spacer
spacer

PDBsum entry 1gc7

Go to PDB code: 
protein links
Cell adhesion PDB id
1gc7
Jmol
Contents
Protein chain
297 a.a. *
* Residue conservation analysis
PDB id:
1gc7
Name: Cell adhesion
Title: Crystal structure of the radixin ferm domain
Structure: Radixin. Chain: a. Fragment: ferm domain. Engineered: yes
Source: Mus musculus. House mouse. Organism_taxid: 10090. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
Resolution:
2.80Å     R-factor:   0.215     R-free:   0.255
Authors: K.Hamada,T.Shimizu,T.Matsui,S.Tsukita,S.Tsukita,T.Hakoshima
Key ref:
K.Hamada et al. (2000). Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J, 19, 4449-4462. PubMed id: 10970839 DOI: 10.1093/emboj/19.17.4449
Date:
21-Jul-00     Release date:   20-Sep-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P26043  (RADI_MOUSE) -  Radixin
Seq:
Struc:
 
Seq:
Struc:
583 a.a.
297 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   3 terms 
  Biochemical function     cytoskeletal protein binding     1 term  

 

 
DOI no: 10.1093/emboj/19.17.4449 EMBO J 19:4449-4462 (2000)
PubMed id: 10970839  
 
 
Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain.
K.Hamada, T.Shimizu, T.Matsui, S.Tsukita, T.Hakoshima.
 
  ABSTRACT  
 
Radixin is a member of the ezrin/radixin/moesin (ERM) family of proteins, which play a role in the formation of the membrane-associated cytoskeleton by linking actin filaments and adhesion proteins. This cross-linking activity is regulated by phosphoinositides such as phosphatidylinositol 4,5-bisphosphate (PIP2) in the downstream of the small G protein Rho. The X-ray crystal structures of the radixin FERM domain, which is responsible for membrane binding, and its complex with inositol-(1,4, 5)-trisphosphate (IP3) have been determined. The domain consists of three subdomains featuring a ubiquitin-like fold, a four-helix bundle and a phosphotyrosine-binding-like domain, respectively. These subdomains are organized by intimate interdomain interactions to form characteristic grooves and clefts. One such groove is negatively charged and so is thought to interact with basic juxta-membrane regions of adhesion proteins. IP3 binds a basic cleft that is distinct from those of pleckstrin homology domains and is located on a positively charged flat molecular surface, suggesting an electrostatic mechanism of plasma membrane targeting. Based on the structural changes associated with IP3 binding, a possible unmasking mechanism of ERM proteins by PIP2 is proposed.
 
  Selected figure(s)  
 
Figure 4.
Figure 4 Subdomain structures of the radixin FERM domain. The color codes used are light green for radixin subdomains, light blue for ubiquitin, yellow for acyl-coenzyme A binding protein, red for the PTB domain and orange for the PH domain. (A) Superimposition of radixin subdomain A on ubiquitin (PDB code 1UBI, blue). (B) Superimposition of radixin subdomain B on E.coli acyl-coenzyme A binding protein (yellow, 1ACA). (C) Superimposition of radixin subdomain C on the IRS-1 PTB domain (1QQG, red). (D) Superimposition of radixin subdomain C on the PH domain (1PLS, orange). (E) Comparison of the IP3-binding sites found in the radixin FERM domain (left), the phospholipase C 1 PH domain (middle) and the -spectrin PH domain (right). Two loops forming the binding site of each PH domain are colored in blue. The binding site of the radixin FERM domain is located at the basic cleft between subdomains A (a ubiquitin-like fold in light green) and C (a PTB-like fold in light blue) (see text). The N-terminal half of helix 1C of subdomain C and the protruding loop between strands 3A and 5A of subdomain A form the IP3-binding site of the radixin FERM domain and are colored in blue.
Figure 5.
Figure 5 Molecular surface properties of the radixin FERM domain. (A) Surface electrostatic potentials of the radixin FERM domain viewed from the same direction as in Figure 2A. Positive (blue) and negative (red) potentials are mapped on the van der Waals surfaces. The IP3 molecule found in the complex crystal is shown in a stick model. (B) Surface electrostatic potentials viewed along the arrow b in (A) to show the basic cleft between subdomains A and C. The IP3 molecule found in the complex crystal is shown in a stick model. (C) Surface electrostatic potentials viewed along arrow c in (A) to show the acidic groove between subdomains B and C. (D) A backside view of surface electrostatic potentials seen in (A). The IP3 molecule found in the complex crystal is shown in a stick model. (E) Conserved residues of the radixin FERM domain mapped on the molecular surfaces. A front view of the radixin FERM domain depicted as a colored molecular surface using a gradient; orange indicates conserved identical residues and white non-conserved residues, while lighter shades of orange indicate semi-invariant residues. A view from the same direction as in (A) and Figure 2A. (F) Back view of conserved residues of the radixin FERM domain. (G) Front view of hydrophobic residues of the radixin FERM domain mapped on the molecular surfaces. (H) Back view of hydrophobic residues of the radixin FERM domain.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (2000, 19, 4449-4462) copyright 2000.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21347402 J.Putters, A.C.da Silva Almeida, P.van Kerkhof, A.G.van Rossum, A.Gracanin, and G.J.Strous (2011).
Jak2 is a negative regulator of ubiquitin-dependent endocytosis of the growth hormone receptor.
  PLoS One, 6, e14676.  
21387572 M.Gotesman, R.E.Hosein, and R.H.Gavin (2011).
MyTH4, independent of its companion FERM domain, affects the organization of an intramacronuclear microtubule array and is involved in elongation of the macronucleus in Tetrahymena thermophila.
  Cytoskeleton (Hoboken), 68, 220-236.  
21087420 P.Pinon, and B.Wehrle-Haller (2011).
Integrins: versatile receptors controlling melanocyte adhesion, migration and proliferation.
  Pigment Cell Melanoma Res, 24, 282-294.  
21210911 S.Marion, E.Hoffmann, D.Holzer, C.Le Clainche, M.Martin, M.Sachse, I.Ganeva, P.Mangeat, and G.Griffiths (2011).
Ezrin promotes actin assembly at the phagosome membrane and regulates phago-lysosomal fusion.
  Traffic, 12, 421-437.  
20150896 B.T.Goult, M.Bouaouina, P.R.Elliott, N.Bate, B.Patel, A.R.Gingras, J.G.Grossmann, G.C.Roberts, D.A.Calderwood, D.R.Critchley, and I.L.Barsukov (2010).
Structure of a double ubiquitin-like domain in the talin head: a role in integrin activation.
  EMBO J, 29, 1069-1080.
PDB codes: 2kc1 2kc2 2kma
20001213 C.A.Lipinski, and J.C.Loftus (2010).
Targeting Pyk2 for therapeutic intervention.
  Expert Opin Ther Targets, 14, 95.  
20156804 F.C.Morales, J.R.Molina, Y.Hayashi, and M.M.Georgescu (2010).
Overexpression of ezrin inactivates NF2 tumor suppressor in glioblastoma.
  Neuro Oncol, 12, 528-539.  
20559679 K.Kwiatkowska (2010).
One lipid, multiple functions: how various pools of PI(4,5)P(2) are created in the plasma membrane.
  Cell Mol Life Sci, 67, 3927-3946.  
20966971 M.C.Frame, H.Patel, B.Serrels, D.Lietha, and M.J.Eck (2010).
The FERM domain: organizing the structure and function of FAK.
  Nat Rev Mol Cell Biol, 11, 802-814.  
20947018 P.R.Elliott, B.T.Goult, P.M.Kopp, N.Bate, J.G.Grossmann, G.C.Roberts, D.R.Critchley, and I.L.Barsukov (2010).
The Structure of the talin head reveals a novel extended conformation of the FERM domain.
  Structure, 18, 1289-1299.
PDB code: 3ivf
19884346 R.F.Hennigan, L.A.Foster, M.F.Chaiken, T.Mani, M.M.Gomes, A.B.Herr, and W.Ip (2010).
Fluorescence resonance energy transfer analysis of merlin conformational changes.
  Mol Cell Biol, 30, 54-67.  
20308985 R.G.Fehon, A.I.McClatchey, and A.Bretscher (2010).
Organizing the cell cortex: the role of ERM proteins.
  Nat Rev Mol Cell Biol, 11, 276-287.  
19893486 S.Terawaki, K.Kitano, T.Mori, Y.Zhai, Y.Higuchi, N.Itoh, T.Watanabe, K.Kaibuchi, and T.Hakoshima (2010).
The PHCCEx domain of Tiam1/2 is a novel protein- and membrane-binding module.
  EMBO J, 29, 236-250.
PDB codes: 3a8n 3a8p 3a8q
20559318 T.G.Kutateladze (2010).
Translation of the phosphoinositide code by PI effectors.
  Nat Chem Biol, 6, 507-513.  
19028724 A.Darmellah, C.Rücker-Martin, and D.Feuvray (2009).
ERM proteins mediate the effects of Na+/H+ exchanger (NHE1) activation in cardiac myocytes.
  Cardiovasc Res, 81, 294-300.  
19948488 F.Saltel, E.Mortier, V.P.Hytönen, M.C.Jacquier, P.Zimmermann, V.Vogel, W.Liu, and B.Wehrle-Haller (2009).
New PI(4,5)P2- and membrane proximal integrin-binding motifs in the talin head control beta3-integrin clustering.
  J Cell Biol, 187, 715-731.  
19204146 J.J.Hao, Y.Liu, M.Kruhlak, K.E.Debell, B.L.Rellahan, and S.Shaw (2009).
Phospholipase C-mediated hydrolysis of PIP2 releases ERM proteins from lymphocyte membrane.
  J Cell Biol, 184, 451-462.  
19956793 C.M.Johnson, and W.Rodgers (2008).
Spatial Segregation of Phosphatidylinositol 4,5-Bisphosphate (PIP(2)) Signaling in Immune Cell Functions.
  Immunol Endocr Metab Agents Med Chem, 8, 349-357.  
18614051 E.Goksoy, Y.Q.Ma, X.Wang, X.Kong, D.Perera, E.F.Plow, and J.Qin (2008).
Structural basis for the autoinhibition of talin in regulating integrin activation.
  Mol Cell, 31, 124-133.  
17827228 G.Blin, E.Margeat, K.Carvalho, C.A.Royer, C.Roy, and C.Picart (2008).
Quantitative analysis of the binding of ezrin to large unilamellar vesicles containing phosphatidylinositol 4,5 bisphosphate.
  Biophys J, 94, 1021-1033.  
18065451 G.Khelashvili, H.Weinstein, and D.Harries (2008).
Protein diffusion on charged membranes: a dynamic mean-field model describes time evolution and lipid reorganization.
  Biophys J, 94, 2580-2597.  
  18931433 S.Terawaki, K.Kitano, M.Aoyama, and T.Hakoshima (2008).
Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tail of membrane-type 1 matrix metalloproteinase (MT1-MMP).
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 911-913.  
18753140 T.Mori, K.Kitano, S.Terawaki, R.Maesaki, Y.Fukami, and T.Hakoshima (2008).
Structural basis for CD44 recognition by ERM proteins.
  J Biol Chem, 283, 29602-29612.
PDB code: 2zpy
17419089 V.Niggli, and J.Rossy (2008).
Ezrin/radixin/moesin: versatile controllers of signaling molecules and of the cortical cytoskeleton.
  Int J Biochem Cell Biol, 40, 344-349.  
17967873 X.Cai, D.Lietha, D.F.Ceccarelli, A.V.Karginov, Z.Rajfur, K.Jacobson, K.M.Hahn, M.J.Eck, and M.D.Schaller (2008).
Spatial and temporal regulation of focal adhesion kinase activity in living cells.
  Mol Cell Biol, 28, 201-214.  
17267693 A.Hatzoglou, I.Ader, A.Splingard, J.Flanders, E.Saade, I.Leroy, S.Traver, S.Aresta, and J.de Gunzburg (2007).
Gem associates with Ezrin and acts via the Rho-GAP protein Gmip to down-regulate the Rho pathway.
  Mol Biol Cell, 18, 1242-1252.  
  18220662 J.T.Brozinick, B.A.Berkemeier, and J.S.Elmendorf (2007).
"Actin"g on GLUT4: membrane & cytoskeletal components of insulin action.
  Curr Diabetes Rev, 3, 111-122.  
17218263 K.L.Wegener, A.W.Partridge, J.Han, A.R.Pickford, R.C.Liddington, M.H.Ginsberg, and I.D.Campbell (2007).
Structural basis of integrin activation by talin.
  Cell, 128, 171-182.
PDB codes: 2h7d 2h7e
17134719 Q.Li, M.R.Nance, R.Kulikauskas, K.Nyberg, R.Fehon, P.A.Karplus, A.Bretscher, and J.J.Tesmer (2007).
Self-masking in an intact ERM-merlin protein: an active role for the central alpha-helical domain.
  J Mol Biol, 365, 1446-1459.
PDB codes: 2i1j 2i1k
17916086 S.Béraud-Dufour, R.Gautier, C.Albiges-Rizo, P.Chardin, and E.Faurobert (2007).
Krit 1 interactions with microtubules and membranes are regulated by Rap1 and integrin cytoplasmic domain associated protein-1.
  FEBS J, 274, 5518-5532.  
17538024 S.Prag, M.Parsons, M.D.Keppler, S.M.Ameer-Beg, P.Barber, J.Hunt, A.J.Beavil, R.Calvert, M.Arpin, B.Vojnovic, and T.Ng (2007).
Activated ezrin promotes cell migration through recruitment of the GEF Dbl to lipid rafts and preferential downstream activation of Cdc42.
  Mol Biol Cell, 18, 2935-2948.  
17459884 S.Terawaki, K.Kitano, and T.Hakoshima (2007).
Structural basis for type II membrane protein binding by ERM proteins revealed by the radixin-neutral endopeptidase 24.11 (NEP) complex.
  J Biol Chem, 282, 19854-19862.
PDB code: 2yvc
  17909285 T.Mori, K.Kitano, S.Terawaki, R.Maesaki, and T.Hakoshima (2007).
Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tail of adhesion molecule CD44.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 63, 844-847.  
  17183174 Y.Takai, K.Kitano, S.Terawaki, R.Maesaki, and T.Hakoshima (2007).
Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tails of adhesion molecules CD43 and PSGL-1.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 63, 49-51.  
18076570 Y.Takai, K.Kitano, S.Terawaki, R.Maesaki, and T.Hakoshima (2007).
Structural basis of PSGL-1 binding to ERM proteins.
  Genes Cells, 12, 1329-1338.
PDB code: 2emt
16626485 A.J.Baines (2006).
A FERM-adjacent (FA) region defines a subset of the 4.1 superfamily and is a potential regulator of FERM domain function.
  BMC Genomics, 7, 85.  
16221668 D.F.Ceccarelli, H.K.Song, F.Poy, M.D.Schaller, and M.J.Eck (2006).
Crystal structure of the FERM domain of focal adhesion kinase.
  J Biol Chem, 281, 252-259.
PDB codes: 2aeh 2al6
  16582480 K.Kitano, F.Yusa, and T.Hakoshima (2006).
Structure of dimerized radixin FERM domain suggests a novel masking motif in C-terminal residues 295-304.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 340-345.
PDB code: 2d2q
16782899 S.Y.Chen, and H.C.Chen (2006).
Direct interaction of focal adhesion kinase (FAK) with Met is required for FAK to promote hepatocyte growth factor-induced cell invasion.
  Mol Cell Biol, 26, 5155-5167.  
16140532 A.D.Sousa, and R.E.Cheney (2005).
Myosin-X: a molecular motor at the cell's fingertips.
  Trends Cell Biol, 15, 533-539.  
16102045 B.I.Ratnikov, A.W.Partridge, and M.H.Ginsberg (2005).
Integrin activation by talin.
  J Thromb Haemost, 3, 1783-1790.  
16324214 K.Golovnina, A.Blinov, E.M.Akhmametyeva, L.V.Omelyanchuk, and L.S.Chang (2005).
Evolution and origin of merlin, the product of the Neurofibromatosis type 2 (NF2) tumor-suppressor gene.
  BMC Evol Biol, 5, 69.  
16086323 K.Itoh, M.Lisovsky, H.Hikasa, and S.Y.Sokol (2005).
Reorganization of actin cytoskeleton by FRIED, a Frizzled-8 associated protein tyrosine phosphatase.
  Dev Dyn, 234, 90.  
15819698 M.Zhang, S.S.Bohlson, M.Dy, and A.J.Tenner (2005).
Modulated interaction of the ERM protein, moesin, with CD93.
  Immunology, 115, 63-73.  
16151629 S.Fais, A.De Milito, and F.Lozupone (2005).
The role of FAS to ezrin association in FAS-mediated apoptosis.
  Apoptosis, 10, 941-947.  
16212487 V.Niggli (2005).
Regulation of protein activities by phosphoinositide phosphates.
  Annu Rev Cell Dev Biol, 21, 57-79.  
15869386 W.Cho, and R.V.Stahelin (2005).
Membrane-protein interactions in cell signaling and membrane trafficking.
  Annu Rev Biophys Biomol Struct, 34, 119-151.  
15147559 A.Ivetic, and A.J.Ridley (2004).
Ezrin/radixin/moesin proteins and Rho GTPase signalling in leucocytes.
  Immunology, 112, 165-176.  
14993232 B.T.Fievet, A.Gautreau, C.Roy, L.Del Maestro, P.Mangeat, D.Louvard, and M.Arpin (2004).
Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin.
  J Cell Biol, 164, 653-659.  
15277531 C.Steindler, Z.Li, M.Algarté, A.Alcover, V.Libri, J.Ragimbeau, and S.Pellegrini (2004).
Jamip1 (marlin-1) defines a family of proteins interacting with janus kinases and microtubules.
  J Biol Chem, 279, 43168-43177.  
14676203 F.Lozupone, L.Lugini, P.Matarrese, F.Luciani, C.Federici, E.Iessi, P.Margutti, G.Stassi, W.Malorni, and S.Fais (2004).
Identification and relevance of the CD95-binding domain in the N-terminal region of ezrin.
  J Biol Chem, 279, 9199-9207.  
15123646 I.Behrmann, T.Smyczek, P.C.Heinrich, H.Schmitz-Van de Leur, W.Komyod, B.Giese, G.Müller-Newen, S.Haan, and C.Haan (2004).
Janus kinase (Jak) subcellular localization revisited: the exclusive membrane localization of endogenous Janus kinase 1 by cytokine receptor interaction uncovers the Jak.receptor complex to be equivalent to a receptor tyrosine kinase.
  J Biol Chem, 279, 35486-35493.  
15362227 I.D.Campbell, and M.H.Ginsberg (2004).
The talin-tail interaction places integrin activation on FERM ground.
  Trends Biochem Sci, 29, 429-435.  
15169899 J.M.Dunty, V.Gabarra-Niecko, M.L.King, D.F.Ceccarelli, M.J.Eck, and M.D.Schaller (2004).
FERM domain interaction promotes FAK signaling.
  Mol Cell Biol, 24, 5353-5368.  
15138281 K.J.Ralston, S.L.Hird, X.Zhang, J.L.Scott, B.Jin, R.F.Thorne, M.C.Berndt, A.W.Boyd, and G.F.Burns (2004).
The LFA-1-associated molecule PTA-1 (CD226) on T cells forms a dynamic molecular complex with protein 4.1G and human discs large.
  J Biol Chem, 279, 33816-33828.  
15313460 K.P.Hoeflich, and M.Ikura (2004).
Radixin: cytoskeletal adopter and signaling protein.
  Int J Biochem Cell Biol, 36, 2131-2136.  
15143187 L.S.Argetsinger, J.L.Kouadio, H.Steen, A.Stensballe, O.N.Jensen, and C.Carter-Su (2004).
Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity.
  Mol Cell Biol, 24, 4955-4967.  
14594952 N.Kumar, P.Zhao, A.Tomar, C.A.Galea, and S.Khurana (2004).
Association of villin with phosphatidylinositol 4,5-bisphosphate regulates the actin cytoskeleton.
  J Biol Chem, 279, 3096-3110.  
15152196 V.Ramesh (2004).
Merlin and the ERM proteins in Schwann cells, neurons and growth cones.
  Nat Rev Neurosci, 5, 462-470.  
12878601 B.Giese, C.K.Au-Yeung, A.Herrmann, S.Diefenbach, C.Haan, A.Küster, S.B.Wortmann, C.Roderburg, P.C.Heinrich, I.Behrmann, and G.Müller-Newen (2003).
Long term association of the cytokine receptor gp130 and the Janus kinase Jak1 revealed by FRAP analysis.
  J Biol Chem, 278, 39205-39213.  
14502992 H.J.Meijer, and T.Munnik (2003).
Phospholipid-based signaling in plants.
  Annu Rev Plant Biol, 54, 265-306.  
12471164 H.L.Yin, and P.A.Janmey (2003).
Phosphoinositide regulation of the actin cytoskeleton.
  Annu Rev Physiol, 65, 761-789.  
12782621 I.L.Barsukov, A.Prescot, N.Bate, B.Patel, D.N.Floyd, N.Bhanji, C.R.Bagshaw, K.Letinic, G.Di Paolo, P.De Camilli, G.C.Roberts, and D.R.Critchley (2003).
Phosphatidylinositol phosphate kinase type 1gamma and beta1-integrin cytoplasmic domain bind to the same region in the talin FERM domain.
  J Biol Chem, 278, 31202-31209.  
12547434 J.W.Yu, and M.A.Lemmon (2003).
Genome-wide analysis of signaling domain function.
  Curr Opin Chem Biol, 7, 103-109.  
12554651 K.Hamada, T.Shimizu, S.Yonemura, S.Tsukita, S.Tsukita, and T.Hakoshima (2003).
Structural basis of adhesion-molecule recognition by ERM proteins revealed by the crystal structure of the radixin-ICAM-2 complex.
  EMBO J, 22, 502-514.
PDB code: 1j19
14653806 K.S.Erdmann (2003).
The protein tyrosine phosphatase PTP-Basophil/Basophil-like. Interacting proteins and molecular functions.
  Eur J Biochem, 270, 4789-4798.  
  12694559 M.A.Lemmon (2003).
Phosphoinositide recognition domains.
  Traffic, 4, 201-213.  
12808036 M.Koltzscher, C.Neumann, S.König, and V.Gerke (2003).
Ca2+-dependent binding and activation of dormant ezrin by dimeric S100P.
  Mol Biol Cell, 14, 2372-2384.  
14521927 S.Chauhan, R.Pandey, J.F.Way, T.C.Sroka, M.C.Demetriou, S.Kunz, A.E.Cress, D.W.Mount, and R.L.Miesfeld (2003).
Androgen regulation of the human FERM domain encoding gene EHM2 in a cell model of steroid-induced differentiation.
  Biochem Biophys Res Commun, 310, 421-432.  
12429733 W.J.Smith, N.Nassar, A.Bretscher, R.A.Cerione, and P.A.Karplus (2003).
Structure of the active N-terminal domain of Ezrin. Conformational and mobility changes identify keystone interactions.
  J Biol Chem, 278, 4949-4956.
PDB code: 1ni2
12695503 Z.Mostafavi-Pour, J.A.Askari, S.J.Parkinson, P.J.Parker, T.T.Ng, and M.J.Humphries (2003).
Integrin-specific signaling pathways controlling focal adhesion formation and cell migration.
  J Cell Biol, 161, 155-167.  
12154370 A.Bretscher, K.Edwards, and R.G.Fehon (2002).
ERM proteins and merlin: integrators at the cell cortex.
  Nat Rev Mol Cell Biol, 3, 586-599.  
11792551 A.Gautreau, D.Louvard, and M.Arpin (2002).
ERM proteins and NF2 tumor suppressor: the Yin and Yang of cortical actin organization and cell growth signaling.
  Curr Opin Cell Biol, 14, 104-109.  
11856822 B.S.Kang, D.R.Cooper, Y.Devedjiev, U.Derewenda, and Z.S.Derewenda (2002).
The structure of the FERM domain of merlin, the neurofibromatosis type 2 gene product.
  Acta Crystallogr D Biol Crystallogr, 58, 381-391.
PDB code: 1h4r
12360288 C.Polesello, I.Delon, P.Valenti, P.Ferrer, and F.Payre (2002).
Dmoesin controls actin-based cell shape and polarity during Drosophila melanogaster oogenesis.
  Nat Cell Biol, 4, 782-789.  
11932255 D.A.Calderwood, B.Yan, J.M.de Pereda, B.G.Alvarez, Y.Fujioka, R.C.Liddington, and M.H.Ginsberg (2002).
The phosphotyrosine binding-like domain of talin activates integrins.
  J Biol Chem, 277, 21749-21758.  
12422219 G.Di Paolo, L.Pellegrini, K.Letinic, G.Cestra, R.Zoncu, S.Voronov, S.Chang, J.Guo, M.R.Wenk, and P.De Camilli (2002).
Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin.
  Nature, 420, 85-89.  
12442173 I.Bosanac, J.R.Alattia, T.K.Mal, J.Chan, S.Talarico, F.K.Tong, K.I.Tong, F.Yoshikawa, T.Furuichi, M.Iwai, T.Michikawa, K.Mikoshiba, and M.Ikura (2002).
Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand.
  Nature, 420, 696-700.
PDB code: 1n4k
12142282 M.A.Pufall, and B.J.Graves (2002).
Autoinhibitory domains: modular effectors of cellular regulation.
  Annu Rev Cell Dev Biol, 18, 421-462.  
12391143 M.Toutant, A.Costa, J.M.Studler, G.Kadaré, M.Carnaud, and J.A.Girault (2002).
Alternative splicing controls the mechanisms of FAK autophosphorylation.
  Mol Cell Biol, 22, 7731-7743.  
11988466 S.McLaughlin, J.Wang, A.Gambhir, and D.Murray (2002).
PIP(2) and proteins: interactions, organization, and information flow.
  Annu Rev Biophys Biomol Struct, 31, 151-175.  
11891121 S.P.Denker, and D.L.Barber (2002).
Ion transport proteins anchor and regulate the cytoskeleton.
  Curr Opin Cell Biol, 14, 214-220.  
11959505 S.Pokutta, and W.I.Weis (2002).
The cytoplasmic face of cell contact sites.
  Curr Opin Struct Biol, 12, 255-262.  
11756419 T.Shimizu, A.Seto, N.Maita, K.Hamada, S.Tsukita, S.Tsukita, and T.Hakoshima (2002).
Structural basis for neurofibromatosis type 2. Crystal structure of the merlin FERM domain.
  J Biol Chem, 277, 10332-10336.
PDB code: 1isn
12136155 W.J.Smith, and R.A.Cerione (2002).
Crystallization and preliminary crystallographic analysis of the ezrin FERM domain.
  Acta Crystallogr D Biol Crystallogr, 58, 1359-1361.  
11728336 E.J.Allenspach, P.Cullinan, J.Tong, Q.Tang, A.G.Tesciuba, J.L.Cannon, S.M.Takahashi, R.Morgan, J.K.Burkhardt, and A.I.Sperling (2001).
ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse.
  Immunity, 15, 739-750.  
11248547 J.H.Hurley, and T.Meyer (2001).
Subcellular targeting by membrane lipids.
  Curr Opin Cell Biol, 13, 146-152.  
11375520 K.Hamada, T.Shimizu, T.Matsui, S.Tsukita, S.Tsukita, and T.Hakoshima (2001).
Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tail of the adhesion protein ICAM-2.
  Acta Crystallogr D Biol Crystallogr, 57, 891-892.  
11779507 L.J.Huang, S.N.Constantinescu, and H.F.Lodish (2001).
The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor.
  Mol Cell, 8, 1327-1338.  
11590013 V.Niggli (2001).
Structural properties of lipid-binding sites in cytoskeletal proteins.
  Trends Biochem Sci, 26, 604-611.  
11741532 Y.J.Zhou, M.Chen, N.A.Cusack, L.H.Kimmel, K.S.Magnuson, J.G.Boyd, W.Lin, J.L.Roberts, A.Lengi, R.H.Buckley, R.L.Geahlen, F.Candotti, M.Gadina, P.S.Changelian, and J.J.O'Shea (2001).
Unexpected effects of FERM domain mutations on catalytic activity of Jak3: structural implication for Janus kinases.
  Mol Cell, 8, 959-969.  
11224681 Y.Takakuwa (2001).
Regulation of red cell membrane protein interactions: implications for red cell function.
  Curr Opin Hematol, 8, 80-84.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.