - retroviral ribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 7: Chains A, B: E.C.3.4.23.16  - HIV-1 retropepsin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1006/jmbi.1996.0698 J Mol Biol 264:1085-1100 (1996)
PubMed id: 9000632  
 
 
Crystal structures of 8-Cl and 9-Cl TIBO complexed with wild-type HIV-1 RT and 8-Cl TIBO complexed with the Tyr181Cys HIV-1 RT drug-resistant mutant.
K.Das, J.Ding, Y.Hsiou, A.D.Clark, H.Moereels, L.Koymans, K.Andries, R.Pauwels, P.A.Janssen, P.L.Boyer, P.Clark, R.H.Smith, M.B.Kroeger Smith, C.J.Michejda, S.H.Hughes, E.Arnold.
 
  ABSTRACT  
 
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is an important target for chemotherapeutic agents used in the treatment of AIDS; the TIBO compounds are potent non-nucleoside inhibitors of HIV-1 RT (NNRTIs). Crystal structures of HIV-1 RT complexed with 8-Cl TIBO (R86183, IC50 = 4.6 nM) and 9-Cl TIBO (R82913, IC50 = 33 nM) have been determined at 3.0 A resolution. Mutant HIV-1 RT, containing Cys in place of Tyr at position 181 (Tyrl81Cys), is highly resistant to many NNRTIs and HIV-1 variants containing this mutation have been selected in both cell culture and clinical trials. We also report the crystal structure of Tyrl81Cys HIV-1 RT in complex with 8-Cl TIBO (IC50 = 130 nM) determined at 3.2 A resolution. Averaging of the electron density maps computed for different HIV-1 RT/NNRTI complexes and from diffraction datasets obtained using a synchrotron source from frozen (-165 degrees C) and cooled (-10 degrees C) crystals of the same complex was employed to improve the quality of electron density maps and to reduce model bias. The overall locations and conformations of the bound inhibitors in the complexes containing wild-type HIV-1 RT and the two TIBO inhibitors are very similar, as are the overall shapes and volumes of the non-nucleoside inhibitor-binding pocket (NNIBP). The major differences between the two wild-type HIV-1 RT/TIBO complexes occur in the vicinity of the TIBO chlorine substituents and involve the polypeptide segments around the beta5-beta6 connecting loop (residues 95 to 105) and the beta13-beta14 hairpin (residues 235 and 236). In all known structures of HIV-1 RT/NNRTI complexes, including these two, the position of the beta12-beta13 hairpin or the "primer grip" is significantly displaced relative to the position in the structure of HIV-1 RT complexed with a double-stranded DNA and in unliganded HIV-1 RT structures. Since the primer grip helps to position the template-primer, this displacement suggests that binding of NNRTIs would affect the relative positions of the primer terminus and the polymerase active site. This could explain biochemical data showing that NNRTI binding to HIV-1 RT reduces efficiency of the chemical step of DNA polymerization, but does not prevent binding of either dNTPs or DNA. When the structure of the Tyr181Cys mutant HIV-1 RT in complex with 8-Cl TIBO is compared with the corresponding structure containing wild-type HIV-1 RT, the overall conformations of Tyr181Cys and wild-type HIV-1 RT and of the 8-Cl TIBO inhibitors are very similar. Some positional changes in the polypeptide backbone of the beta6-beta10-beta9 sheet containing residue 181 are observed when the Tyr181Cys and wild-type complexes are compared, particularlty near residue Val179 of beta9. In the p51 subunit, the Cys181 side-chain is oriented in a similar direction to the Tyr181 side-chain in the wild-type complex. However, the electron density corresponding to the sulfur of the Cys181 side-chain in the p66 subunit is very weak, indicating that the thiol group is disordered, presumably because there is no significant interaction with either 8-Cl TIBO or nearby amino acid residues. In the mutant complex, there are slight rearrangements of the side-chains of other amino acid residues in the NNIBP and of the flexible dimethylallyl group of 8-Cl TIBO; these conformational changes could potentially compensate for the interactions that were lost when the relatively large tyrosine at position 181 was replaced by a less bulky cysteine residue. In the corresponding wild-type complex, Tyr181 iin the p66 subunit has significant interactions with the bound inhibitor and the position of the Tyr181 side-chain is well defined in both subunits. Apparently the Tyr181 --> Cys mutation eliminates favorable contacts of the aromatic ring of the tyrosine and the bou
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Chemical structures with the numbering scheme used and distances (E3.6 Å ) between atoms of the TIBO inhibitor and of the amino acid residues of the NNIBP for: (a) 8-Cl TIBO (R86183, tivirapine) complexed with wild- type HIV-1 RT; (b) 8-Cl TIBO complexed with Tyr181Cys mutant HIV-1 RT; and (c) 9-Cl TIBO (R82913) complexed with wild-type HIV-1 RT. An NNIBP residue is shown only if atoms of that residue are E3.6 Å from an inhibitor atom with the exception of Cys181 in (b). The wings I and II portions of the inhibitors in the butterfly-like anal- ogy for NNRTIs (Ding et al., 1995a) are indicated here and in sub- sequent Figures by Roman nu- merals I and II. The dotted line in (a) indicates the subdivision of atoms between wings I and II.
Figure 5.
Figure 5. A stereoview of the superposition (based on the C a atoms of the b6-b10-b9 sheet) of the HIV-1 RT/DNA/Fab complex structure (in gray) (Jacobo-Molina et al., 1993) on the HIV-1 RT/9-Cl TIBO complex structure (in cyan) in the regions near the NNIBP and the polymerase active site showing the disposition of the b12-b13-b14 sheet containing the primer grip. Bound 9-Cl TIBO in the HIV-1 RT/9-Cl TIBO complex is shown in gold and the two 3'-terminal nucleotides 17 and 18 of the primer strand in the HIV-1 RT/DNA/Fab complex are shown with a yellow ball-and-stick model. The broken line represents interactions between the primer grip and the primer terminal phosphate in the HIV-1 RT/DNA/Fab complex and the arrow indicates the movement of the primer grip that accompanies NNRTI binding.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (1996, 264, 1085-1100) copyright 1996.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22421880 A.Engelman, and P.Cherepanov (2012).
The structural biology of HIV-1: mechanistic and therapeutic insights.
  Nat Rev Microbiol, 10, 279-290.  
22266819 K.Das, S.E.Martinez, J.D.Bauman, and E.Arnold (2012).
HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism.
  Nat Struct Mol Biol, 19, 253-259.
PDB codes: 3v4i 3v6d 3v81
21502494 M.E.Sampah, L.Shen, B.L.Jilek, and R.F.Siliciano (2011).
Dose-response curve slope is a missing dimension in the analysis of HIV-1 drug resistance.
  Proc Natl Acad Sci U S A, 108, 7613-7618.  
21088701 K.A.Delviks-Frankenberry, G.N.Nikolenko, and V.K.Pathak (2010).
The "Connection" Between HIV Drug Resistance and RNase H.
  Viruses, 2, 1476-1503.  
20376302 K.Singh, B.Marchand, K.A.Kirby, E.Michailidis, and S.G.Sarafianos (2010).
Structural Aspects of Drug Resistance and Inhibition of HIV-1 Reverse Transcriptase.
  Viruses, 2, 606-638.  
19324058 A.Ivetac, and J.A.McCammon (2009).
Elucidating the inhibition mechanism of HIV-1 non-nucleoside reverse transcriptase inhibitors through multicopy molecular dynamics simulations.
  J Mol Biol, 388, 644-658.  
20046995 J.L.Knight, and C.L.Brooks (2009).
Validating CHARMM parameters and exploring charge distribution rules in structure-based drug design.
  J Chem Theory Comput, 5, 1680-1691.  
19022262 S.G.Sarafianos, B.Marchand, K.Das, D.M.Himmel, M.A.Parniak, S.H.Hughes, and E.Arnold (2009).
Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition.
  J Mol Biol, 385, 693-713.  
18351618 N.S.Sapre, N.Pancholi, S.Gupta, and N.Sapre (2008).
Computational modeling of tetrahydroimidazo-[4,5,1-jk][1,4]-benzodiazepinone derivatives: an atomistic drug design approach using Kier-Hall electrotopological state (E-state) indices.
  J Comput Chem, 29, 1699-1706.  
18163186 N.S.Sapre, S.Gupta, N.Pancholi, and N.Sapre (2008).
Molecular docking studies on tetrahydroimidazo-[4,5,1-jk][1,4]-benzodiazepinone (TIBO) derivatives as HIV-1 NNRT inhibitors.
  J Comput Aided Mol Des, 22, 69-80.  
18642033 N.S.Sapre, S.Gupta, N.Pancholi, and N.Sapre (2008).
Data mining using template-based molecular docking on tetrahydroimidazo-[4,5,1-jk][1,4]-benzodiazepinone (TIBO) derivatives as HIV-1RT inhibitors.
  J Mol Model, 14, 1009-1021.  
18202455 D.Sengupta, D.Verma, and P.K.Naik (2007).
Docking mode of delvardine and its analogues into the p66 domain of HIV-1 reverse transcriptase: screening using molecular mechanics-generalized born/surface area and absorption, distribution, metabolism and excretion properties.
  J Biosci, 32, 1307-1316.  
17663538 M.L.Morningstar, T.Roth, D.W.Farnsworth, M.K.Smith, K.Watson, R.W.Buckheit, K.Das, W.Zhang, E.Arnold, J.G.Julias, S.H.Hughes, and C.J.Michejda (2007).
Synthesis, biological activity, and crystal structure of potent nonnucleoside inhibitors of HIV-1 reverse transcriptase that retain activity against mutant forms of the enzyme.
  J Med Chem, 50, 4003-4015.  
17038335 A.Mescalchin, W.Wünsche, S.D.Laufer, D.Grohmann, T.Restle, and G.Sczakiel (2006).
Specific binding of a hexanucleotide to HIV-1 reverse transcriptase: a novel class of bioactive molecules.
  Nucleic Acids Res, 34, 5631-5637.  
  17184135 D.M.Himmel, S.G.Sarafianos, S.Dharmasena, M.M.Hossain, K.McCoy-Simandle, T.Ilina, A.D.Clark, J.L.Knight, J.G.Julias, P.K.Clark, K.Krogh-Jespersen, R.M.Levy, S.H.Hughes, M.A.Parniak, and E.Arnold (2006).
HIV-1 reverse transcriptase structure with RNase H inhibitor dihydroxy benzoyl naphthyl hydrazone bound at a novel site.
  ACS Chem Biol, 1, 702-712.
PDB code: 2i5j
16911530 J.Ren, C.E.Nichols, A.Stamp, P.P.Chamberlain, R.Ferris, K.L.Weaver, S.A.Short, and D.K.Stammers (2006).
Structural insights into mechanisms of non-nucleoside drug resistance for HIV-1 reverse transcriptases mutated at codons 101 or 138.
  FEBS J, 273, 3850-3860.
PDB codes: 2hnd 2hny 2hnz
16892340 R.Di Santo, R.Costi, M.Artico, R.Ragno, A.Lavecchia, E.Novellino, E.Gavuzzo, F.La Torre, R.Cirilli, R.Cancio, and G.Maga (2006).
Design, synthesis, biological evaluation, and molecular modeling studies of TIBO-like cyclic sulfones as non-nucleoside HIV-1 reverse transcriptase inhibitors.
  ChemMedChem, 1, 82-95.  
15851032 D.Tu, G.Blaha, P.B.Moore, and T.A.Steitz (2005).
Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance.
  Cell, 121, 257-270.
PDB codes: 1yhq 1yi2 1yij 1yit 1yj9 1yjn 1yjw
16245320 S.Saen-oon, M.Kuno, and S.Hannongbua (2005).
Binding energy analysis for wild-type and Y181C mutant HIV-1 RT/8-Cl TIBO complex structures: quantum chemical calculations based on the ONIOM method.
  Proteins, 61, 859-869.  
14757837 A.M.Sismour, S.Lutz, J.H.Park, M.J.Lutz, P.L.Boyer, S.H.Hughes, and S.A.Benner (2004).
PCR amplification of DNA containing non-standard base pairs by variants of reverse transcriptase from Human Immunodeficiency Virus-1.
  Nucleic Acids Res, 32, 728-735.  
15016861 E.N.Peletskaya, A.A.Kogon, S.Tuske, E.Arnold, and S.H.Hughes (2004).
Nonnucleoside inhibitor binding affects the interactions of the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase with DNA.
  J Virol, 78, 3387-3397.
PDB code: 1r0a
15249669 J.D.Pata, W.G.Stirtan, S.W.Goldstein, and T.A.Steitz (2004).
Structure of HIV-1 reverse transcriptase bound to an inhibitor active against mutant reverse transcriptases resistant to other nonnucleoside inhibitors.
  Proc Natl Acad Sci U S A, 101, 10548-10553.
PDB code: 1tv6
15482234 M.Götte (2004).
Inhibition of HIV-1 reverse transcription: basic principles of drug action and resistance.
  Expert Rev Anti Infect Ther, 2, 707-716.  
15544453 N.Sluis-Cremer, N.A.Temiz, and I.Bahar (2004).
Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding.
  Curr HIV Res, 2, 323-332.  
15564466 Z.Ambrose, V.Boltz, S.Palmer, J.M.Coffin, S.H.Hughes, and V.N.Kewalramani (2004).
In vitro characterization of a simian immunodeficiency virus-human immunodeficiency virus (HIV) chimera expressing HIV type 1 reverse transcriptase to study antiviral resistance in pigtail macaques.
  J Virol, 78, 13553-13561.  
15382241 Z.Zhou, and J.D.Madura (2004).
Relative free energy of binding and binding mode calculations of HIV-1 RT inhibitors based on dock-MM-PB/GS.
  Proteins, 57, 493-503.  
12770866 L.Shen, J.Shen, X.Luo, F.Cheng, Y.Xu, K.Chen, E.Arnold, J.Ding, and H.Jiang (2003).
Steered molecular dynamics simulation on the binding of NNRTI to HIV-1 RT.
  Biophys J, 84, 3547-3563.  
12931006 N.Sluis-Cremer, E.Kempner, and M.A.Parniak (2003).
Structure-activity relationships in HIV-1 reverse transcriptase revealed by radiation target analysis.
  Protein Sci, 12, 2081-2086.  
14654687 X.Xu, Y.Liu, S.Weiss, E.Arnold, S.G.Sarafianos, and J.Ding (2003).
Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design.
  Nucleic Acids Res, 31, 7117-7130.
PDB code: 1o5s
12150912 J.L.Hansen, J.A.Ippolito, N.Ban, P.Nissen, P.B.Moore, and T.A.Steitz (2002).
The structures of four macrolide antibiotics bound to the large ribosomal subunit.
  Mol Cell, 10, 117-128.
PDB codes: 1k8a 1k9m 1kd1 1m1k
11895437 J.Lindberg, S.Sigurdsson, S.Löwgren, H.O.Andersson, C.Sahlberg, R.Noréen, K.Fridborg, H.Zhang, and T.Unge (2002).
Structural basis for the inhibitory efficacy of efavirenz (DMP-266), MSC194 and PNU142721 towards the HIV-1 RT K103N mutant.
  Eur J Biochem, 269, 1670-1677.
PDB codes: 1ikv 1ikw 1ikx 1iky
12386343 J.Ren, L.E.Bird, P.P.Chamberlain, G.B.Stewart-Jones, D.I.Stuart, and D.K.Stammers (2002).
Structure of HIV-2 reverse transcriptase at 2.35-A resolution and the mechanism of resistance to non-nucleoside inhibitors.
  Proc Natl Acad Sci U S A, 99, 14410-14415.
PDB code: 1mu2
11939780 J.W.Rausch, D.Lener, J.T.Miller, J.G.Julias, S.H.Hughes, and S.F.Le Grice (2002).
Altering the RNase H primer grip of human immunodeficiency virus reverse transcriptase modifies cleavage specificity.
  Biochemistry, 41, 4856-4865.  
12211016 N.A.Temiz, and I.Bahar (2002).
Inhibitor binding alters the directions of domain motions in HIV-1 reverse transcriptase.
  Proteins, 49, 61-70.  
12392542 N.Sluis-Cremer, and G.Tachedjian (2002).
Modulation of the oligomeric structures of HIV-1 retroviral enzymes by synthetic peptides and small molecules.
  Eur J Biochem, 269, 5103-5111.  
12214313 P.Constans (2002).
Linear scaling approaches to quantum macromolecular similarity: evaluating the similarity function.
  J Comput Chem, 23, 1305-1313.  
11533206 E.N.Peletskaya, P.L.Boyer, A.A.Kogon, P.Clark, H.Kroth, J.M.Sayer, D.M.Jerina, and S.H.Hughes (2001).
Cross-linking of the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase to template-primer.
  J Virol, 75, 9435-9445.  
11416202 G.Tachedjian, M.Orlova, S.G.Sarafianos, E.Arnold, and S.P.Goff (2001).
Nonnucleoside reverse transcriptase inhibitors are chemical enhancers of dimerization of the HIV type 1 reverse transcriptase.
  Proc Natl Acad Sci U S A, 98, 7188-7193.  
11687495 M.A.Shogren-Knaak, P.J.Alaimo, and K.M.Shokat (2001).
Recent advances in chemical approaches to the study of biological systems.
  Annu Rev Cell Dev Biol, 17, 405-433.  
11000239 C.S.Snyder, and M.J.Roth (2000).
Comparison of second-strand transfer requirements and RNase H cleavages catalyzed by human immunodeficiency virus type 1 reverse transcriptase (RT) and E478Q RT.
  J Virol, 74, 9668-9679.  
10801473 H.Huang, S.C.Harrison, and G.L.Verdine (2000).
Trapping of a catalytic HIV reverse transcriptase*template:primer complex through a disulfide bond.
  Chem Biol, 7, 355-364.  
10723025 H.Jonckheere, J.Anné, and E.De Clercq (2000).
The HIV-1 reverse transcription (RT) process as target for RT inhibitors.
  Med Res Rev, 20, 129-154.  
11087377 W.R.Davis, J.Tomsho, S.Nikam, E.M.Cook, D.Somand, and J.A.Peliska (2000).
Inhibition of HIV-1 reverse transcriptase-catalyzed DNA strand transfer reactions by 4-chlorophenylhydrazone of mesoxalic acid.
  Biochemistry, 39, 14279-14291.  
10021419 A.Marx, M.Spichty, M.Amacker, U.Schwitter, U.Hübscher, T.A.Bickle, G.Maga, and B.Giese (1999).
Probing interactions between HIV-1 reverse transcriptase and its DNA substrate with backbone-modified nucleotides.
  Chem Biol, 6, 111-116.  
10047577 J.Jäger, and J.D.Pata (1999).
Getting a grip: polymerases and their substrate complexes.
  Curr Opin Struct Biol, 9, 21-28.  
11504469 L.T.Bacheler (1999).
Resistance to non-nucleoside inhibitors of HIV-1 reverse transcriptase.
  Drug Resist Updat, 2, 56-67.  
10328268 M.Madrid, A.Jacobo-Molina, J.Ding, and E.Arnold (1999).
Major subdomain rearrangement in HIV-1 reverse transcriptase simulated by molecular dynamics.
  Proteins, 35, 332-337.  
9811899 D.V.Nissley, P.L.Boyer, D.J.Garfinkel, S.H.Hughes, and J.N.Strathern (1998).
Hybrid Ty1/HIV-1 elements used to detect inhibitors and monitor the activity of HIV-1 reverse transcriptase.
  Proc Natl Acad Sci U S A, 95, 13905-13910.  
  9835518 E.A.Sudbeck, C.Mao, R.Vig, T.K.Venkatachalam, L.Tuel-Ahlgren, and F.M.Uckun (1998).
Structure-based design of novel dihydroalkoxybenzyloxopyrimidine derivatives as potent nonnucleoside inhibitors of the human immunodeficiency virus reverse transcriptase.
  Antimicrob Agents Chemother, 42, 3225-3233.  
  9835502 V.Miller, M.P.de Béthune, A.Kober, M.Stürmer, K.Hertogs, R.Pauwels, P.Stoffels, and S.Staszewski (1998).
Patterns of resistance and cross-resistance to human immunodeficiency virus type 1 reverse transcriptase inhibitors in patients treated with the nonnucleoside reverse transcriptase inhibitor loviride.
  Antimicrob Agents Chemother, 42, 3123-3129.  
9804810 W.A.Beard, K.Bebenek, T.A.Darden, L.Li, R.Prasad, T.A.Kunkel, and S.H.Wilson (1998).
Vertical-scanning mutagenesis of a critical tryptophan in the minor groove binding track of HIV-1 reverse transcriptase. Molecular nature of polymerase-nucleic acid interactions.
  J Biol Chem, 273, 30435-30442.  
9354757 J.Ding, S.H.Hughes, and E.Arnold (1997).
Protein-nucleic acid interactions and DNA conformation in a complex of human immunodeficiency virus type 1 reverse transcriptase with a double-stranded DNA template-primer.
  Biopolymers, 44, 125-138.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer