2x4m Citations

An active site water network in the plasminogen activator pla from Yersinia pestis.

Structure 18 809-18 (2010)
Related entries: 2x55, 2x56

Cited: 32 times
EuropePMC logo PMID: 20637417

Abstract

The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 A. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

Articles - 2x4m mentioned but not cited (7)

  1. Discovery of Novel Leptospirosis Vaccine Candidates Using Reverse and Structural Vaccinology. Grassmann AA, Grassmann AA, Kremer FS, Dos Santos JC, Souza JD, Pinto LDS, McBride AJA. Front Immunol 8 463 (2017)
  2. Structural basis for activation of an integral membrane protease by lipopolysaccharide. Eren E, van den Berg B. J Biol Chem 287 23971-23976 (2012)
  3. Screening of anti-Acinetobacter baumannii phytochemicals, based on the potential inhibitory effect on OmpA and OmpW functions. Shahryari S, Mohammadnejad P, Noghabi KA. R Soc Open Sci 8 201652 (2021)
  4. Two Isoforms of Yersinia pestis Plasminogen Activator Pla: Intraspecies Distribution, Intrinsic Disorder Propensity, and Contribution to Virulence. Dentovskaya SV, Platonov ME, Svetoch TE, Kopylov PK, Kombarova TI, Ivanov SA, Shaikhutdinova RZ, Kolombet LV, Chauhan S, Ablamunits VG, Motin VL, Uversky VN, Anisimov AP. PLoS One 11 e0168089 (2016)
  5. Molecular adaptation of a plant-bacterium outer membrane protease towards plague virulence factor Pla. Haiko J, Laakkonen L, Westerlund-Wikström B, Korhonen TK. BMC Evol Biol 11 43 (2011)
  6. A graph-theoretic approach for classification and structure prediction of transmembrane β-barrel proteins. Tran Vdu T, Chassignet P, Sheikh S, Steyaert JM. BMC Genomics 13 Suppl 2 S5 (2012)
  7. PPS: A computing engine to find Palindromes in all Protein sequences. Ahmed Z, Gurusaran M, Narayana P, Kumar KS, Mohanapriya J, Vaishnavi MK, Sekar K. Bioinformation 10 48-51 (2014)


Reviews citing this publication (7)

  1. Emerging Diversity in Lipid-Protein Interactions. Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Chem Rev 119 5775-5848 (2019)
  2. Yersinia infection tools-characterization of structure and function of adhesins. Mikula KM, Kolodziejczyk R, Goldman A. Front Cell Infect Microbiol 2 169 (2012)
  3. Fibrinolytic and coagulative activities of Yersinia pestis. Korhonen TK, Haiko J, Laakkonen L, Järvinen HM, Westerlund-Wikström B. Front Cell Infect Microbiol 3 35 (2013)
  4. Yersinia adhesins: An arsenal for infection. Chauhan N, Wrobel A, Skurnik M, Leo JC. Proteomics Clin Appl 10 949-963 (2016)
  5. Yersinia pestis Plasminogen Activator. Sebbane F, Uversky VN, Anisimov AP. Biomolecules 10 E1554 (2020)
  6. Structural basis for catalysis at the membrane-water interface. Dufrisne MB, Petrou VI, Clarke OB, Mancia F. Biochim Biophys Acta Mol Cell Biol Lipids 1862 1368-1385 (2017)
  7. Involvement of Bacterial Extracellular Membrane Nanovesicles in Infectious Diseases and Their Application in Medicine. Lusta KA, Poznyak AV, Litvinova L, Poggio P, Orekhov AN, Melnichenko AA. Pharmaceutics 14 2597 (2022)

Articles citing this publication (18)

  1. Structural engineering of a phage lysin that targets gram-negative pathogens. Lukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N, Fairman JW, Noinaj N, Kirby TL, Henderson JP, Steven AC, Hinnebusch BJ, Buchanan SK. Proc Natl Acad Sci U S A 109 9857-9862 (2012)
  2. Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis. Arunmanee W, Pathania M, Solovyova AS, Le Brun AP, Ridley H, Baslé A, van den Berg B, Lakey JH. Proc Natl Acad Sci U S A 113 E5034-43 (2016)
  3. OmpT outer membrane proteases of enterohemorrhagic and enteropathogenic Escherichia coli contribute differently to the degradation of human LL-37. Thomassin JL, Brannon JR, Gibbs BF, Gruenheid S, Le Moual H. Infect Immun 80 483-492 (2012)
  4. Production of outer membrane vesicles by the plague pathogen Yersinia pestis. Eddy JL, Gielda LM, Caulfield AJ, Rangel SM, Lathem WW. PLoS One 9 e107002 (2014)
  5. The Xanthomonas Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles. Bahar O, Pruitt R, Luu DD, Schwessinger B, Daudi A, Liu F, Ruan R, Fontaine-Bodin L, Koebnik R, Ronald P. PeerJ 2 e242 (2014)
  6. Lipopolysaccharide of Yersinia pestis, the Cause of Plague: Structure, Genetics, Biological Properties. Knirel YA, Anisimov AP. Acta Naturae 4 46-58 (2012)
  7. Fast and simple detection of Yersinia pestis applicable to field investigation of plague foci. Simon S, Demeure C, Lamourette P, Filali S, Plaisance M, Créminon C, Volland H, Carniel E. PLoS One 8 e54947 (2013)
  8. The outer membrane protease PgtE of Salmonella enterica interferes with the alternative complement pathway by cleaving factors B and H. Riva R, Korhonen TK, Meri S. Front Microbiol 6 63 (2015)
  9. Catalytic site identification--a web server to identify catalytic site structural matches throughout PDB. Kirshner DA, Nilmeier JP, Lightstone FC. Nucleic Acids Res 41 W256-65 (2013)
  10. Pathogenicity of Yersinia pestis synthesis of 1-dephosphorylated lipid A. Sun W, Six DA, Reynolds CM, Chung HS, Raetz CR, Curtiss R. Infect Immun 81 1172-1185 (2013)
  11. Inhibition of outer membrane proteases of the omptin family by aprotinin. Brannon JR, Burk DL, Leclerc JM, Thomassin JL, Portt A, Berghuis AM, Gruenheid S, Le Moual H. Infect Immun 83 2300-2311 (2015)
  12. Antimicrobial Peptide Conformation as a Structural Determinant of Omptin Protease Specificity. Brannon JR, Thomassin JL, Gruenheid S, Le Moual H. J Bacteriol 197 3583-3591 (2015)
  13. Folding of outer membrane protein A in the anionic biosurfactant rhamnolipid. Andersen KK, Otzen DE. FEBS Lett 588 1955-1960 (2014)
  14. Genomic Insights into a New Citrobacter koseri Strain Revealed Gene Exchanges with the Virulence-Associated Yersinia pestis pPCP1 Plasmid. Armougom F, Bitam I, Croce O, Merhej V, Barassi L, Nguyen TT, La Scola B, Raoult D. Front Microbiol 7 340 (2016)
  15. Yersinia pestis escapes entrapment in thrombi by targeting platelet function. Palace SG, Vitseva O, Proulx MK, Freedman JE, Goguen JD, Koupenova M. J Thromb Haemost 18 3236-3248 (2020)
  16. Dual function of OmpM as outer membrane tether and nutrient uptake channel in diderm Firmicutes. Silale A, Zhu Y, Witwinowski J, Smith RE, Newman KE, Bhamidimarri SP, Baslé A, Khalid S, Beloin C, Gribaldo S, van den Berg B. Nat Commun 14 7152 (2023)
  17. Omptin Proteases of Enterobacterales Show Conserved Regulation by the PhoPQ Two-Component System but Exhibit Divergent Protection from Antimicrobial Host Peptides and Complement. Cho YH, Fadle Aziz MR, Malpass A, Sutradhar T, Bashal J, Cojocari V, McPhee JB. Infect Immun 91 e0051822 (2023)
  18. The Name Is Barrel, β-Barrel. Hayashi S, Buchanan SK, Botos I. Methods Mol Biol 2778 1-30 (2024)