 |
PDBsum entry 1nd7
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Ligase
|
 |
|
Title:
|
 |
Conformational flexibility underlies ubiquitin ligation mediated by the wwp1 hect domain e3 ligase
|
|
Structure:
|
 |
Ww domain-containing protein 1. Chain: a. Fragment: wwp1 hect domain. Synonym: wwp1 hect domain, suppressor of deltex related protein 1, nedd-4-like ubiquitin-protein ligase, atrophin-1 interacting protein 5. Engineered: yes
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Gene: wwp1. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
|
|
Resolution:
|
 |
|
2.10Å
|
R-factor:
|
0.243
|
R-free:
|
0.270
|
|
|
Authors:
|
 |
M.A.Verdecia,C.A.P.Joaziero,N.J.Wells,J.-L.Ferrer,M.E.Bowman, T.Hunter,J.P.Noel
|
Key ref:
|
 |
M.A.Verdecia
et al.
(2003).
Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase.
Mol Cell,
11,
249-259.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
08-Dec-02
|
Release date:
|
23-Sep-03
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
Q9H0M0
(WWP1_HUMAN) -
NEDD4-like E3 ubiquitin-protein ligase WWP1 from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
922 a.a.
374 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
*
PDB and UniProt seqs differ
at 2 residue positions (black
crosses)
|
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.2.3.2.26
- HECT-type E3 ubiquitin transferase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
S-ubiquitinyl-[E2 ubiquitin-conjugating enzyme]-L-cysteine + [acceptor protein]-L-lysine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + N6- ubiquitinyl-[acceptor protein]-L-lysine
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Mol Cell
11:249-259
(2003)
|
|
PubMed id:
|
|
|
|
|
| |
|
Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase.
|
|
M.A.Verdecia,
C.A.Joazeiro,
N.J.Wells,
J.L.Ferrer,
M.E.Bowman,
T.Hunter,
J.P.Noel.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Ubiquitin ligases (E3) select proteins for ubiquitylation, a modification that
directs altered subcellular trafficking and/or degradation of the target
protein. HECT domain E3 ligases not only recognize, but also directly catalyze,
ligation of ubiquitin to their protein substrates. The crystal structure of the
HECT domain of the human ubiquitin ligase WWP1/AIP5 maintains a two-lobed
structure like the HECT domain of the human ubiquitin ligase E6AP. While the
individual N and C lobes of WWP1 possess very similar folds to those of E6AP,
the organization of the two lobes relative to one another is different from E6AP
due to a rotation about a polypeptide hinge linking the N and C lobes.
Mutational analyses suggest that a range of conformations achieved by rotation
about this hinge region is essential for catalytic activity.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 5.
Figure 5. Stabilizing Interactions at the Base of the Hinge
Loop(A) Residue contacts within E6AP in the L shape
conformation. Lys549 interacts with Asn822, Gln553 hydrogen
bonds with Thr819, and Asp607 appears to interact with
His609.(B) Residue contacts within WWP1/AIP5 in the shape
conformation. Arg613 interacts with Gly610, and His621 hydrogen
bonds with Asp675. Both pairs of interactions bridge the H3
helix to loop regions (S2/H3 and H4/H5 loops).(C) WWP1/AIP5
(residues 546–922) was used as a reference for wild-type
autoubiquitylation activity.
|
 |
Figure 6.
Figure 6. C Lobe and N Lobe Interactions in WWP1/AIP5(A)
Residue contacts between the N and C lobes within WWP1/AIP5 in
the shape
conformation. Asp793 on the N lobe interacts with Arg845 on the
C lobe. Gln848 and Arg855 on the C lobe form hydrogen bonds with
Glu798 and the carbonyl oxygen of Thr676. Asp793 and Arg845 are
highly conserved, and Glu798, Gln848, and Arg855 are absolutely
conserved among 22 HECT domain sequences analyzed (data not
shown).(B) Ubiquitin transfer assays.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Mol Cell
(2003,
11,
249-259)
copyright 2003.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
D.Y.Lin,
J.Diao,
D.Zhou,
and
J.Chen
(2011).
Biochemical and structural studies of a HECT-like ubiquitin ligase from Escherichia coli O157:H7.
|
| |
J Biol Chem,
286,
441-449.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Maspero,
S.Mari,
E.Valentini,
A.Musacchio,
A.Fish,
S.Pasqualato,
and
S.Polo
(2011).
Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation.
|
| |
EMBO Rep,
12,
342-349.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.H.Hurley,
and
H.Stenmark
(2011).
Molecular mechanisms of ubiquitin-dependent membrane traffic.
|
| |
Annu Rev Biophys,
40,
119-142.
|
 |
|
|
|
|
 |
A.G.Eldridge,
and
T.O'Brien
(2010).
Therapeutic strategies within the ubiquitin proteasome system.
|
| |
Cell Death Differ,
17,
4.
|
 |
|
|
|
|
 |
C.A.Williams,
D.J.Driscoll,
and
A.I.Dagli
(2010).
Clinical and genetic aspects of Angelman syndrome.
|
| |
Genet Med,
12,
385-395.
|
 |
|
|
|
|
 |
E.R.Weiss,
E.Popova,
H.Yamanaka,
H.C.Kim,
J.M.Huibregtse,
and
H.Göttlinger
(2010).
Rescue of HIV-1 release by targeting widely divergent NEDD4-type ubiquitin ligases and isolated catalytic HECT domains to Gag.
|
| |
PLoS Pathog,
6,
0.
|
 |
|
|
|
|
 |
E.Sakata,
T.Satoh,
S.Yamamoto,
Y.Yamaguchi,
M.Yagi-Utsumi,
E.Kurimoto,
K.Tanaka,
S.Wakatsuki,
and
K.Kato
(2010).
Crystal structure of UbcH5b~ubiquitin intermediate: insight into the formation of the self-assembled E2~Ub conjugates.
|
| |
Structure,
18,
138-147.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.Levin,
C.Eakin,
M.P.Blanc,
R.E.Klevit,
S.I.Miller,
and
P.S.Brzovic
(2010).
Identification of an unconventional E3 binding surface on the UbcH5 ~ Ub conjugate recognized by a pathogenic bacterial E3 ligase.
|
| |
Proc Natl Acad Sci U S A,
107,
2848-2853.
|
 |
|
|
|
|
 |
L.Abaied,
M.Trabelsi,
M.Chaabouni,
M.Kharrat,
L.Kraoua,
R.M'rad,
N.Tebib,
F.Maazoul,
and
H.Chaabouni
(2010).
A novel UBE3A truncating mutation in large Tunisian Angelman syndrome pedigree.
|
| |
Am J Med Genet A,
152,
141-146.
|
 |
|
|
|
|
 |
L.Xing,
M.Zhang,
and
D.Chen
(2010).
Smurf control in bone cells.
|
| |
J Cell Biochem,
110,
554-563.
|
 |
|
|
|
|
 |
R.K.Pandya,
J.R.Partridge,
K.R.Love,
T.U.Schwartz,
and
H.L.Ploegh
(2010).
A structural element within the HUWE1 HECT domain modulates self-ubiquitination and substrate ubiquitination activities.
|
| |
J Biol Chem,
285,
5664-5673.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.K.Olsen,
A.D.Capili,
X.Lu,
D.S.Tan,
and
C.D.Lima
(2010).
Active site remodelling accompanies thioester bond formation in the SUMO E1.
|
| |
Nature,
463,
906-912.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.W.Hicks,
and
J.E.Galán
(2010).
Hijacking the host ubiquitin pathway: structural strategies of bacterial E3 ubiquitin ligases.
|
| |
Curr Opin Microbiol,
13,
41-46.
|
 |
|
|
|
|
 |
D.Rotin,
and
S.Kumar
(2009).
Physiological functions of the HECT family of ubiquitin ligases.
|
| |
Nat Rev Mol Cell Biol,
10,
398-409.
|
 |
|
|
|
|
 |
H.B.Kamadurai,
J.Souphron,
D.C.Scott,
D.M.Duda,
D.J.Miller,
D.Stringer,
R.C.Piper,
and
B.A.Schulman
(2009).
Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex.
|
| |
Mol Cell,
36,
1095-1102.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.C.Kim,
and
J.M.Huibregtse
(2009).
Polyubiquitination by HECT E3s and the determinants of chain type specificity.
|
| |
Mol Cell Biol,
29,
3307-3318.
|
 |
|
|
|
|
 |
J.R.Lee,
A.J.Oestreich,
J.A.Payne,
M.S.Gunawan,
A.P.Norgan,
and
D.J.Katzmann
(2009).
The HECT domain of the ubiquitin ligase Rsp5 contributes to substrate recognition.
|
| |
J Biol Chem,
284,
32126-32137.
|
 |
|
|
|
|
 |
J.Zhao,
Z.Zhang,
Z.Vucetic,
K.J.Soprano,
and
D.R.Soprano
(2009).
HACE1: A novel repressor of RAR transcriptional activity.
|
| |
J Cell Biochem,
107,
482-493.
|
 |
|
|
|
|
 |
K.R.Love,
R.K.Pandya,
E.Spooner,
and
H.L.Ploegh
(2009).
Ubiquitin C-terminal electrophiles are activity-based probes for identification and mechanistic study of ubiquitin conjugating machinery.
|
| |
ACS Chem Biol,
4,
275-287.
|
 |
|
|
|
|
 |
M.E.French,
B.R.Kretzmann,
and
L.Hicke
(2009).
Regulation of the RSP5 Ubiquitin Ligase by an Intrinsic Ubiquitin-binding Site.
|
| |
J Biol Chem,
284,
12071-12079.
|
 |
|
|
|
|
 |
S.B.Qian,
L.Waldron,
N.Choudhary,
R.E.Klevit,
W.J.Chazin,
and
C.Patterson
(2009).
Engineering a ubiquitin ligase reveals conformational flexibility required for ubiquitin transfer.
|
| |
J Biol Chem,
284,
26797-26802.
|
 |
|
|
|
|
 |
T.Mund,
and
H.R.Pelham
(2009).
Control of the activity of WW-HECT domain E3 ubiquitin ligases by NDFIP proteins.
|
| |
EMBO Rep,
10,
501-507.
|
 |
|
|
|
|
 |
A.Nigham,
L.Tucker-Kellogg,
I.Mihalek,
C.Verma,
and
D.Hsu
(2008).
pFlexAna: detecting conformational changes in remotely related proteins.
|
| |
Nucleic Acids Res,
36,
W246-W251.
|
 |
|
|
|
|
 |
A.U.Singer,
J.R.Rohde,
R.Lam,
T.Skarina,
O.Kagan,
R.Dileo,
N.Y.Chirgadze,
M.E.Cuff,
A.Joachimiak,
M.Tyers,
P.J.Sansonetti,
C.Parsot,
and
A.Savchenko
(2008).
Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases.
|
| |
Nat Struct Mol Biol,
15,
1293-1301.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Chen,
Z.Zhou,
R.Liu,
Y.Li,
P.B.Azmi,
and
A.K.Seth
(2008).
The WW domain containing E3 ubiquitin protein ligase 1 upregulates ErbB2 and EGFR through RING finger protein 11.
|
| |
Oncogene,
27,
6845-6855.
|
 |
|
|
|
|
 |
D.M.Duda,
L.A.Borg,
D.C.Scott,
H.W.Hunt,
M.Hammel,
and
B.A.Schulman
(2008).
Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation.
|
| |
Cell,
134,
995.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Melino,
E.Gallagher,
R.I.Aqeilan,
R.Knight,
A.Peschiaroli,
M.Rossi,
F.Scialpi,
M.Malatesta,
L.Zocchi,
G.Browne,
A.Ciechanover,
and
F.Bernassola
(2008).
Itch: a HECT-type E3 ligase regulating immunity, skin and cancer.
|
| |
Cell Death Differ,
15,
1103-1112.
|
 |
|
|
|
|
 |
I.E.Wertz,
and
V.M.Dixit
(2008).
Ubiquitin-mediated regulation of TNFR1 signaling.
|
| |
Cytokine Growth Factor Rev,
19,
313-324.
|
 |
|
|
|
|
 |
J.Diao,
Y.Zhang,
J.M.Huibregtse,
D.Zhou,
and
J.Chen
(2008).
Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase.
|
| |
Nat Struct Mol Biol,
15,
65-70.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Lu,
X.Yin,
T.Weng,
S.Xi,
L.Li,
G.Xing,
X.Cheng,
X.Yang,
L.Zhang,
and
F.He
(2008).
Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1.
|
| |
Nat Cell Biol,
10,
994.
|
 |
|
|
|
|
 |
M.D.Petroski
(2008).
The ubiquitin system, disease, and drug discovery.
|
| |
BMC Biochem,
9,
S7.
|
 |
|
|
|
|
 |
S.Beaudenon,
and
J.M.Huibregtse
(2008).
HPV E6, E6AP and cervical cancer.
|
| |
BMC Biochem,
9,
S4.
|
 |
|
|
|
|
 |
Y.Zhu,
H.Li,
L.Hu,
J.Wang,
Y.Zhou,
Z.Pang,
L.Liu,
and
F.Shao
(2008).
Structure of a Shigella effector reveals a new class of ubiquitin ligases.
|
| |
Nat Struct Mol Biol,
15,
1302-1308.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.D.Capili,
and
C.D.Lima
(2007).
Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways.
|
| |
Curr Opin Struct Biol,
17,
726-735.
|
 |
|
|
|
|
 |
A.Laine,
and
Z.Ronai
(2007).
Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1.
|
| |
Oncogene,
26,
1477-1483.
|
 |
|
|
|
|
 |
B.P.Somesh,
S.Sigurdsson,
H.Saeki,
H.Erdjument-Bromage,
P.Tempst,
and
J.Q.Svejstrup
(2007).
Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD.
|
| |
Cell,
129,
57-68.
|
 |
|
|
|
|
 |
B.T.Dye,
and
B.A.Schulman
(2007).
Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins.
|
| |
Annu Rev Biophys Biomol Struct,
36,
131-150.
|
 |
|
|
|
|
 |
C.Chen,
X.Sun,
P.Guo,
X.Y.Dong,
P.Sethi,
W.Zhou,
Z.Zhou,
J.Petros,
H.F.Frierson,
R.L.Vessella,
A.Atfi,
and
J.T.Dong
(2007).
Ubiquitin E3 ligase WWP1 as an oncogenic factor in human prostate cancer.
|
| |
Oncogene,
26,
2386-2394.
|
 |
|
|
|
|
 |
G.Mayr,
F.S.Domingues,
and
P.Lackner
(2007).
Comparative analysis of protein structure alignments.
|
| |
BMC Struct Biol,
7,
50.
|
 |
|
|
|
|
 |
K.Xia,
M.Manning,
H.Hesham,
Q.Lin,
C.Bystroff,
and
W.Colón
(2007).
Identifying the subproteome of kinetically stable proteins via diagonal 2D SDS/PAGE.
|
| |
Proc Natl Acad Sci U S A,
104,
17329-17334.
|
 |
|
|
|
|
 |
M.Scheffner,
and
O.Staub
(2007).
HECT E3s and human disease.
|
| |
BMC Biochem,
8,
S6.
|
 |
|
|
|
|
 |
P.Knipscheer,
and
T.K.Sixma
(2007).
Protein-protein interactions regulate Ubl conjugation.
|
| |
Curr Opin Struct Biol,
17,
665-673.
|
 |
|
|
|
|
 |
S.Chaudhury,
A.Sircar,
A.Sivasubramanian,
M.Berrondo,
and
J.J.Gray
(2007).
Incorporating biochemical information and backbone flexibility in RosettaDock for CAPRI rounds 6-12.
|
| |
Proteins,
69,
793-800.
|
 |
|
|
|
|
 |
Y.C.Liu
(2007).
The E3 ubiquitin ligase Itch in T cell activation, differentiation, and tolerance.
|
| |
Semin Immunol,
19,
197-205.
|
 |
|
|
|
|
 |
Y.Chen
(2007).
The enzymes in ubiquitin-like post-translational modifications.
|
| |
Biosci Trends,
1,
16-25.
|
 |
|
|
|
|
 |
Y.Kee,
and
J.M.Huibregtse
(2007).
Regulation of catalytic activities of HECT ubiquitin ligases.
|
| |
Biochem Biophys Res Commun,
354,
329-333.
|
 |
|
|
|
|
 |
Z.M.Eletr,
and
B.Kuhlman
(2007).
Sequence determinants of E2-E6AP binding affinity and specificity.
|
| |
J Mol Biol,
369,
419-428.
|
 |
|
|
|
|
 |
A.B.Fotia,
D.I.Cook,
and
S.Kumar
(2006).
The ubiquitin-protein ligases Nedd4 and Nedd4-2 show similar ubiquitin-conjugating enzyme specificities.
|
| |
Int J Biochem Cell Biol,
38,
472-479.
|
 |
|
|
|
|
 |
E.Gallagher,
M.Gao,
Y.C.Liu,
and
M.Karin
(2006).
Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change.
|
| |
Proc Natl Acad Sci U S A,
103,
1717-1722.
|
 |
|
|
|
|
 |
G.Nalepa,
M.Rolfe,
and
J.W.Harper
(2006).
Drug discovery in the ubiquitin-proteasome system.
|
| |
Nat Rev Drug Discov,
5,
596-613.
|
 |
|
|
|
|
 |
M.D.Petroski,
G.Kleiger,
and
R.J.Deshaies
(2006).
Evaluation of a diffusion-driven mechanism for substrate ubiquitination by the SCF-Cdc34 ubiquitin ligase complex.
|
| |
Mol Cell,
24,
523-534.
|
 |
|
|
|
|
 |
M.Hochstrasser
(2006).
Lingering mysteries of ubiquitin-chain assembly.
|
| |
Cell,
124,
27-34.
|
 |
|
|
|
|
 |
M.Rape,
S.K.Reddy,
and
M.W.Kirschner
(2006).
The processivity of multiubiquitination by the APC determines the order of substrate degradation.
|
| |
Cell,
124,
89.
|
 |
|
|
|
|
 |
O.Kerscher,
R.Felberbaum,
and
M.Hochstrasser
(2006).
Modification of proteins by ubiquitin and ubiquitin-like proteins.
|
| |
Annu Rev Cell Dev Biol,
22,
159-180.
|
 |
|
|
|
|
 |
R.Mouchantaf,
B.A.Azakir,
P.S.McPherson,
S.M.Millard,
S.A.Wood,
and
A.Angers
(2006).
The ubiquitin ligase itch is auto-ubiquitylated in vivo and in vitro but is protected from degradation by interacting with the deubiquitylating enzyme FAM/USP9X.
|
| |
J Biol Chem,
281,
38738-38747.
|
 |
|
|
|
|
 |
A.A.Ogunjimi,
D.J.Briant,
N.Pece-Barbara,
C.Le Roy,
G.M.Di Guglielmo,
P.Kavsak,
R.K.Rasmussen,
B.T.Seet,
F.Sicheri,
and
J.L.Wrana
(2005).
Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain.
|
| |
Mol Cell,
19,
297-308.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Chen,
X.Sun,
P.Guo,
X.Y.Dong,
P.Sethi,
X.Cheng,
J.Zhou,
J.Ling,
J.W.Simons,
J.B.Lingrel,
and
J.T.Dong
(2005).
Human Kruppel-like factor 5 is a target of the E3 ubiquitin ligase WWP1 for proteolysis in epithelial cells.
|
| |
J Biol Chem,
280,
41553-41561.
|
 |
|
|
|
|
 |
D.T.Huang,
A.Paydar,
M.Zhuang,
M.B.Waddell,
J.M.Holton,
and
B.A.Schulman
(2005).
Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1.
|
| |
Mol Cell,
17,
341-350.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Wang,
and
C.M.Pickart
(2005).
Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis.
|
| |
EMBO J,
24,
4324-4333.
|
 |
|
|
|
|
 |
C.Salvat,
G.Wang,
A.Dastur,
N.Lyon,
and
J.M.Huibregtse
(2004).
The -4 phenylalanine is required for substrate ubiquitination catalyzed by HECT ubiquitin ligases.
|
| |
J Biol Chem,
279,
18935-18943.
|
 |
|
|
|
|
 |
D.T.Huang,
D.W.Miller,
R.Mathew,
R.Cassell,
J.M.Holton,
M.F.Roussel,
and
B.A.Schulman
(2004).
A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8.
|
| |
Nat Struct Mol Biol,
11,
927-935.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.M.Cooper,
A.W.Hudson,
J.Amos,
J.Wagstaff,
and
P.M.Howley
(2004).
Biochemical analysis of Angelman syndrome-associated mutations in the E3 ubiquitin ligase E6-associated protein.
|
| |
J Biol Chem,
279,
41208-41217.
|
 |
|
|
|
|
 |
J.Smalle,
and
R.D.Vierstra
(2004).
The ubiquitin 26S proteasome proteolytic pathway.
|
| |
Annu Rev Plant Biol,
55,
555-590.
|
 |
|
|
|
|
 |
T.Cardozo,
and
M.Pagano
(2004).
The SCF ubiquitin ligase: insights into a molecular machine.
|
| |
Nat Rev Mol Cell Biol,
5,
739-751.
|
 |
|
|
|
|
 |
B.P.Downes,
R.M.Stupar,
D.J.Gingerich,
and
R.D.Vierstra
(2003).
The HECT ubiquitin-protein ligase (UPL) family in Arabidopsis: UPL3 has a specific role in trichome development.
|
| |
Plant J,
35,
729-742.
|
 |
|
|
|
|
 |
B.R.Wong,
F.Parlati,
K.Qu,
S.Demo,
T.Pray,
J.Huang,
D.G.Payan,
and
M.K.Bennett
(2003).
Drug discovery in the ubiquitin regulatory pathway.
|
| |
Drug Discov Today,
8,
746-754.
|
 |
|
|
|
|
 |
N.Zheng
(2003).
A closer look of the HECTic ubiquitin ligases.
|
| |
Structure,
11,
5-6.
|
 |
|
|
|
|
 |
P.Y.Wu,
M.Hanlon,
M.Eddins,
C.Tsui,
R.S.Rogers,
J.P.Jensen,
M.J.Matunis,
A.M.Weissman,
A.M.Weisman,
A.M.Weissman,
C.Wolberger,
C.P.Wolberger,
and
C.M.Pickart
(2003).
A conserved catalytic residue in the ubiquitin-conjugating enzyme family.
|
| |
EMBO J,
22,
5241-5250.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |