spacer
spacer

PDBsum entry 1nd7

Go to PDB code: 
protein links
Ligase PDB id
1nd7

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
374 a.a. *
* Residue conservation analysis
PDB id:
1nd7
Name: Ligase
Title: Conformational flexibility underlies ubiquitin ligation mediated by the wwp1 hect domain e3 ligase
Structure: Ww domain-containing protein 1. Chain: a. Fragment: wwp1 hect domain. Synonym: wwp1 hect domain, suppressor of deltex related protein 1, nedd-4-like ubiquitin-protein ligase, atrophin-1 interacting protein 5. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: wwp1. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Resolution:
2.10Å     R-factor:   0.243     R-free:   0.270
Authors: M.A.Verdecia,C.A.P.Joaziero,N.J.Wells,J.-L.Ferrer,M.E.Bowman, T.Hunter,J.P.Noel
Key ref:
M.A.Verdecia et al. (2003). Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol Cell, 11, 249-259. PubMed id: 12535537 DOI: 10.1016/S1097-2765(02)00774-8
Date:
08-Dec-02     Release date:   23-Sep-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q9H0M0  (WWP1_HUMAN) -  NEDD4-like E3 ubiquitin-protein ligase WWP1 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
922 a.a.
374 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.2.3.2.26  - HECT-type E3 ubiquitin transferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: S-ubiquitinyl-[E2 ubiquitin-conjugating enzyme]-L-cysteine + [acceptor protein]-L-lysine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + N6- ubiquitinyl-[acceptor protein]-L-lysine

 

 
DOI no: 10.1016/S1097-2765(02)00774-8 Mol Cell 11:249-259 (2003)
PubMed id: 12535537  
 
 
Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase.
M.A.Verdecia, C.A.Joazeiro, N.J.Wells, J.L.Ferrer, M.E.Bowman, T.Hunter, J.P.Noel.
 
  ABSTRACT  
 
Ubiquitin ligases (E3) select proteins for ubiquitylation, a modification that directs altered subcellular trafficking and/or degradation of the target protein. HECT domain E3 ligases not only recognize, but also directly catalyze, ligation of ubiquitin to their protein substrates. The crystal structure of the HECT domain of the human ubiquitin ligase WWP1/AIP5 maintains a two-lobed structure like the HECT domain of the human ubiquitin ligase E6AP. While the individual N and C lobes of WWP1 possess very similar folds to those of E6AP, the organization of the two lobes relative to one another is different from E6AP due to a rotation about a polypeptide hinge linking the N and C lobes. Mutational analyses suggest that a range of conformations achieved by rotation about this hinge region is essential for catalytic activity.
 
  Selected figure(s)  
 
Figure 5.
Figure 5. Stabilizing Interactions at the Base of the Hinge Loop(A) Residue contacts within E6AP in the L shape conformation. Lys549 interacts with Asn822, Gln553 hydrogen bonds with Thr819, and Asp607 appears to interact with His609.(B) Residue contacts within WWP1/AIP5 in the shape conformation. Arg613 interacts with Gly610, and His621 hydrogen bonds with Asp675. Both pairs of interactions bridge the H3 helix to loop regions (S2/H3 and H4/H5 loops).(C) WWP1/AIP5 (residues 546–922) was used as a reference for wild-type autoubiquitylation activity.
Figure 6.
Figure 6. C Lobe and N Lobe Interactions in WWP1/AIP5(A) Residue contacts between the N and C lobes within WWP1/AIP5 in the shape conformation. Asp793 on the N lobe interacts with Arg845 on the C lobe. Gln848 and Arg855 on the C lobe form hydrogen bonds with Glu798 and the carbonyl oxygen of Thr676. Asp793 and Arg845 are highly conserved, and Glu798, Gln848, and Arg855 are absolutely conserved among 22 HECT domain sequences analyzed (data not shown).(B) Ubiquitin transfer assays.
 
  The above figures are reprinted by permission from Cell Press: Mol Cell (2003, 11, 249-259) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20980253 D.Y.Lin, J.Diao, D.Zhou, and J.Chen (2011).
Biochemical and structural studies of a HECT-like ubiquitin ligase from Escherichia coli O157:H7.
  J Biol Chem, 286, 441-449.
PDB codes: 3naw 3nb2
21399620 E.Maspero, S.Mari, E.Valentini, A.Musacchio, A.Fish, S.Pasqualato, and S.Polo (2011).
Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation.
  EMBO Rep, 12, 342-349.
PDB codes: 2xbb 2xbf
21332354 J.H.Hurley, and H.Stenmark (2011).
Molecular mechanisms of ubiquitin-dependent membrane traffic.
  Annu Rev Biophys, 40, 119-142.  
19557013 A.G.Eldridge, and T.O'Brien (2010).
Therapeutic strategies within the ubiquitin proteasome system.
  Cell Death Differ, 17, 4.  
20445456 C.A.Williams, D.J.Driscoll, and A.I.Dagli (2010).
Clinical and genetic aspects of Angelman syndrome.
  Genet Med, 12, 385-395.  
20862313 E.R.Weiss, E.Popova, H.Yamanaka, H.C.Kim, J.M.Huibregtse, and H.Göttlinger (2010).
Rescue of HIV-1 release by targeting widely divergent NEDD4-type ubiquitin ligases and isolated catalytic HECT domains to Gag.
  PLoS Pathog, 6, 0.  
20152160 E.Sakata, T.Satoh, S.Yamamoto, Y.Yamaguchi, M.Yagi-Utsumi, E.Kurimoto, K.Tanaka, S.Wakatsuki, and K.Kato (2010).
Crystal structure of UbcH5b~ubiquitin intermediate: insight into the formation of the self-assembled E2~Ub conjugates.
  Structure, 18, 138-147.
PDB code: 3a33
20133640 I.Levin, C.Eakin, M.P.Blanc, R.E.Klevit, S.I.Miller, and P.S.Brzovic (2010).
Identification of an unconventional E3 binding surface on the UbcH5 ~ Ub conjugate recognized by a pathogenic bacterial E3 ligase.
  Proc Natl Acad Sci U S A, 107, 2848-2853.  
20034088 L.Abaied, M.Trabelsi, M.Chaabouni, M.Kharrat, L.Kraoua, R.M'rad, N.Tebib, F.Maazoul, and H.Chaabouni (2010).
A novel UBE3A truncating mutation in large Tunisian Angelman syndrome pedigree.
  Am J Med Genet A, 152, 141-146.  
20512916 L.Xing, M.Zhang, and D.Chen (2010).
Smurf control in bone cells.
  J Cell Biochem, 110, 554-563.  
20007713 R.K.Pandya, J.R.Partridge, K.R.Love, T.U.Schwartz, and H.L.Ploegh (2010).
A structural element within the HUWE1 HECT domain modulates self-ubiquitination and substrate ubiquitination activities.
  J Biol Chem, 285, 5664-5673.
PDB code: 3h1d
20164921 S.K.Olsen, A.D.Capili, X.Lu, D.S.Tan, and C.D.Lima (2010).
Active site remodelling accompanies thioester bond formation in the SUMO E1.
  Nature, 463, 906-912.
PDB codes: 3kyc 3kyd
20036613 S.W.Hicks, and J.E.Galán (2010).
Hijacking the host ubiquitin pathway: structural strategies of bacterial E3 ubiquitin ligases.
  Curr Opin Microbiol, 13, 41-46.  
19436320 D.Rotin, and S.Kumar (2009).
Physiological functions of the HECT family of ubiquitin ligases.
  Nat Rev Mol Cell Biol, 10, 398-409.  
20064473 H.B.Kamadurai, J.Souphron, D.C.Scott, D.M.Duda, D.J.Miller, D.Stringer, R.C.Piper, and B.A.Schulman (2009).
Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex.
  Mol Cell, 36, 1095-1102.
PDB codes: 3jvz 3jw0
19364824 H.C.Kim, and J.M.Huibregtse (2009).
Polyubiquitination by HECT E3s and the determinants of chain type specificity.
  Mol Cell Biol, 29, 3307-3318.  
19744925 J.R.Lee, A.J.Oestreich, J.A.Payne, M.S.Gunawan, A.P.Norgan, and D.J.Katzmann (2009).
The HECT domain of the ubiquitin ligase Rsp5 contributes to substrate recognition.
  J Biol Chem, 284, 32126-32137.  
19350571 J.Zhao, Z.Zhang, Z.Vucetic, K.J.Soprano, and D.R.Soprano (2009).
HACE1: A novel repressor of RAR transcriptional activity.
  J Cell Biochem, 107, 482-493.  
  19256548 K.R.Love, R.K.Pandya, E.Spooner, and H.L.Ploegh (2009).
Ubiquitin C-terminal electrophiles are activity-based probes for identification and mechanistic study of ubiquitin conjugating machinery.
  ACS Chem Biol, 4, 275-287.  
19252184 M.E.French, B.R.Kretzmann, and L.Hicke (2009).
Regulation of the RSP5 Ubiquitin Ligase by an Intrinsic Ubiquitin-binding Site.
  J Biol Chem, 284, 12071-12079.  
19648119 S.B.Qian, L.Waldron, N.Choudhary, R.E.Klevit, W.J.Chazin, and C.Patterson (2009).
Engineering a ubiquitin ligase reveals conformational flexibility required for ubiquitin transfer.
  J Biol Chem, 284, 26797-26802.  
19343052 T.Mund, and H.R.Pelham (2009).
Control of the activity of WW-HECT domain E3 ubiquitin ligases by NDFIP proteins.
  EMBO Rep, 10, 501-507.  
18477634 A.Nigham, L.Tucker-Kellogg, I.Mihalek, C.Verma, and D.Hsu (2008).
pFlexAna: detecting conformational changes in remotely related proteins.
  Nucleic Acids Res, 36, W246-W251.  
18997778 A.U.Singer, J.R.Rohde, R.Lam, T.Skarina, O.Kagan, R.Dileo, N.Y.Chirgadze, M.E.Cuff, A.Joachimiak, M.Tyers, P.J.Sansonetti, C.Parsot, and A.Savchenko (2008).
Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases.
  Nat Struct Mol Biol, 15, 1293-1301.
PDB code: 3ckd
18724389 C.Chen, Z.Zhou, R.Liu, Y.Li, P.B.Azmi, and A.K.Seth (2008).
The WW domain containing E3 ubiquitin protein ligase 1 upregulates ErbB2 and EGFR through RING finger protein 11.
  Oncogene, 27, 6845-6855.  
18805092 D.M.Duda, L.A.Borg, D.C.Scott, H.W.Hunt, M.Hammel, and B.A.Schulman (2008).
Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation.
  Cell, 134, 995.
PDB codes: 3dpl 3dqv
18552861 G.Melino, E.Gallagher, R.I.Aqeilan, R.Knight, A.Peschiaroli, M.Rossi, F.Scialpi, M.Malatesta, L.Zocchi, G.Browne, A.Ciechanover, and F.Bernassola (2008).
Itch: a HECT-type E3 ligase regulating immunity, skin and cancer.
  Cell Death Differ, 15, 1103-1112.  
18515172 I.E.Wertz, and V.M.Dixit (2008).
Ubiquitin-mediated regulation of TNFR1 signaling.
  Cytokine Growth Factor Rev, 19, 313-324.  
18066077 J.Diao, Y.Zhang, J.M.Huibregtse, D.Zhou, and J.Chen (2008).
Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase.
  Nat Struct Mol Biol, 15, 65-70.
PDB codes: 2qyu 2qza
18641638 K.Lu, X.Yin, T.Weng, S.Xi, L.Li, G.Xing, X.Cheng, X.Yang, L.Zhang, and F.He (2008).
Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1.
  Nat Cell Biol, 10, 994.  
19007437 M.D.Petroski (2008).
The ubiquitin system, disease, and drug discovery.
  BMC Biochem, 9, S7.  
19007434 S.Beaudenon, and J.M.Huibregtse (2008).
HPV E6, E6AP and cervical cancer.
  BMC Biochem, 9, S4.  
18997779 Y.Zhu, H.Li, L.Hu, J.Wang, Y.Zhou, Z.Pang, L.Liu, and F.Shao (2008).
Structure of a Shigella effector reveals a new class of ubiquitin ligases.
  Nat Struct Mol Biol, 15, 1302-1308.
PDB code: 3cvr
17919899 A.D.Capili, and C.D.Lima (2007).
Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways.
  Curr Opin Struct Biol, 17, 726-735.  
16924229 A.Laine, and Z.Ronai (2007).
Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1.
  Oncogene, 26, 1477-1483.  
17418786 B.P.Somesh, S.Sigurdsson, H.Saeki, H.Erdjument-Bromage, P.Tempst, and J.Q.Svejstrup (2007).
Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD.
  Cell, 129, 57-68.  
17477837 B.T.Dye, and B.A.Schulman (2007).
Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins.
  Annu Rev Biophys Biomol Struct, 36, 131-150.  
17016436 C.Chen, X.Sun, P.Guo, X.Y.Dong, P.Sethi, W.Zhou, Z.Zhou, J.Petros, H.F.Frierson, R.L.Vessella, A.Atfi, and J.T.Dong (2007).
Ubiquitin E3 ligase WWP1 as an oncogenic factor in human prostate cancer.
  Oncogene, 26, 2386-2394.  
17672887 G.Mayr, F.S.Domingues, and P.Lackner (2007).
Comparative analysis of protein structure alignments.
  BMC Struct Biol, 7, 50.  
17956990 K.Xia, M.Manning, H.Hesham, Q.Lin, C.Bystroff, and W.Colón (2007).
Identifying the subproteome of kinetically stable proteins via diagonal 2D SDS/PAGE.
  Proc Natl Acad Sci U S A, 104, 17329-17334.  
18047743 M.Scheffner, and O.Staub (2007).
HECT E3s and human disease.
  BMC Biochem, 8, S6.  
17933515 P.Knipscheer, and T.K.Sixma (2007).
Protein-protein interactions regulate Ubl conjugation.
  Curr Opin Struct Biol, 17, 665-673.  
17894347 S.Chaudhury, A.Sircar, A.Sivasubramanian, M.Berrondo, and J.J.Gray (2007).
Incorporating biochemical information and backbone flexibility in RosettaDock for CAPRI rounds 6-12.
  Proteins, 69, 793-800.  
17433711 Y.C.Liu (2007).
The E3 ubiquitin ligase Itch in T cell activation, differentiation, and tolerance.
  Semin Immunol, 19, 197-205.  
  20103862 Y.Chen (2007).
The enzymes in ubiquitin-like post-translational modifications.
  Biosci Trends, 1, 16-25.  
17240353 Y.Kee, and J.M.Huibregtse (2007).
Regulation of catalytic activities of HECT ubiquitin ligases.
  Biochem Biophys Res Commun, 354, 329-333.  
17433363 Z.M.Eletr, and B.Kuhlman (2007).
Sequence determinants of E2-E6AP binding affinity and specificity.
  J Mol Biol, 369, 419-428.  
16337426 A.B.Fotia, D.I.Cook, and S.Kumar (2006).
The ubiquitin-protein ligases Nedd4 and Nedd4-2 show similar ubiquitin-conjugating enzyme specificities.
  Int J Biochem Cell Biol, 38, 472-479.  
16446428 E.Gallagher, M.Gao, Y.C.Liu, and M.Karin (2006).
Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change.
  Proc Natl Acad Sci U S A, 103, 1717-1722.  
16816840 G.Nalepa, M.Rolfe, and J.W.Harper (2006).
Drug discovery in the ubiquitin-proteasome system.
  Nat Rev Drug Discov, 5, 596-613.  
17114057 M.D.Petroski, G.Kleiger, and R.J.Deshaies (2006).
Evaluation of a diffusion-driven mechanism for substrate ubiquitination by the SCF-Cdc34 ubiquitin ligase complex.
  Mol Cell, 24, 523-534.  
16413479 M.Hochstrasser (2006).
Lingering mysteries of ubiquitin-chain assembly.
  Cell, 124, 27-34.  
16413484 M.Rape, S.K.Reddy, and M.W.Kirschner (2006).
The processivity of multiubiquitination by the APC determines the order of substrate degradation.
  Cell, 124, 89.  
16753028 O.Kerscher, R.Felberbaum, and M.Hochstrasser (2006).
Modification of proteins by ubiquitin and ubiquitin-like proteins.
  Annu Rev Cell Dev Biol, 22, 159-180.  
17038327 R.Mouchantaf, B.A.Azakir, P.S.McPherson, S.M.Millard, S.A.Wood, and A.Angers (2006).
The ubiquitin ligase itch is auto-ubiquitylated in vivo and in vitro but is protected from degradation by interacting with the deubiquitylating enzyme FAM/USP9X.
  J Biol Chem, 281, 38738-38747.  
16061177 A.A.Ogunjimi, D.J.Briant, N.Pece-Barbara, C.Le Roy, G.M.Di Guglielmo, P.Kavsak, R.K.Rasmussen, B.T.Seet, F.Sicheri, and J.L.Wrana (2005).
Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain.
  Mol Cell, 19, 297-308.
PDB code: 1zvd
16223724 C.Chen, X.Sun, P.Guo, X.Y.Dong, P.Sethi, X.Cheng, J.Zhou, J.Ling, J.W.Simons, J.B.Lingrel, and J.T.Dong (2005).
Human Kruppel-like factor 5 is a target of the E3 ubiquitin ligase WWP1 for proteolysis in epithelial cells.
  J Biol Chem, 280, 41553-41561.  
15694336 D.T.Huang, A.Paydar, M.Zhuang, M.B.Waddell, J.M.Holton, and B.A.Schulman (2005).
Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1.
  Mol Cell, 17, 341-350.
PDB code: 1y8x
16341092 M.Wang, and C.M.Pickart (2005).
Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis.
  EMBO J, 24, 4324-4333.  
14966115 C.Salvat, G.Wang, A.Dastur, N.Lyon, and J.M.Huibregtse (2004).
The -4 phenylalanine is required for substrate ubiquitination catalyzed by HECT ubiquitin ligases.
  J Biol Chem, 279, 18935-18943.  
15361859 D.T.Huang, D.W.Miller, R.Mathew, R.Cassell, J.M.Holton, M.F.Roussel, and B.A.Schulman (2004).
A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8.
  Nat Struct Mol Biol, 11, 927-935.
PDB code: 1tt5
15263005 E.M.Cooper, A.W.Hudson, J.Amos, J.Wagstaff, and P.M.Howley (2004).
Biochemical analysis of Angelman syndrome-associated mutations in the E3 ubiquitin ligase E6-associated protein.
  J Biol Chem, 279, 41208-41217.  
15377232 J.Smalle, and R.D.Vierstra (2004).
The ubiquitin 26S proteasome proteolytic pathway.
  Annu Rev Plant Biol, 55, 555-590.  
15340381 T.Cardozo, and M.Pagano (2004).
The SCF ubiquitin ligase: insights into a molecular machine.
  Nat Rev Mol Cell Biol, 5, 739-751.  
12969426 B.P.Downes, R.M.Stupar, D.J.Gingerich, and R.D.Vierstra (2003).
The HECT ubiquitin-protein ligase (UPL) family in Arabidopsis: UPL3 has a specific role in trichome development.
  Plant J, 35, 729-742.  
12944097 B.R.Wong, F.Parlati, K.Qu, S.Demo, T.Pray, J.Huang, D.G.Payan, and M.K.Bennett (2003).
Drug discovery in the ubiquitin regulatory pathway.
  Drug Discov Today, 8, 746-754.  
12517333 N.Zheng (2003).
A closer look of the HECTic ubiquitin ligases.
  Structure, 11, 5-6.  
14517261 P.Y.Wu, M.Hanlon, M.Eddins, C.Tsui, R.S.Rogers, J.P.Jensen, M.J.Matunis, A.M.Weissman, A.M.Weisman, A.M.Weissman, C.Wolberger, C.P.Wolberger, and C.M.Pickart (2003).
A conserved catalytic residue in the ubiquitin-conjugating enzyme family.
  EMBO J, 22, 5241-5250.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer