 |
PDBsum entry 1vfy
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Transport protein
|
PDB id
|
|
|
|
1vfy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Cell
97:657-666
(1999)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p.
|
|
S.Misra,
J.H.Hurley.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Phosphatidylinositol 3-phosphate regulates membrane trafficking and signaling
pathways by interacting with the FYVE domains of target proteins. The 1.15 A
structure of the Vps27p FYVE domain reveals two antiparallel beta sheets and an
alpha helix stabilized by two Zn2+-binding clusters. The core secondary
structures are similar to a rabphilin-3A Zn2+-binding domain and to the C1 and
LIM domains. Phosphatidylinositol 3-phosphate binds to a pocket formed by the
(R/K)(R/K)HHCR motif. A lattice contact shows how anionic ligands can interact
with the phosphatidylinositol 3-phosphate-binding site. The tip of the FYVE
domain has basic and hydrophobic surfaces positioned so that nonspecific
interactions with the phospholipid bilayer can abet specific binding to
phosphatidylinositol 3-phosphate.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3. Molecular Surface of the FYVE DomainThe surfaces
are colored by (A) electrostatic potential, with saturating
color at ±5 kT/e, and (B) residue type: hydrophobic,
green; basic, blue; acidic, red; and uncharged polar, white.
Surfaces were drawn and colored using GRASP ([21]). The upper
figures show the protein in sagittal projection, looking into
the putative PI3P-binding site. The membrane-proximal end of the
protein is at the bottom. The lower figures depict a view from
the membrane normal into the protein. The PI3P-binding site is
at the top.
|
 |
Figure 6.
Figure 6. Membrane Interaction ModelThe Vps27p FYVE domain,
rabphilin-3A/Rab3A complex (Brünger et al., 1999), and the
C1b domain of protein kinase Cδ ([64]), shown in the predicted
membrane-bound orientation (sagittal projection). Orientations
of rabphilin-3A/Rab3A and PKCδ-C1b are based on structural
alignments with the Vps27p-FYVE. Hydrophobic ligands and
residues that may be important for membrane interactions are
shown. The membrane is divided according to the model of [60 and
58], which describes the distribution of lipid and protein
functional groups within the bilayer. The interfacial region,
containing water, lipid headgroups, glycerol, carbonyl, and
methylene groups, constitutes the outer quarters of the
membrane; the central half of the membrane is occupied by a
hydrocarbon core, containing the lipid fatty acid chains. The
interfacial zone of the membrane is depicted to scale with a
thickness of 15 Å. We have inserted the proteins to
reasonable depths in the membrane. The C-terminal end of the
ordered part of the solved Rab3A structure is labeled; the C
terminus of the full-length protein is geranyl geranylated. In
the orientation shown, the Rab3A C terminus is near enough to
the membrane surface that a covalently attached
geranyl–geranyl moiety can penetrate into the membrane.
Structures were drawn using Molscript and Raster3D.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Cell
(1999,
97,
657-666)
copyright 1999.
|
|
| |
Figures were
selected
by the author.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.P.Sagona,
I.P.Nezis,
N.M.Pedersen,
K.Liestøl,
J.Poulton,
T.E.Rusten,
R.I.Skotheim,
C.Raiborg,
and
H.Stenmark
(2010).
PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody.
|
| |
Nat Cell Biol,
12,
362-371.
|
 |
|
|
|
|
 |
E.Wywial,
and
S.M.Singh
(2010).
Identification and structural characterization of FYVE domain-containing proteins of Arabidopsis thaliana.
|
| |
BMC Plant Biol,
10,
157.
|
 |
|
|
|
|
 |
H.L.Axelrod,
D.Das,
P.Abdubek,
T.Astakhova,
C.Bakolitsa,
D.Carlton,
C.Chen,
H.J.Chiu,
T.Clayton,
M.C.Deller,
L.Duan,
K.Ellrott,
C.L.Farr,
J.Feuerhelm,
J.C.Grant,
A.Grzechnik,
G.W.Han,
L.Jaroszewski,
K.K.Jin,
H.E.Klock,
M.W.Knuth,
P.Kozbial,
S.S.Krishna,
A.Kumar,
W.W.Lam,
D.Marciano,
D.McMullan,
M.D.Miller,
A.T.Morse,
E.Nigoghossian,
A.Nopakun,
L.Okach,
C.Puckett,
R.Reyes,
N.Sefcovic,
H.J.Tien,
C.B.Trame,
H.van den Bedem,
D.Weekes,
T.Wooten,
Q.Xu,
K.O.Hodgson,
J.Wooley,
M.A.Elsliger,
A.M.Deacon,
A.Godzik,
S.A.Lesley,
and
I.A.Wilson
(2010).
Structures of three members of Pfam PF02663 (FmdE) implicated in microbial methanogenesis reveal a conserved α+β core domain and an auxiliary C-terminal treble-clef zinc finger.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
66,
1335-1346.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.H.Hurley
(2010).
The ESCRT complexes.
|
| |
Crit Rev Biochem Mol Biol,
45,
463-487.
|
 |
|
|
|
|
 |
T.G.Kutateladze
(2010).
Translation of the phosphoinositide code by PI effectors.
|
| |
Nat Chem Biol,
6,
507-513.
|
 |
|
|
|
|
 |
C.S.Wood,
K.R.Schmitz,
N.J.Bessman,
T.G.Setty,
K.M.Ferguson,
and
C.G.Burd
(2009).
PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking.
|
| |
J Cell Biol,
187,
967-975.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.He,
M.Vora,
R.M.Haney,
G.S.Filonov,
C.A.Musselman,
C.G.Burd,
A.G.Kutateladze,
V.V.Verkhusha,
R.V.Stahelin,
and
T.G.Kutateladze
(2009).
Membrane insertion of the FYVE domain is modulated by pH.
|
| |
Proteins,
76,
852-860.
|
 |
|
|
|
|
 |
K.S.Champagne,
and
T.G.Kutateladze
(2009).
Structural insight into histone recognition by the ING PHD fingers.
|
| |
Curr Drug Targets,
10,
432-441.
|
 |
|
|
|
|
 |
B.E.Steinberg,
and
S.Grinstein
(2008).
Pathogen destruction versus intracellular survival: the role of lipids as phagosomal fate determinants.
|
| |
J Clin Invest,
118,
2002-2011.
|
 |
|
|
|
|
 |
M.A.Lemmon
(2008).
Membrane recognition by phospholipid-binding domains.
|
| |
Nat Rev Mol Cell Biol,
9,
99.
|
 |
|
|
|
|
 |
P.V.Peña,
R.A.Hom,
T.Hung,
H.Lin,
A.J.Kuo,
R.P.Wong,
O.M.Subach,
K.S.Champagne,
R.Zhao,
V.V.Verkhusha,
G.Li,
O.Gozani,
and
T.G.Kutateladze
(2008).
Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor.
|
| |
J Mol Biol,
380,
303-312.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.J.Mrsny,
G.T.Brown,
K.Gerner-Smidt,
A.G.Buret,
J.B.Meddings,
C.Quan,
M.Koval,
and
A.Nusrat
(2008).
A key claudin extracellular loop domain is critical for epithelial barrier integrity.
|
| |
Am J Pathol,
172,
905-915.
|
 |
|
|
|
|
 |
Y.C.Kim,
and
G.Hummer
(2008).
Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding.
|
| |
J Mol Biol,
375,
1416-1433.
|
 |
|
|
|
|
 |
G.Prag,
H.Watson,
Y.C.Kim,
B.M.Beach,
R.Ghirlando,
G.Hummer,
J.S.Bonifacino,
and
J.H.Hurley
(2007).
The Vps27/Hse1 complex is a GAT domain-based scaffold for ubiquitin-dependent sorting.
|
| |
Dev Cell,
12,
973-986.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.D.Mertens,
J.M.Callaghan,
J.D.Swarbrick,
M.J.McConville,
and
P.R.Gooley
(2007).
A high-resolution solution structure of a trypanosomatid FYVE domain.
|
| |
Protein Sci,
16,
2552-2559.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.T.McIntosh,
A.Vaid,
H.D.Hosgood,
J.Vijay,
A.Bhattacharya,
M.H.Sahani,
P.Baevova,
K.A.Joiner,
and
P.Sharma
(2007).
Traffic to the malaria parasite food vacuole: a novel pathway involving a phosphatidylinositol 3-phosphate-binding protein.
|
| |
J Biol Chem,
282,
11499-11508.
|
 |
|
|
|
|
 |
R.L.Williams,
and
S.Urbé
(2007).
The emerging shape of the ESCRT machinery.
|
| |
Nat Rev Mol Cell Biol,
8,
355-368.
|
 |
|
|
|
|
 |
T.G.Kutateladze
(2007).
Mechanistic similarities in docking of the FYVE and PX domains to phosphatidylinositol 3-phosphate containing membranes.
|
| |
Prog Lipid Res,
46,
315-327.
|
 |
|
|
|
|
 |
C.H.Lu,
Y.S.Lin,
Y.C.Chen,
C.S.Yu,
S.Y.Chang,
and
J.K.Hwang
(2006).
The fragment transformation method to detect the protein structural motifs.
|
| |
Proteins,
63,
636-643.
|
 |
|
|
|
|
 |
E.Harjes,
S.Harjes,
S.Wohlgemuth,
K.H.Müller,
E.Krieger,
C.Herrmann,
and
P.Bayer
(2006).
GTP-Ras disrupts the intramolecular complex of C1 and RA domains of Nore1.
|
| |
Structure,
14,
881-888.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Kerkhoff
(2006).
Cellular functions of the Spir actin-nucleation factors.
|
| |
Trends Cell Biol,
16,
477-483.
|
 |
|
|
|
|
 |
J.H.Hurley,
and
S.D.Emr
(2006).
The ESCRT complexes: structure and mechanism of a membrane-trafficking network.
|
| |
Annu Rev Biophys Biomol Struct,
35,
277-298.
|
 |
|
|
|
|
 |
J.H.Hurley
(2006).
Membrane binding domains.
|
| |
Biochim Biophys Acta,
1761,
805-811.
|
 |
|
|
|
|
 |
M.Bienz
(2006).
The PHD finger, a nuclear protein-interaction domain.
|
| |
Trends Biochem Sci,
31,
35-40.
|
 |
|
|
|
|
 |
T.G.Kutateladze
(2006).
Phosphatidylinositol 3-phosphate recognition and membrane docking by the FYVE domain.
|
| |
Biochim Biophys Acta,
1761,
868-877.
|
 |
|
|
|
|
 |
I.Friedberg,
and
A.Godzik
(2005).
Connecting the protein structure universe by using sparse recurring fragments.
|
| |
Structure,
13,
1213-1224.
|
 |
|
|
|
|
 |
M.Babst
(2005).
A protein's final ESCRT.
|
| |
Traffic,
6,
2-9.
|
 |
|
|
|
|
 |
R.Brunecky,
S.Lee,
P.W.Rzepecki,
M.Overduin,
G.D.Prestwich,
A.G.Kutateladze,
and
T.G.Kutateladze
(2005).
Investigation of the binding geometry of a peripheral membrane protein.
|
| |
Biochemistry,
44,
16064-16071.
|
 |
|
|
|
|
 |
S.A.Lee,
R.Eyeson,
M.L.Cheever,
J.Geng,
V.V.Verkhusha,
C.Burd,
M.Overduin,
and
T.G.Kutateladze
(2005).
Targeting of the FYVE domain to endosomal membranes is regulated by a histidine switch.
|
| |
Proc Natl Acad Sci U S A,
102,
13052-13057.
|
 |
|
|
|
|
 |
S.K.Elkin,
D.Ivanov,
M.Ewalt,
C.G.Ferguson,
S.G.Hyberts,
Z.Y.Sun,
G.D.Prestwich,
J.Yuan,
G.Wagner,
M.A.Oettinger,
and
O.P.Gozani
(2005).
A PHD finger motif in the C terminus of RAG2 modulates recombination activity.
|
| |
J Biol Chem,
280,
28701-28710.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Kunz,
M.Oberholzer,
and
T.Seebeck
(2005).
A FYVE-containing unusual cyclic nucleotide phosphodiesterase from Trypanosoma cruzi.
|
| |
FEBS J,
272,
6412-6422.
|
 |
|
|
|
|
 |
W.Chen,
N.Li,
T.Chen,
Y.Han,
C.Li,
Y.Wang,
W.He,
L.Zhang,
T.Wan,
and
X.Cao
(2005).
The lysosome-associated apoptosis-inducing protein containing the pleckstrin homology (PH) and FYVE domains (LAPF), representative of a novel family of PH and FYVE domain-containing proteins, induces caspase-independent apoptosis via the lysosomal-mitochondrial pathway.
|
| |
J Biol Chem,
280,
40985-40995.
|
 |
|
|
|
|
 |
W.Cho,
and
R.V.Stahelin
(2005).
Membrane-protein interactions in cell signaling and membrane trafficking.
|
| |
Annu Rev Biophys Biomol Struct,
34,
119-151.
|
 |
|
|
|
|
 |
A.Hayakawa,
S.J.Hayes,
D.C.Lawe,
E.Sudharshan,
R.Tuft,
K.Fogarty,
D.Lambright,
and
S.Corvera
(2004).
Structural basis for endosomal targeting by FYVE domains.
|
| |
J Biol Chem,
279,
5958-5966.
|
 |
|
|
|
|
 |
D.J.Owen,
B.M.Collins,
and
P.R.Evans
(2004).
Adaptors for clathrin coats: structure and function.
|
| |
Annu Rev Cell Dev Biol,
20,
153-191.
|
 |
|
|
|
|
 |
M.A.De Matteis,
and
A.Godi
(2004).
PI-loting membrane traffic.
|
| |
Nat Cell Biol,
6,
487-492.
|
 |
|
|
|
|
 |
M.D.Tibbetts,
E.N.Shiozaki,
L.Gu,
E.R.McDonald,
W.S.El-Deiry,
and
Y.Shi
(2004).
Crystal structure of a FYVE-type zinc finger domain from the caspase regulator CARP2.
|
| |
Structure,
12,
2257-2263.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.R.Blatner,
R.V.Stahelin,
K.Diraviyam,
P.T.Hawkins,
W.Hong,
D.Murray,
and
W.Cho
(2004).
The molecular basis of the differential subcellular localization of FYVE domains.
|
| |
J Biol Chem,
279,
53818-53827.
|
 |
|
|
|
|
 |
O.V.Vieira,
R.E.Harrison,
C.C.Scott,
H.Stenmark,
D.Alexander,
J.Liu,
J.Gruenberg,
A.D.Schreiber,
and
S.Grinstein
(2004).
Acquisition of Hrs, an essential component of phagosomal maturation, is impaired by mycobacteria.
|
| |
Mol Cell Biol,
24,
4593-4604.
|
 |
|
|
|
|
 |
T.G.Kutateladze,
D.G.Capelluto,
C.G.Ferguson,
M.L.Cheever,
A.G.Kutateladze,
G.D.Prestwich,
and
M.Overduin
(2004).
Multivalent mechanism of membrane insertion by the FYVE domain.
|
| |
J Biol Chem,
279,
3050-3057.
|
 |
|
|
|
|
 |
W.van Leeuwen,
L.Okrész,
L.Bögre,
and
T.Munnik
(2004).
Learning the lipid language of plant signalling.
|
| |
Trends Plant Sci,
9,
378-384.
|
 |
|
|
|
|
 |
D.J.Katzmann,
C.J.Stefan,
M.Babst,
and
S.D.Emr
(2003).
Vps27 recruits ESCRT machinery to endosomes during MVB sorting.
|
| |
J Cell Biol,
162,
413-423.
|
 |
|
|
|
|
 |
M.A.Lemmon
(2003).
Phosphoinositide recognition domains.
|
| |
Traffic,
4,
201-213.
|
 |
|
|
|
|
 |
M.Albrecht,
D.Hoffmann,
B.O.Evert,
I.Schmitt,
U.Wüllner,
and
T.Lengauer
(2003).
Structural modeling of ataxin-3 reveals distant homology to adaptins.
|
| |
Proteins,
50,
355-370.
|
 |
|
|
|
|
 |
T.Wucherpfennig,
M.Wilsch-Bräuninger,
and
M.González-Gaitán
(2003).
Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release.
|
| |
J Cell Biol,
161,
609-624.
|
 |
|
|
|
|
 |
B.K.Drøbak,
and
B.Heras
(2002).
Nuclear phosphoinositides could bring FYVE alive.
|
| |
Trends Plant Sci,
7,
132-138.
|
 |
|
|
|
|
 |
J.Kunz,
A.Fuelling,
L.Kolbe,
and
R.A.Anderson
(2002).
Stereo-specific substrate recognition by phosphatidylinositol phosphate kinases is swapped by changing a single amino acid residue.
|
| |
J Biol Chem,
277,
5611-5619.
|
 |
|
|
|
|
 |
L.Stephens,
C.Ellson,
and
P.Hawkins
(2002).
Roles of PI3Ks in leukocyte chemotaxis and phagocytosis.
|
| |
Curr Opin Cell Biol,
14,
203-213.
|
 |
|
|
|
|
 |
M.Augsten,
C.Hübner,
M.Nguyen,
W.Künkel,
A.Härtl,
and
R.Eck
(2002).
Defective Hyphal induction of a Candida albicans phosphatidylinositol 3-phosphate 5-kinase null mutant on solid media does not lead to decreased virulence.
|
| |
Infect Immun,
70,
4462-4470.
|
 |
|
|
|
|
 |
P.Várnai,
X.Lin,
S.B.Lee,
G.Tuymetova,
T.Bondeva,
A.Spät,
S.G.Rhee,
G.Hajnóczky,
and
T.Balla
(2002).
Inositol lipid binding and membrane localization of isolated pleckstrin homology (PH) domains. Studies on the PH domains of phospholipase C delta 1 and p130.
|
| |
J Biol Chem,
277,
27412-27422.
|
 |
|
|
|
|
 |
R.V.Stahelin,
F.Long,
K.Diraviyam,
K.S.Bruzik,
D.Murray,
and
W.Cho
(2002).
Phosphatidylinositol 3-phosphate induces the membrane penetration of the FYVE domains of Vps27p and Hrs.
|
| |
J Biol Chem,
277,
26379-26388.
|
 |
|
|
|
|
 |
T.Bondeva,
A.Balla,
P.Várnai,
and
T.Balla
(2002).
Structural determinants of Ras-Raf interaction analyzed in live cells.
|
| |
Mol Biol Cell,
13,
2323-2333.
|
 |
|
|
|
|
 |
Y.V.Budovskaya,
H.Hama,
D.B.DeWald,
and
P.K.Herman
(2002).
The C terminus of the Vps34p phosphoinositide 3-kinase is necessary and sufficient for the interaction with the Vps15p protein kinase.
|
| |
J Biol Chem,
277,
287-294.
|
 |
|
|
|
|
 |
B.Vanhaesebroeck,
S.J.Leevers,
K.Ahmadi,
J.Timms,
R.Katso,
P.C.Driscoll,
R.Woscholski,
P.J.Parker,
and
M.D.Waterfield
(2001).
Synthesis and function of 3-phosphorylated inositol lipids.
|
| |
Annu Rev Biochem,
70,
535-602.
|
 |
|
|
|
|
 |
C.Mullins,
and
J.S.Bonifacino
(2001).
The molecular machinery for lysosome biogenesis.
|
| |
Bioessays,
23,
333-343.
|
 |
|
|
|
|
 |
E.Kerkhoff,
J.C.Simpson,
C.B.Leberfinger,
I.M.Otto,
T.Doerks,
P.Bork,
U.R.Rapp,
T.Raabe,
and
R.Pepperkok
(2001).
The Spir actin organizers are involved in vesicle transport processes.
|
| |
Curr Biol,
11,
1963-1968.
|
 |
|
|
|
|
 |
E.Vassella,
R.Krämer,
C.M.Turner,
M.Wankell,
C.Modes,
M.van den Bogaard,
and
M.Boshart
(2001).
Deletion of a novel protein kinase with PX and FYVE-related domains increases the rate of differentiation of Trypanosoma brucei.
|
| |
Mol Microbiol,
41,
33-46.
|
 |
|
|
|
|
 |
H.Yamaguchi,
M.Matsushita,
A.C.Nairn,
and
J.Kuriyan
(2001).
Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity.
|
| |
Mol Cell,
7,
1047-1057.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Bravo,
D.Karathanassis,
C.M.Pacold,
M.E.Pacold,
C.D.Ellson,
K.E.Anderson,
P.J.Butler,
I.Lavenir,
O.Perisic,
P.T.Hawkins,
L.Stephens,
and
R.L.Williams
(2001).
The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate.
|
| |
Mol Cell,
8,
829-839.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.H.Hurley,
and
T.Meyer
(2001).
Subcellular targeting by membrane lipids.
|
| |
Curr Opin Cell Biol,
13,
146-152.
|
 |
|
|
|
|
 |
J.H.Laity,
B.M.Lee,
and
P.E.Wright
(2001).
Zinc finger proteins: new insights into structural and functional diversity.
|
| |
Curr Opin Struct Biol,
11,
39-46.
|
 |
|
|
|
|
 |
J.J.Dumas,
E.Merithew,
E.Sudharshan,
D.Rajamani,
S.Hayes,
D.Lawe,
S.Corvera,
and
D.G.Lambright
(2001).
Multivalent endosome targeting by homodimeric EEA1.
|
| |
Mol Cell,
8,
947-958.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.T.Snyder,
K.L.Rossman,
M.A.Baumeister,
W.M.Pruitt,
D.P.Siderovski,
C.J.Der,
M.A.Lemmon,
and
J.Sondek
(2001).
Quantitative analysis of the effect of phosphoinositide interactions on the function of Dbl family proteins.
|
| |
J Biol Chem,
276,
45868-45875.
|
 |
|
|
|
|
 |
M.Cormont,
M.Mari,
A.Galmiche,
P.Hofman,
and
Y.Le Marchand-Brustel
(2001).
A FYVE-finger-containing protein, Rabip4, is a Rab4 effector involved in early endosomal traffic.
|
| |
Proc Natl Acad Sci U S A,
98,
1637-1642.
|
 |
|
|
|
|
 |
N.V.Grishin
(2001).
Treble clef finger--a functionally diverse zinc-binding structural motif.
|
| |
Nucleic Acids Res,
29,
1703-1714.
|
 |
|
|
|
|
 |
S.Corvera
(2001).
Phosphatidylinositol 3-kinase and the control of endosome dynamics: new players defined by structural motifs.
|
| |
Traffic,
2,
859-866.
|
 |
|
|
|
|
 |
T.Kutateladze,
and
M.Overduin
(2001).
Structural mechanism of endosome docking by the FYVE domain.
|
| |
Science,
291,
1793-1796.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.C.Lawe,
V.Patki,
R.Heller-Harrison,
D.Lambright,
and
S.Corvera
(2000).
The FYVE domain of early endosome antigen 1 is required for both phosphatidylinositol 3-phosphate and Rab5 binding. Critical role of this dual interaction for endosomal localization.
|
| |
J Biol Chem,
275,
3699-3705.
|
 |
|
|
|
|
 |
G.Odorizzi,
M.Babst,
and
S.D.Emr
(2000).
Phosphoinositide signaling and the regulation of membrane trafficking in yeast.
|
| |
Trends Biochem Sci,
25,
229-235.
|
 |
|
|
|
|
 |
I.Gout,
G.Middleton,
J.Adu,
N.N.Ninkina,
L.B.Drobot,
V.Filonenko,
G.Matsuka,
A.M.Davies,
M.Waterfield,
and
V.L.Buchman
(2000).
Negative regulation of PI 3-kinase by Ruk, a novel adaptor protein.
|
| |
EMBO J,
19,
4015-4025.
|
 |
|
|
|
|
 |
I.M.Otto,
T.Raabe,
U.E.Rennefahrt,
P.Bork,
U.R.Rapp,
and
E.Kerkhoff
(2000).
The p150-Spir protein provides a link between c-Jun N-terminal kinase function and actin reorganization.
|
| |
Curr Biol,
10,
345-348.
|
 |
|
|
|
|
 |
J.H.Hurley,
and
S.Misra
(2000).
Signaling and subcellular targeting by membrane-binding domains.
|
| |
Annu Rev Biophys Biomol Struct,
29,
49-79.
|
 |
|
|
|
|
 |
J.H.Hurley,
Y.Tsujishita,
and
M.A.Pearson
(2000).
Floundering about at cell membranes: a structural view of phospholipid signaling.
|
| |
Curr Opin Struct Biol,
10,
737-743.
|
 |
|
|
|
|
 |
J.Kunz,
M.P.Wilson,
M.Kisseleva,
J.H.Hurley,
P.W.Majerus,
and
R.A.Anderson
(2000).
The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity.
|
| |
Mol Cell,
5,
1.
|
 |
|
|
|
|
 |
K.Hamada,
T.Shimizu,
T.Matsui,
S.Tsukita,
and
T.Hakoshima
(2000).
Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain.
|
| |
EMBO J,
19,
4449-4462.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Jiang,
T.E.Phillips,
S.W.Rogers,
and
J.C.Rogers
(2000).
Biogenesis of the protein storage vacuole crystalloid.
|
| |
J Cell Biol,
150,
755-770.
|
 |
|
|
|
|
 |
S.E.Lietzke,
S.Bose,
T.Cronin,
J.Klarlund,
A.Chawla,
M.P.Czech,
and
D.G.Lambright
(2000).
Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains.
|
| |
Mol Cell,
6,
385-394.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Urbé,
I.G.Mills,
H.Stenmark,
N.Kitamura,
and
M.J.Clague
(2000).
Endosomal localization and receptor dynamics determine tyrosine phosphorylation of hepatocyte growth factor-regulated tyrosine kinase substrate.
|
| |
Mol Cell Biol,
20,
7685-7692.
|
 |
|
|
|
|
 |
D.A.Fruman,
L.E.Rameh,
and
L.C.Cantley
(1999).
Phosphoinositide binding domains: embracing 3-phosphate.
|
| |
Cell,
97,
817-820.
|
 |
|
|
|
|
 |
J.M.Grimes,
S.D.Fuller,
and
D.I.Stuart
(1999).
Complementing crystallography: the role of cryo-electron microscopy in structural biology.
|
| |
Acta Crystallogr D Biol Crystallogr,
55,
1742-1749.
|
 |
|
|
|
|
 |
P.C.Driscoll,
and
A.L.Vuidepot
(1999).
Peripheral membrane proteins: FYVE sticky fingers.
|
| |
Curr Biol,
9,
R857-R860.
|
 |
|
|
|
|
 |
T.G.Kutateladze,
K.D.Ogburn,
W.T.Watson,
T.de Beer,
S.D.Emr,
C.G.Burd,
and
M.Overduin
(1999).
Phosphatidylinositol 3-phosphate recognition by the FYVE domain.
|
| |
Mol Cell,
3,
805-811.
|
 |
|
|
|
|
 |
X.Wang,
M.Kibschull,
M.M.Laue,
B.Lichte,
E.Petrasch-Parwez,
and
M.W.Kilimann
(1999).
Aczonin, a 550-kD putative scaffolding protein of presynaptic active zones, shares homology regions with Rim and Bassoon and binds profilin.
|
| |
J Cell Biol,
147,
151-162.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |