spacer
spacer

PDBsum entry 2c7n

Go to PDB code: 
protein metals Protein-protein interface(s) links
Protein binding PDB id
2c7n

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
56 a.a. *
(+ 0 more) 74 a.a. *
57 a.a. *
49 a.a. *
Metals
_ZN ×6
Waters ×253
* Residue conservation analysis
PDB id:
2c7n
Name: Protein binding
Title: Human rabex-5 residues 1-74 in complex with ubiquitin
Structure: Rab guanine nucleotide exchange factor 1. Chain: a, c, e, g, i, k. Fragment: two ubiqutin binding domains, residues 1-74. Synonym: rabex-5, gef 1. Engineered: yes. Ubiquitin. Chain: b, d, f, h, j, l. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562. Synthetic: yes. Bos taurus. Bovine. Organism_taxid: 9913.
Biol. unit: Dimer (from PQS)
Resolution:
2.10Å     R-factor:   0.198     R-free:   0.238
Authors: L.Penengo,M.Mapelli,A.G.Murachelli,S.Confalioneri,L.Magri, A.Musacchio,P.P.Di Fiore,S.Polo,T.R.Schneider
Key ref:
L.Penengo et al. (2006). Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Cell, 124, 1183-1195. PubMed id: 16499958 DOI: 10.1016/j.cell.2006.02.020
Date:
25-Nov-05     Release date:   15-Feb-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q9UJ41  (RABX5_HUMAN) -  Rab5 GDP/GTP exchange factor from Homo sapiens
Seq:
Struc:
491 a.a.
56 a.a.
Protein chains
Pfam   ArchSchema ?
P0CH28  (UBC_BOVIN) -  Polyubiquitin-C from Bos taurus
Seq:
Struc:
 
Seq:
Struc:
690 a.a.
74 a.a.
Protein chains
Pfam   ArchSchema ?
Q9UJ41  (RABX5_HUMAN) -  Rab5 GDP/GTP exchange factor from Homo sapiens
Seq:
Struc:
491 a.a.
57 a.a.
Protein chains
Pfam   ArchSchema ?
Q9UJ41  (RABX5_HUMAN) -  Rab5 GDP/GTP exchange factor from Homo sapiens
Seq:
Struc:
491 a.a.
49 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D, E, F, G, H, I, J, K, L: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/j.cell.2006.02.020 Cell 124:1183-1195 (2006)
PubMed id: 16499958  
 
 
Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin.
L.Penengo, M.Mapelli, A.G.Murachelli, S.Confalonieri, L.Magri, A.Musacchio, P.P.Di Fiore, S.Polo, T.R.Schneider.
 
  ABSTRACT  
 
The interaction between ubiquitinated proteins and intracellular proteins harboring ubiquitin binding domains (UBDs) is critical to a multitude of cellular processes. Here, we report that Rabex-5, a guanine nucleotide exchange factor for Rab5, binds to Ub through two independent UBDs. These UBDs determine a number of properties of Rabex-5, including its coupled monoubiquitination and interaction in vivo with ubiquitinated EGFRs. Structural and biochemical characterization of the UBDs of Rabex-5 revealed that one of them (MIU, motif interacting with ubiquitin) binds to Ub with modes superimposable to those of the UIM (ubiquitin-interacting motif):Ub interaction, although in the opposite orientation. The other UBD, RUZ (Rabex-5 ubiquitin binding zinc finger) binds to a surface of Ub centered on Asp58(Ub) and distinct from the "canonical" Ile44(Ub)-based surface. The two binding surfaces allow Ub to interact simultaneously with different UBDs, thus opening new perspectives in Ub-mediated signaling.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Overview of the Structure
(A) Secondary structure diagram (left) and surface representation (right) of two molecules of RUZ-MIU (yellow and orange) in complex with two molecules of Ub (light green and dark green). The Zn^2+ ions of Rabex-5[2–74] are drawn as orange spheres.
(B) Superposition of two molecules of RUZ-MIU, orange and yellow. Residues 40–64[Rbx] are shown as a helix, while for residues 17–39[Rbx] the backbone trace is indicated by a tube; Zn^2+ ions are drawn as spheres.
Figure 5.
Figure 5. The MIU:Ub Complex Resembles the UIM:Ub Complex
(A) Structures of the Rabex-5-MIU:Ub (yellow and green) and the Vps27-UIM:Ub (red and green) complexes.
(B) 2F[obs] − 1F[calc] difference electron density contoured at the 1σ level around residue Ala58[Rbx] (yellow) and residues Ile44[Ub] and Val70[Ub] (green).
(C) Interactions between Ub (green) and MIU (yellow). Hydrogen bonds and salt bridges are indicated by dashed black lines.
(D) Ub binding residues of the MIU of Rabex-5 (yellow) and of the UIM of Vps27 (red). Models of the RZF-MIU:Ub complex and the Vps27-UIM:Ub complex (Swanson et al., 2003) were superimposed based on residues 5–70 of the Ub molecules. Side chains involved in interaction between MIU (yellow)/UIM (red) and Ub are shown in stick representation.
 
  The above figures are reprinted by permission from Cell Press: Cell (2006, 124, 1183-1195) copyright 2006.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
23023224 D.A.Tumbarello, B.J.Waxse, S.D.Arden, N.A.Bright, J.Kendrick-Jones, and F.Buss (2012).
Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome.
  Nat Cell Biol, 14, 1024-1035.  
22266820 L.Feng, and J.Chen (2012).
The E3 ligase RNF8 regulates KU80 removal and NHEJ repair.
  Nat Struct Mol Biol, 19, 201-206.  
22286100 N.V.Dimova, N.A.Hathaway, B.H.Lee, D.S.Kirkpatrick, M.L.Berkowitz, S.P.Gygi, D.Finley, and R.W.King (2012).
APC/C-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin B1.
  Nat Cell Biol, 14, 168-176.  
21857666 A.Plechanovová, E.G.Jaffray, S.A.McMahon, K.A.Johnson, I.Navrátilová, J.H.Naismith, and R.T.Hay (2011).
Mechanism of ubiquitylation by dimeric RING ligase RNF4.
  Nat Struct Mol Biol, 18, 1052-1059.
PDB code: 2xeu
21245847 E.Argenzio, T.Bange, B.Oldrini, F.Bianchi, R.Peesari, S.Mari, P.P.Di Fiore, M.Mann, and S.Polo (2011).
Proteomic snapshot of the EGF-induced ubiquitin network.
  Mol Syst Biol, 7, 462.  
21332354 J.H.Hurley, and H.Stenmark (2011).
Molecular mechanisms of ubiquitin-dependent membrane traffic.
  Annu Rev Biophys, 40, 119-142.  
21293909 M.Kang, M.Fokar, H.Abdelmageed, and R.D.Allen (2011).
Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity.
  Plant Mol Biol, 75, 451-466.  
21280177 P.La Rosa, M.Marino And, and F.Acconcia (2011).
17β-estradiol regulates estrogen receptor α monoubiquitination.
  IUBMB Life, 63, 49-53.  
21426255 R.M.Blundred, and G.S.Stewart (2011).
DNA double-strand break repair, immunodeficiency and the RIDDLE syndrome.
  Expert Rev Clin Immunol, 7, 169-185.  
20949063 A.X.Song, C.J.Zhou, Y.Peng, X.C.Gao, Z.R.Zhou, Q.S.Fu, J.Hong, D.H.Lin, and H.Y.Hu (2010).
Structural transformation of the tandem ubiquitin-interacting motifs in ataxin-3 and their cooperative interactions with ubiquitin chains.
  PLoS One, 5, e13202.  
21095585 I.Bosanac, I.E.Wertz, B.Pan, C.Yu, S.Kusam, C.Lam, L.Phu, Q.Phung, B.Maurer, D.Arnott, D.S.Kirkpatrick, V.M.Dixit, and S.G.Hymowitz (2010).
Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling.
  Mol Cell, 40, 548-557.
PDB codes: 3oj3 3oj4
19893571 I.E.Wertz, and V.M.Dixit (2010).
Regulation of death receptor signaling by the ubiquitin system.
  Cell Death Differ, 17, 14-24.  
20371988 K.Tashiro, H.Konishi, H.Nabeshi, E.Yamauchi, and H.Taniguchi (2010).
[New functional proteins identified by proteomic analysis in the epidermal growth factor receptor-mediated signaling pathway and application for practical use].
  Yakugaku Zasshi, 130, 471-477.  
20655225 L.Xu, V.Lubkov, L.J.Taylor, and D.Bar-Sagi (2010).
Feedback regulation of Ras signaling by Rabex-5-mediated ubiquitination.
  Curr Biol, 20, 1372-1377.  
20159559 M.G.Bomar, S.D'Souza, M.Bienko, I.Dikic, G.C.Walker, and P.Zhou (2010).
Unconventional ubiquitin recognition by the ubiquitin-binding motif within the Y family DNA polymerases iota and Rev1.
  Mol Cell, 37, 408-417.
PDB code: 2khu
20383180 S.G.Hymowitz, and I.E.Wertz (2010).
A20: from ubiquitin editing to tumour suppression.
  Nat Rev Cancer, 10, 332-341.  
19032933 A.Galvis, V.Balmaceda, H.Giambini, A.Conde, Z.Villasana, M.W.Fornes, and M.A.Barbieri (2009).
Inhibition of early endosome fusion by Rab5-binding defective Ras interference 1 mutants.
  Arch Biochem Biophys, 482, 83-95.  
19203579 C.Doil, N.Mailand, S.Bekker-Jensen, P.Menard, D.H.Larsen, R.Pepperkok, J.Ellenberg, S.Panier, D.Durocher, J.Bartek, J.Lukas, and C.Lukas (2009).
RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins.
  Cell, 136, 435-446.  
20038681 C.Francavilla, P.Cattaneo, V.Berezin, E.Bock, D.Ami, A.de Marco, G.Christofori, and U.Cavallaro (2009).
The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking.
  J Cell Biol, 187, 1101-1116.  
19763089 E.Laplantine, E.Fontan, J.Chiaravalli, T.Lopez, G.Lakisic, M.Véron, F.Agou, and A.Israël (2009).
NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain.
  EMBO J, 28, 2885-2895.  
19203578 G.S.Stewart, S.Panier, K.Townsend, A.K.Al-Hakim, N.K.Kolas, E.S.Miller, S.Nakada, J.Ylanko, S.Olivarius, M.Mendez, C.Oldreive, J.Wildenhain, A.Tagliaferro, L.Pelletier, N.Taubenheim, A.Durandy, P.J.Byrd, T.Stankovic, A.M.Taylor, and D.Durocher (2009).
The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage.
  Cell, 136, 420-434.  
20064473 H.B.Kamadurai, J.Souphron, D.C.Scott, D.M.Duda, D.J.Miller, D.Stringer, R.C.Piper, and B.A.Schulman (2009).
Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex.
  Mol Cell, 36, 1095-1102.
PDB codes: 3jvz 3jw0
19773779 I.Dikic, S.Wakatsuki, and K.J.Walters (2009).
Ubiquitin-binding domains - from structures to functions.
  Nat Rev Mol Cell Biol, 10, 659-671.  
19883594 J.M.Bui, J.Gsponer, M.Vendruscolo, and C.M.Dobson (2009).
Analysis of sub-tauc and supra-tauc motions in protein Gbeta1 using molecular dynamics simulations.
  Biophys J, 97, 2513-2520.  
19015238 J.Wu, M.S.Huen, L.Y.Lu, L.Ye, Y.Dou, M.Ljungman, J.Chen, and X.Yu (2009).
Histone ubiquitination associates with BRCA1-dependent DNA damage response.
  Mol Cell Biol, 29, 849-860.  
19423704 Q.S.Fu, C.J.Zhou, H.C.Gao, Y.J.Jiang, Z.R.Zhou, J.Hong, W.M.Yao, A.X.Song, D.H.Lin, and H.Y.Hu (2009).
Structural Basis for Ubiquitin Recognition by a Novel Domain from Human Phospholipase A2-activating Protein.
  J Biol Chem, 284, 19043-19052.
PDB codes: 2k89 2k8a 2k8b 2k8c
19500350 S.Pinato, C.Scandiuzzi, N.Arnaudo, E.Citterio, G.Gaudino, and L.Penengo (2009).
RNF168, a new RING finger, MIU-containing protein that modifies chromatin by ubiquitination of histones H2A and H2AX.
  BMC Mol Biol, 10, 55.  
19948475 T.E.Messick, and R.A.Greenberg (2009).
The ubiquitin landscape at DNA double-strand breaks.
  J Cell Biol, 187, 319-326.  
19183301 Y.Zwang, and Y.Yarden (2009).
Systems biology of growth factor-induced receptor endocytosis.
  Traffic, 10, 349-363.  
18827013 D.Leonard, A.Hayakawa, D.Lawe, D.Lambright, K.D.Bellve, C.Standley, L.M.Lifshitz, K.E.Fogarty, and S.Corvera (2008).
Sorting of EGF and transferrin at the plasma membrane and by cargo-specific signaling to EEA1-enriched endosomes.
  J Cell Sci, 121, 3445-3458.  
18600222 G.Langer, S.X.Cohen, V.S.Lamzin, and A.Perrakis (2008).
Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7.
  Nat Protoc, 3, 1171-1179.  
18515172 I.E.Wertz, and V.M.Dixit (2008).
Ubiquitin-mediated regulation of TNFR1 signaling.
  Cytokine Growth Factor Rev, 19, 313-324.  
18523727 N.A.Lakomek, K.F.Walter, C.Farès, O.F.Lange, B.L.de Groot, H.Grubmüller, R.Brüschweiler, A.Munk, S.Becker, J.Meiler, and C.Griesinger (2008).
Self-consistent residual dipolar coupling based model-free analysis for the robust determination of nanosecond to microsecond protein dynamics.
  J Biomol NMR, 41, 139-155.  
18556554 O.F.Lange, N.A.Lakomek, C.Farès, G.F.Schröder, K.F.Walter, S.Becker, J.Meiler, H.Grubmüller, C.Griesinger, and B.L.de Groot (2008).
Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution.
  Science, 320, 1471-1475.
PDB code: 2k39
18342009 O.Hitotsumatsu, R.C.Ahmad, R.Tavares, M.Wang, D.Philpott, E.E.Turer, B.L.Lee, N.Shiffin, R.Advincula, B.A.Malynn, C.Werts, and A.Ma (2008).
The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals.
  Immunity, 28, 381-390.  
18200608 O.Okhrimenko, and I.Jelesarov (2008).
A survey of the year 2006 literature on applications of isothermal titration calorimetry.
  J Mol Recognit, 21, 1.  
18497827 P.Schreiner, X.Chen, K.Husnjak, L.Randles, N.Zhang, S.Elsasser, D.Finley, I.Dikic, K.J.Walters, and M.Groll (2008).
Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction.
  Nature, 453, 548-552.
PDB codes: 2r2y 2z59
18772883 R.Mattera, and J.S.Bonifacino (2008).
Ubiquitin binding and conjugation regulate the recruitment of Rabex-5 to early endosomes.
  EMBO J, 27, 2484-2494.  
18089292 S.C.Sahu, K.A.Swanson, R.S.Kang, K.Huang, K.Brubaker, K.Ratcliff, and I.Radhakrishnan (2008).
Conserved themes in target recognition by the PAH1 and PAH2 domains of the Sin3 transcriptional corepressor.
  J Mol Biol, 375, 1444-1456.
PDB codes: 2rmr 2rms
18270205 T.E.Messick, N.S.Russell, A.J.Iwata, K.L.Sarachan, R.Shiekhattar, J.R.Shanks, F.E.Reyes-Turcu, K.D.Wilkinson, and R.Marmorstein (2008).
Structural basis for ubiquitin recognition by the Otu1 ovarian tumor domain protein.
  J Biol Chem, 283, 11038-11049.
PDB codes: 3by4 3c0r
18205020 V.Kanneganti, and A.K.Gupta (2008).
Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice.
  Plant Mol Biol, 66, 445-462.  
18483219 Y.Li, L.Zheng, F.Corke, C.Smith, and M.W.Bevan (2008).
Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana.
  Genes Dev, 22, 1331-1336.  
17496917 A.Adhikari, M.Xu, and Z.J.Chen (2007).
Ubiquitin-mediated activation of TAK1 and IKK.
  Oncogene, 26, 3214-3226.  
17450153 A.Delprato, and D.G.Lambright (2007).
Structural basis for Rab GTPase activation by VPS9 domain exchange factors.
  Nat Struct Mol Biol, 14, 406-412.
PDB code: 2ot3
17477837 B.T.Dye, and B.A.Schulman (2007).
Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins.
  Annu Rev Biophys Biomol Struct, 36, 131-150.  
17235285 C.Ottmann, L.Yasmin, M.Weyand, J.L.Veesenmeyer, M.H.Diaz, R.H.Palmer, M.S.Francis, A.R.Hauser, A.Wittinghofer, and B.Hallberg (2007).
Phosphorylation-independent interaction between 14-3-3 and exoenzyme S: from structure to pathogenesis.
  EMBO J, 26, 902-913.
PDB code: 2o02
17699593 H.Zhu, G.Zhu, J.Liu, Z.Liang, X.C.Zhang, and G.Li (2007).
Rabaptin-5-independent membrane targeting and Rab5 activation by Rabex-5 in the cell.
  Mol Biol Cell, 18, 4119-4128.  
17341663 J.Kalesnikoff, E.J.Rios, C.C.Chen, M.Alejandro Barbieri, M.Tsai, S.Y.Tam, and S.J.Galli (2007).
Roles of RabGEF1/Rabex-5 domains in regulating Fc epsilon RI surface expression and Fc epsilon RI-dependent responses in mast cells.
  Blood, 109, 5308-5317.  
17304240 M.G.Bomar, M.T.Pai, S.R.Tzeng, S.S.Li, and P.Zhou (2007).
Structure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase eta.
  EMBO Rep, 8, 247-251.
PDB code: 2i5o
17512543 M.T.Pai, S.R.Tzeng, J.J.Kovacs, M.A.Keaton, S.S.Li, T.P.Yao, and P.Zhou (2007).
Solution structure of the Ubp-M BUZ domain, a highly specific protein module that recognizes the C-terminal tail of free ubiquitin.
  J Mol Biol, 370, 290-302.
PDB code: 2i50
17567738 N.B.de la Cruz, F.C.Peterson, B.L.Lytle, and B.F.Volkman (2007).
Solution structure of a membrane-anchored ubiquitin-fold (MUB) protein from Homo sapiens.
  Protein Sci, 16, 1479-1484.
PDB code: 2gow
17679095 P.Peschard, G.Kozlov, T.Lin, I.A.Mirza, A.M.Berghuis, S.Lipkowitz, M.Park, and K.Gehring (2007).
Structural basis for ubiquitin-mediated dimerization and activation of the ubiquitin protein ligase Cbl-b.
  Mol Cell, 27, 474-485.
PDB codes: 2ooa 2oob
17244534 S.D.Stamenova, M.E.French, Y.He, S.A.Francis, Z.B.Kramer, and L.Hicke (2007).
Ubiquitin binds to and regulates a subset of SH3 domains.
  Mol Cell, 25, 273-284.  
17503326 S.Modamio-Hoybjor, A.Mencia, R.Goodyear, I.del Castillo, G.Richardson, F.Moreno, and M.A.Moreno-Pelayo (2007).
A mutation in CCDC50, a gene encoding an effector of epidermal growth factor-mediated cell signaling, causes progressive hearing loss.
  Am J Hum Genet, 80, 1076-1089.  
17355622 T.Woelk, S.Sigismund, L.Penengo, and S.Polo (2007).
The ubiquitination code: a signalling problem.
  Cell Div, 2, 11.  
17303403 V.Kirkin, and I.Dikic (2007).
Role of ubiquitin- and Ubl-binding proteins in cell signaling.
  Curr Opin Cell Biol, 19, 199-205.  
16829979 B.T.Seet, I.Dikic, M.M.Zhou, and T.Pawson (2006).
Reading protein modifications with interaction domains.
  Nat Rev Mol Cell Biol, 7, 473-483.  
16901703 C.Raiborg, T.Slagsvold, and H.Stenmark (2006).
A new side to ubiquitin.
  Trends Biochem Sci, 31, 541-544.  
16564012 F.E.Reyes-Turcu, J.R.Horton, J.E.Mullally, A.Heroux, X.Cheng, and K.D.Wilkinson (2006).
The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin.
  Cell, 124, 1197-1208.
PDB codes: 2g43 2g45
16803894 K.Tashiro, H.Konishi, E.Sano, H.Nabeshi, E.Yamauchi, and H.Taniguchi (2006).
Suppression of the ligand-mediated down-regulation of epidermal growth factor receptor by Ymer, a novel tyrosine-phosphorylated and ubiquitinated protein.
  J Biol Chem, 281, 24612-24622.  
17033811 S.Vij, and A.K.Tyagi (2006).
Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis.
  Mol Genet Genomics, 276, 565-575.  
17013377 T.Woelk, B.Oldrini, E.Maspero, S.Confalonieri, E.Cavallaro, P.P.Di Fiore, and S.Polo (2006).
Molecular mechanisms of coupled monoubiquitination.
  Nat Cell Biol, 8, 1246-1254.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer