4ot9 Citations

p100/IκBδ sequesters and inhibits NF-κB through kappaBsome formation.

Proc Natl Acad Sci U S A 111 15946-51 (2014)
Cited: 35 times
EuropePMC logo PMID: 25349408

Abstract

Degradation of I kappaB (κB) inhibitors is critical to activation of dimeric transcription factors of the NF-κB family. There are two types of IκB inhibitors: the prototypical IκBs (IκBα, IκBβ, and IκBε), which form low-molecular-weight (MW) IκB:NF-κB complexes that are highly stable, and the precursor IκBs (p105/IκBγ and p100/IκBδ), which form high-MW assemblies, thereby suppressing the activity of nearly half the cellular NF-κB [Savinova OV, Hoffmann A, Ghosh G (2009) Mol Cell 34(5):591-602]. The identity of these larger assemblies and their distinct roles in NF-κB inhibition are unknown. Using the X-ray crystal structure of the C-terminal domain of p100/IκBδ and functional analysis of structure-guided mutants, we show that p100/IκBδ forms high-MW (IκBδ)4:(NF-κB)4 complexes, referred to as kappaBsomes. These IκBδ-centric "kappaBsomes" are distinct from the 2:2 complexes formed by IκBγ. The stability of the IκBδ tetramer is enhanced upon association with NF-κB, and hence the high-MW assembly is essential for NF-κB inhibition. Furthermore, weakening of the IκBδ tetramer impairs both its association with NF-κB subunits and stimulus-dependent processing into p52. The unique ability of p100/IκBδ to stably interact with all NF-κB subunits by forming kappaBsomes demonstrates its importance in sequestering NF-κB subunits and releasing them as dictated by specific stimuli for developmental programs.

Reviews - 4ot9 mentioned but not cited (1)

  1. Designed Ankyrin Repeat Proteins: A New Class of Viral Entry Inhibitors. Walser M, Mayor J, Rothenberger S. Viruses 14 2242 (2022)

Articles - 4ot9 mentioned but not cited (3)

  1. p100/IκBδ sequesters and inhibits NF-κB through kappaBsome formation. Tao Z, Fusco A, Huang DB, Gupta K, Young Kim D, Ware CF, Van Duyne GD, Ghosh G. Proc Natl Acad Sci U S A 111 15946-15951 (2014)
  2. Elemental Analysis, Phytochemical Screening and Evaluation of Antioxidant, Antibacterial and Anticancer Activity of Pleurotus ostreatus through In Vitro and In Silico Approaches. Mishra V, Tomar S, Yadav P, Vishwakarma S, Singh MP. Metabolites 12 821 (2022)
  3. The gut-joint axis mediates the TNF-induced RA process and PBMT therapeutic effects through the metabolites of gut microbiota. Meng Q, Lin M, Song W, Wu J, Cao G, Huang P, Su Z, Gu W, Deng X, Xu P, Yang Y, Li H, Liu H, Zhang F. Gut Microbes 15 2281382 (2023)


Reviews citing this publication (12)

  1. Role of the NFκB-signaling pathway in cancer. Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, Tian Y, Liu L, Su M, Wang H, Cao D, Liao Q. Onco Targets Ther 11 2063-2073 (2018)
  2. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR. Genes Dis 8 287-297 (2021)
  3. NF-κB Pathways in the Pathogenesis of Multiple Sclerosis and the Therapeutic Implications. Leibowitz SM, Yan J. Front Mol Neurosci 9 84 (2016)
  4. Inhibitory feedback control of NF-κB signalling in health and disease. Prescott JA, Mitchell JP, Cook SJ. Biochem J 478 2619-2664 (2021)
  5. The NF-κB Activating Pathways in Multiple Myeloma. Roy P, Sarkar UA, Basak S. Biomedicines 6 E59 (2018)
  6. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse. Miraghazadeh B, Cook MC. Front Immunol 9 613 (2018)
  7. Noncanonical NF-κB in Cancer. Tegowski M, Baldwin A. Biomedicines 6 E66 (2018)
  8. Signaling Crosstalk Mechanisms That May Fine-Tune Pathogen-Responsive NFκB. Adelaja A, Hoffmann A. Front Immunol 10 433 (2019)
  9. Origin of the Functional Distinctiveness of NF-κB/p52. Ghosh G, Wang VY. Front Cell Dev Biol 9 764164 (2021)
  10. NF-κB in control of regulatory T cell development, identity, and function. Hövelmeyer N, Schmidt-Supprian M, Ohnmacht C. J Mol Med (Berl) 100 985-995 (2022)
  11. Processing stimulus dynamics by the NF-κB network in single cells. Son M, Wang AG, Keisham B, Tay S. Exp Mol Med 55 2531-2540 (2023)
  12. The NFκB signaling system in the generation of B-cell subsets: from germinal center B cells to memory B cells and plasma cells. Roy K, Chakraborty M, Kumar A, Manna AK, Roy NS. Front Immunol 14 1185597 (2023)

Articles citing this publication (19)

  1. Loss-of-function nuclear factor κB subunit 1 (NFKB1) variants are the most common monogenic cause of common variable immunodeficiency in Europeans. Tuijnenburg P, Lango Allen H, Burns SO, Greene D, Jansen MH, Staples E, Stephens J, Carss KJ, Biasci D, Baxendale H, Thomas M, Chandra A, Kiani-Alikhan S, Longhurst HJ, Seneviratne SL, Oksenhendler E, Simeoni I, de Bree GJ, Tool ATJ, van Leeuwen EMM, Ebberink EHTM, Meijer AB, Tuna S, Whitehorn D, Brown M, Turro E, Thrasher AJ, Smith KGC, Thaventhiran JE, Kuijpers TW, NIHR BioResource–Rare Diseases Consortium. J Allergy Clin Immunol 142 1285-1296 (2018)
  2. Stimulus-selective crosstalk via the NF-κB signaling system reinforces innate immune response to alleviate gut infection. Banoth B, Chatterjee B, Vijayaragavan B, Prasad MV, Roy P, Basak S. Elife 4 (2015)
  3. Downregulation of USP4 Promotes Activation of Microglia and Subsequent Neuronal Inflammation in Rat Spinal Cord After Injury. Jiang X, Yu M, Ou Y, Cao Y, Yao Y, Cai P, Zhang F. Neurochem Res 42 3245-3253 (2017)
  4. A TNF-p100 pathway subverts noncanonical NF-κB signaling in inflamed secondary lymphoid organs. Mukherjee T, Chatterjee B, Dhar A, Bais SS, Chawla M, Roy P, George A, Bal V, Rath S, Basak S. EMBO J 36 3501-3516 (2017)
  5. An epithelial Nfkb2 pathway exacerbates intestinal inflammation by supplementing latent RelA dimers to the canonical NF-κB module. Chawla M, Mukherjee T, Deka A, Chatterjee B, Sarkar UA, Singh AK, Kedia S, Lum J, Dhillon MK, Banoth B, Biswas SK, Ahuja V, Basak S. Proc Natl Acad Sci U S A 118 e2024828118 (2021)
  6. Carbon dioxide-dependent regulation of NF-κB family members RelB and p100 gives molecular insight into CO2-dependent immune regulation. Keogh CE, Scholz CC, Rodriguez J, Selfridge AC, von Kriegsheim A, Cummins EP. J Biol Chem 292 11561-11571 (2017)
  7. The NF-κB subunit RelB controls p100 processing by competing with the kinases NIK and IKK1 for binding to p100. Fusco AJ, Mazumder A, Wang VY, Tao Z, Ware C, Ghosh G. Sci Signal 9 ra96 (2016)
  8. Nfkb2 variants reveal a p100-degradation threshold that defines autoimmune susceptibility. Wirasinha RC, Davies AR, Srivastava M, Sheridan JM, Sng XYX, Delmonte OM, Dobbs K, Loh KL, Miosge LA, Lee CE, Chand R, Chan A, Yap JY, Keller MD, Chen K, Rossjohn J, La Gruta NL, Vinuesa CG, Reid HH, Lionakis MS, Notarangelo LD, Gray DHD, Goodnow CC, Cook MC, Daley SR. J Exp Med 218 e20200476 (2021)
  9. Role of NF-kappaB2-p100 in regulatory T cell homeostasis and activation. Dhar A, Chawla M, Chattopadhyay S, Oswal N, Umar D, Gupta S, Bal V, Rath S, George A, Arimbasseri GA, Basak S. Sci Rep 9 13867 (2019)
  10. TNFSF14/LIGHT, a Non-Canonical NF-κB Stimulus, Induces the HIF Pathway. D'Ignazio L, Batie M, Rocha S. Cells 7 E102 (2018)
  11. A Novel Monoallelic Nonsense Mutation in the NFKB2 Gene Does Not Cause a Clinical Manifestation. Kotlinowski J, Bukowska-Strakova K, Koppolu A, Kosińska J, Pydyn N, Stawinski P, Wilamowski M, Nowak W, Józkowicz A, Baran J, Płoski R, Jura J. Front Genet 10 140 (2019)
  12. RNA-Seq Transcriptome Analysis Reveals Long Terminal Repeat Retrotransposon Modulation in Human Peripheral Blood Mononuclear Cells after In Vivo Lipopolysaccharide Injection. Pisano MP, Tabone O, Bodinier M, Grandi N, Textoris J, Mallet F, Tramontano E. J Virol 94 e00587-20 (2020)
  13. Immune Differentiation Regulator p100 Tunes NF-κB Responses to TNF. Chatterjee B, Roy P, Sarkar UA, Zhao M, Ratra Y, Singh A, Chawla M, De S, Gomes J, Sen R, Basak S. Front Immunol 10 997 (2019)
  14. Substrate complex competition is a regulatory motif that allows NFκB RelA to license but not amplify NFκB RelB. Mitchell S, Hoffmann A. Proc Natl Acad Sci U S A 116 10592-10597 (2019)
  15. TNF-α/NF-κB signaling epigenetically represses PSD4 transcription to promote alcohol-related hepatocellular carcinoma progression. Shi J, Song S, Li S, Zhang K, Lan Y, Li Y. Cancer Med 10 3346-3357 (2021)
  16. p52 signaling promotes cellular senescence. Bernal GM, Wu L, Voce DJ, Weichselbaum RR, Yamini B. Cell Biosci 12 43 (2022)
  17. Differential dysregulation of β-TrCP1 and -2 by HIV-1 Vpu leads to inhibition of canonical and non-canonical NF-κB pathways in infected cells. Pickering S, Sumner J, Kerridge C, Perera M, Neil S. mBio 14 e0329322 (2023)
  18. A Kinase Assay for Measuring the Activity of the NIK-IKK1 Complex Induced via the Noncanonical NF-κB Pathway. Mukherjee T, Ratra Y, Banoth B, Deka A, Polley S, Basak S. Methods Mol Biol 2366 165-181 (2021)
  19. The preliminary study suggests an association between NF-ĸB pathway activation and increased plasma 20S proteasome activity in intracranial aneurysm patients. Kamińska J, Tylicka M, Sutkowska K, Gacuta KM, Sawicka MM, Kowalewska E, Ćwiklińska-Dworakowska M, Maciejczyk M, Łysoń T, Kornhuber J, Lewczuk P, Matowicka-Karna J, Koper-Lenkiewicz OM. Sci Rep 14 3941 (2024)