spacer
spacer

PDBsum entry 1ify

Go to PDB code: 
protein links
DNA binding protein PDB id
1ify

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
49 a.a. *
* Residue conservation analysis
PDB id:
1ify
Name: DNA binding protein
Title: Solution structure of the internal uba domain of hhr23a
Structure: Uv excision repair protein rad23 homolog a. Chain: a. Fragment: internal uba domain. Synonym: hhr23a. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562.
NMR struc: 10 models
Authors: T.D.Mueller,J.Feigon
Key ref:
T.D.Mueller and J.Feigon (2002). Solution structures of UBA domains reveal a conserved hydrophobic surface for protein-protein interactions. J Mol Biol, 319, 1243-1255. PubMed id: 12079361 DOI: 10.1016/S0022-2836(02)00302-9
Date:
13-Apr-01     Release date:   03-Jul-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P54725  (RD23A_HUMAN) -  UV excision repair protein RAD23 homolog A from Homo sapiens
Seq:
Struc:
363 a.a.
49 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/S0022-2836(02)00302-9 J Mol Biol 319:1243-1255 (2002)
PubMed id: 12079361  
 
 
Solution structures of UBA domains reveal a conserved hydrophobic surface for protein-protein interactions.
T.D.Mueller, J.Feigon.
 
  ABSTRACT  
 
UBA domains are a commonly occurring sequence motif of approximately 45 amino acid residues that are found in diverse proteins involved in the ubiquitin/proteasome pathway, DNA excision-repair, and cell signaling via protein kinases. The human homologue of yeast Rad23A (HHR23A) is one example of a nucleotide excision-repair protein that contains both an internal and a C-terminal UBA domain. The solution structure of HHR23A UBA(2) showed that the domain forms a compact three-helix bundle. We report the structure of the internal UBA(1) domain of HHR23A. Comparison of the structures of UBA(1) and UBA(2) reveals that both form very similar folds and have a conserved large hydrophobic surface patch. The structural similarity between UBA(1) and UBA(2), in spite of their low level of sequence conservation, leads us to conclude that the structural variability of UBA domains in general is likely to be rather small. On the basis of the structural similarities as well as analysis of sequence conservation, we predict that this hydrophobic surface patch is a common protein-interacting surface present in diverse UBA domains. Furthermore, accumulating evidence that ubiquitin binds to UBA domains leads us to the prediction that the hydrophobic surface patch of UBA domains interacts with the hydrophobic surface on the five-stranded beta-sheet of ubiquitin. Detailed comparison of the structures of the two UBA domains, combined with previous mutagenesis studies, indicates that the binding site of HIV-1 Vpr on UBA(2) does not completely overlap the ubiquitin binding site.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Stereoviews of the internal UBA domain UBA(1) of HHR23A (SWISS PROT code R23A_HUMAN) (human homologue of RAD23A) showing residues Thr156 to Gly204. (a) Ribbon representation. The three helices are labeled a1, a2, and a3. (b) Superposition of the ten lowest-energy structures. The backbone atoms are shown in black for carbon atoms, blue for nitrogen atoms, and the carbonyl oxygen atoms are omitted. The side-chains for residues forming the hydrophobic core are shown in green. The N-terminal residues 155-160 are disordered and are not shown.
Figure 4.
Figure 4. A potential protein-protein binding interface of UBA domains is built from hydrophobic residues on the surface. (a) Surface representation of UBA(1) (left) using the following color coding: red, acidic amino acid residues Glu and Asp; blue, basic amino acid residues Arg and Lys, orange, polar amino acid residues Asn, Gln, His, Ser and Thr; white, hydrophobic residues Ala, Gly, Phe, Ile, Pro, Met, Leu, Tyr and Val. The major accessible residues on the hydrophobic surface, Met173, Gly174, Y175, L199 and I202, are marked. The size of the epitope is approximately 470 Å2. The right picture shows the orientation of the helical bundle with respect to the surface representation. The hydrophobic surface patch consists mainly of residues from loop 1 between helices 1 and 2 as well as residues from helix 3. (b) For comparison, the surface of UBA(2) is shown in the same orientation as UBA(1), revealing that the location of the hydrophobic epitope is indeed conserved and consists of identical or homologous residues. The C terminus of UBA(2) is not shown, due to its flexibility.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2002, 319, 1243-1255) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
  21304520 C.Heinen, K.Acs, D.Hoogstraten, and N.P.Dantuma (2011).
C-terminal UBA domains protect ubiquitin receptors by preventing initiation of protein degradation.
  Nat Commun, 2, 191.  
21706008 J.Wu, Y.Chen, L.Y.Lu, Y.Wu, M.T.Paulsen, M.Ljungman, D.O.Ferguson, and X.Yu (2011).
Chfr and RNF8 synergistically regulate ATM activation.
  Nat Struct Mol Biol, 18, 761-768.  
20127391 F.Kieken, G.Spagnol, V.Su, A.F.Lau, and P.L.Sorgen (2010).
NMR structure note: UBA domain of CIP75.
  J Biomol NMR, 46, 245-250.
PDB code: 2knz
21060858 I.R.Henderson, A.Deleris, W.Wong, X.Zhong, H.G.Chin, G.A.Horwitz, K.A.Kelly, S.Pradhan, and S.E.Jacobsen (2010).
The de novo cytosine methyltransferase DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 during RNA-directed DNA methylation in Arabidopsis thaliana.
  PLoS Genet, 6, e1001182.  
20502939 J.Gautheron, and G.Courtois (2010).
"Without Ub I am nothing": NEMO as a multifunctional player in ubiquitin-mediated control of NF-kappaB activation.
  Cell Mol Life Sci, 67, 3101-3113.  
19454024 C.L.Ng, D.G.Waterman, E.V.Koonin, A.D.Walters, J.P.Chong, M.N.Isupov, A.A.Lebedev, D.H.Bunka, P.G.Stockley, M.Ortiz-Lombardía, and A.A.Antson (2009).
Conformational flexibility and molecular interactions of an archaeal homologue of the Shwachman-Bodian-Diamond syndrome protein.
  BMC Struct Biol, 9, 32.
PDB code: 2wbm
19620964 J.J.Sims, A.Haririnia, B.C.Dickinson, D.Fushman, and R.E.Cohen (2009).
Avid interactions underlie the Lys63-linked polyubiquitin binding specificities observed for UBA domains.
  Nat Struct Mol Biol, 16, 883-889.  
19401465 M.Hobeika, C.Brockmann, F.Gruessing, D.Neuhaus, G.Divita, M.Stewart, and C.Dargemont (2009).
Structural requirements for the ubiquitin-associated domain of the mRNA export factor Mex67 to bind its specific targets, the transcription elongation THO complex component Hpr1 and nucleoporin FXFG repeats.
  J Biol Chem, 284, 17575-17583.
PDB code: 2khh
19245655 N.J.Bright, C.Thornton, and D.Carling (2009).
The regulation and function of mammalian AMPK-related kinases.
  Acta Physiol (Oxf), 196, 15-26.  
  20148194 T.Jadhav, and M.W.Wooten (2009).
Defining an Embedded Code for Protein Ubiquitination.
  J Proteomics Bioinform, 2, 316.  
19468686 V.Su, and A.F.Lau (2009).
Ubiquitin-like and ubiquitin-associated domain proteins: significance in proteasomal degradation.
  Cell Mol Life Sci, 66, 2819-2833.  
18482987 F.E.Reyes-Turcu, J.R.Shanks, D.Komander, and K.D.Wilkinson (2008).
Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T.
  J Biol Chem, 283, 19581-19592.  
18083707 J.Long, T.R.Gallagher, J.R.Cavey, P.W.Sheppard, S.H.Ralston, R.Layfield, and M.S.Searle (2008).
Ubiquitin recognition by the ubiquitin-associated domain of p62 involves a novel conformational switch.
  J Biol Chem, 283, 5427-5440.
PDB codes: 2jy7 2jy8
18095187 L.Skrabanek, H.K.Saini, G.D.Bader, and A.J.Enright (2008).
Computational prediction of protein-protein interactions.
  Mol Biotechnol, 38, 1.  
18340633 M.A.Baker, L.Hetherington, G.M.Reeves, and R.J.Aitken (2008).
The mouse sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification.
  Proteomics, 8, 1720-1730.  
18070888 R.Rott, R.Szargel, J.Haskin, V.Shani, A.Shainskaya, I.Manov, E.Liani, E.Avraham, and S.Engelender (2008).
Monoubiquitylation of {alpha}-Synuclein by Seven in Absentia Homolog (SIAH) Promotes Its Aggregation in Dopaminergic Cells.
  J Biol Chem, 283, 3316-3328.  
18457658 T.Jadhav, T.Geetha, J.Jiang, and M.W.Wooten (2008).
Identification of a consensus site for TRAF6/p62 polyubiquitination.
  Biochem Biophys Res Commun, 371, 521-524.  
19090997 T.Timm, A.Marx, S.Panneerselvam, E.Mandelkow, and E.M.Mandelkow (2008).
Structure and regulation of MARK, a kinase involved in abnormal phosphorylation of Tau protein.
  BMC Neurosci, 9, S9.  
18184648 Y.Yang, W.Zhang, J.R.Bayrer, and M.A.Weiss (2008).
Doublesex and the regulation of sexual dimorphism in Drosophila melanogaster: structure, function, and mutagenesis of a female-specific domain.
  J Biol Chem, 283, 7280-7292.
PDB codes: 2jz0 2jz1
18596201 Z.R.Zhou, H.C.Gao, C.J.Zhou, Y.G.Chang, J.Hong, A.X.Song, D.H.Lin, and H.Y.Hu (2008).
Differential ubiquitin binding of the UBA domains from human c-Cbl and Cbl-b: NMR structural and biochemical insights.
  Protein Sci, 17, 1805-1814.
PDB codes: 2jnh 2juj
17897937 G.Kozlov, L.Nguyen, T.Lin, G.De Crescenzo, M.Park, and K.Gehring (2007).
Structural basis of ubiquitin recognition by the ubiquitin-associated (UBA) domain of the ubiquitin ligase EDD.
  J Biol Chem, 282, 35787-35795.
PDB code: 2qho
17635922 G.Kozlov, P.Peschard, B.Zimmerman, T.Lin, T.Moldoveanu, N.Mansur-Azzam, K.Gehring, and M.Park (2007).
Structural basis for UBA-mediated dimerization of c-Cbl ubiquitin ligase.
  J Biol Chem, 282, 27547-27555.
PDB code: 2oo9
17726107 J.M.Murphy, D.M.Korzhnev, D.F.Ceccarelli, D.J.Briant, A.Zarrine-Afsar, F.Sicheri, L.E.Kay, and T.Pawson (2007).
Conformational instability of the MARK3 UBA domain compromises ubiquitin recognition and promotes interaction with the adjacent kinase domain.
  Proc Natl Acad Sci U S A, 104, 14336-14341.
PDB code: 2qnj
17512543 M.T.Pai, S.R.Tzeng, J.J.Kovacs, M.A.Keaton, S.S.Li, T.P.Yao, and P.Zhou (2007).
Solution structure of the Ubp-M BUZ domain, a highly specific protein module that recognizes the C-terminal tail of free ubiquitin.
  J Mol Biol, 370, 290-302.
PDB code: 2i50
17679095 P.Peschard, G.Kozlov, T.Lin, I.A.Mirza, A.M.Berghuis, S.Lipkowitz, M.Park, and K.Gehring (2007).
Structural basis for ubiquitin-mediated dimerization and activation of the ubiquitin protein ligase Cbl-b.
  Mol Cell, 27, 474-485.
PDB codes: 2ooa 2oob
17192413 W.Wimuttisuk, and J.D.Singer (2007).
The Cullin3 ubiquitin ligase functions as a Nedd8-bound heterodimer.
  Mol Biol Cell, 18, 899-909.  
16421449 E.D.Lowe, N.Hasan, J.F.Trempe, L.Fonso, M.E.Noble, J.A.Endicott, L.N.Johnson, and N.R.Brown (2006).
Structures of the Dsk2 UBL and UBA domains and their complex.
  Acta Crystallogr D Biol Crystallogr, 62, 177-188.
PDB codes: 2bwb 2bwe 2bwf
16691492 J.R.Cavey, S.H.Ralston, P.W.Sheppard, B.Ciani, T.R.Gallagher, J.E.Long, M.S.Searle, and R.Layfield (2006).
Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget's disease of bone.
  Calcif Tissue Int, 78, 271-277.  
16731964 Y.G.Chang, A.X.Song, Y.G.Gao, Y.H.Shi, X.J.Lin, X.T.Cao, D.H.Lin, and H.Y.Hu (2006).
Solution structure of the ubiquitin-associated domain of human BMSC-UbP and its complex with ubiquitin.
  Protein Sci, 15, 1248-1259.
PDB codes: 2cwb 2den
15837191 A.Ohno, J.Jee, K.Fujiwara, T.Tenno, N.Goda, H.Tochio, H.Kobayashi, H.Hiroaki, and M.Shirakawa (2005).
Structure of the UBA domain of Dsk2p in complex with ubiquitin molecular determinants for ubiquitin recognition.
  Structure, 13, 521-532.
PDB code: 1wr1
15743842 E.J.Song, S.H.Yim, E.Kim, N.S.Kim, and K.J.Lee (2005).
Human Fas-associated factor 1, interacting with ubiquitinated proteins and valosin-containing protein, is involved in the ubiquitin-proteasome pathway.
  Mol Cell Biol, 25, 2511-2524.  
16138082 J.F.Trempe, N.R.Brown, E.D.Lowe, C.Gordon, I.D.Campbell, M.E.Noble, and J.A.Endicott (2005).
Mechanism of Lys48-linked polyubiquitin chain recognition by the Mud1 UBA domain.
  EMBO J, 24, 3178-3189.
PDB code: 1z96
15765181 J.R.Cavey, S.H.Ralston, L.J.Hocking, P.W.Sheppard, B.Ciani, M.S.Searle, and R.Layfield (2005).
Loss of ubiquitin-binding associated with Paget's disease of bone p62 (SQSTM1) mutations.
  J Bone Miner Res, 20, 619-624.  
16064137 L.Hicke, H.L.Schubert, and C.P.Hill (2005).
Ubiquitin-binding domains.
  Nat Rev Mol Cell Biol, 6, 610-621.  
15665334 T.Spreter, M.Pech, and B.Beatrix (2005).
The crystal structure of archaeal nascent polypeptide-associated complex (NAC) reveals a unique fold and the presence of a ubiquitin-associated domain.
  J Biol Chem, 280, 15849-15854.
PDB code: 1tr8
15869391 X.Cheng, R.E.Collins, and X.Zhang (2005).
Structural and sequence motifs of protein (histone) methylation enzymes.
  Annu Rev Biophys Biomol Struct, 34, 267-294.  
15280365 B.E.Riley, Y.Xu, H.Y.Zoghbi, and H.T.Orr (2004).
The effects of the polyglutamine repeat protein ataxin-1 on the UbL-UBA protein A1Up.
  J Biol Chem, 279, 42290-42301.  
15556404 C.M.Pickart, and D.Fushman (2004).
Polyubiquitin chains: polymeric protein signals.
  Curr Opin Chem Biol, 8, 610-616.  
15454282 D.L.Carbone, J.A.Doorn, and D.R.Petersen (2004).
4-Hydroxynonenal regulates 26S proteasomal degradation of alcohol dehydrogenase.
  Free Radic Biol Med, 37, 1430-1439.  
15044434 H.Teo, D.B.Veprintsev, and R.L.Williams (2004).
Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins.
  J Biol Chem, 279, 28689-28696.
PDB code: 1uzx
14585839 K.Fujiwara, T.Tenno, K.Sugasawa, J.G.Jee, I.Ohki, C.Kojima, H.Tochio, H.Hiroaki, F.Hanaoka, and M.Shirakawa (2004).
Structure of the ubiquitin-interacting motif of S5a bound to the ubiquitin-like domain of HR23B.
  J Biol Chem, 279, 4760-4767.
PDB code: 1uel
15292170 K.Sawada, Z.Yang, J.R.Horton, R.E.Collins, X.Zhang, and X.Cheng (2004).
Structure of the conserved core of the yeast Dot1p, a nucleosomal histone H3 lysine 79 methyltransferase.
  J Biol Chem, 279, 43296-43306.
PDB code: 1u2z
15176995 L.J.Hocking, G.J.Lucas, A.Daroszewska, T.Cundy, G.C.Nicholson, J.Donath, J.P.Walsh, C.Finlayson, J.R.Cavey, B.Ciani, P.W.Sheppard, M.S.Searle, R.Layfield, and S.H.Ralston (2004).
Novel UBA domain mutations of SQSTM1 in Paget's disease of bone: genotype phenotype correlation, functional analysis, and structural consequences.
  J Bone Miner Res, 19, 1122-1127.  
15322280 M.Kamionka, and J.Feigon (2004).
Structure of the XPC binding domain of hHR23A reveals hydrophobic patches for protein interaction.
  Protein Sci, 13, 2370-2377.
PDB code: 1tp4
15340068 M.L.Seibenhener, J.R.Babu, T.Geetha, H.C.Wong, N.R.Krishna, and M.W.Wooten (2004).
Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation.
  Mol Cell Biol, 24, 8055-8068.  
14997574 N.Chim, W.E.Gall, J.Xiao, M.P.Harris, T.R.Graham, and A.M.Krezel (2004).
Solution structure of the ubiquitin-binding domain in Swa2p from Saccharomyces cerevisiae.
  Proteins, 54, 784-793.
PDB code: 1pgy
15328341 N.Merkley, and G.S.Shaw (2004).
Solution structure of the flexible class II ubiquitin-conjugating enzyme Ubc1 provides insights for polyubiquitin chain assembly.
  J Biol Chem, 279, 47139-47147.
PDB code: 1tte
15082787 P.Feng, C.W.Scott, N.H.Cho, H.Nakamura, Y.H.Chung, M.J.Monteiro, and J.U.Jung (2004).
Kaposi's sarcoma-associated herpesvirus K7 protein targets a ubiquitin-like/ubiquitin-associated domain-containing protein to promote protein degradation.
  Mol Cell Biol, 24, 3938-3948.  
14707125 T.D.Mueller, M.Kamionka, and J.Feigon (2004).
Specificity of the interaction between ubiquitin-associated domains and ubiquitin.
  J Biol Chem, 279, 11926-11936.  
15461659 T.Tenno, K.Fujiwara, H.Tochio, K.Iwai, E.H.Morita, H.Hayashi, S.Murata, H.Hiroaki, M.Sato, K.Tanaka, and M.Shirakawa (2004).
Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains.
  Genes Cells, 9, 865-875.  
15029246 X.Yuan, P.Simpson, C.McKeown, H.Kondo, K.Uchiyama, R.Wallis, I.Dreveny, C.Keetch, X.Zhang, C.Robinson, P.Freemont, and S.Matthews (2004).
Structure, dynamics and interactions of p47, a major adaptor of the AAA ATPase, p97.
  EMBO J, 23, 1463-1473.
PDB codes: 1v92 1vaz
12857745 B.Ciani, R.Layfield, J.R.Cavey, P.W.Sheppard, and M.S.Searle (2003).
Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget's disease of bone.
  J Biol Chem, 278, 37409-37412.
PDB code: 1q02
12644454 B.Wang, S.L.Alam, H.H.Meyer, M.Payne, T.L.Stemmler, D.R.Davis, and W.I.Sundquist (2003).
Structure and ubiquitin interactions of the conserved zinc finger domain of Npl4.
  J Biol Chem, 278, 20225-20234.
PDB code: 1nj3
12787502 G.Prag, S.Misra, E.A.Jones, R.Ghirlando, B.A.Davies, B.F.Horazdovsky, and J.H.Hurley (2003).
Mechanism of ubiquitin recognition by the CUE domain of Vps9p.
  Cell, 113, 609-620.
PDB codes: 1mn3 1p3q
12860974 J.D.Schnell, and L.Hicke (2003).
Non-traditional functions of ubiquitin and ubiquitin-binding proteins.
  J Biol Chem, 278, 35857-35860.  
14557549 K.J.Walters, P.J.Lech, A.M.Goh, Q.Wang, and P.M.Howley (2003).
DNA-repair protein hHR23a alters its protein structure upon binding proteasomal subunit S5a.
  Proc Natl Acad Sci U S A, 100, 12694-12699.
PDB codes: 1oqy 1qze
12832454 K.S.Ryu, K.J.Lee, S.H.Bae, B.K.Kim, K.A.Kim, and B.S.Choi (2003).
Binding surface mapping of intra- and interdomain interactions among hHR23B, ubiquitin, and polyubiquitin binding site 2 of S5a.
  J Biol Chem, 278, 36621-36627.
PDB code: 1p1a
14570567 L.Hicke, and R.Dunn (2003).
Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins.
  Annu Rev Cell Dev Biol, 19, 141-172.  
12972570 M.F.Kleijnen, R.M.Alarcon, and P.M.Howley (2003).
The ubiquitin-associated domain of hPLIC-2 interacts with the proteasome.
  Mol Biol Cell, 14, 3868-3875.  
12778128 P.P.Di Fiore, S.Polo, and K.Hofmann (2003).
When ubiquitin meets ubiquitin receptors: a signalling connection.
  Nat Rev Mol Cell Biol, 4, 491-497.  
14621999 Q.Wang, A.M.Goh, P.M.Howley, and K.J.Walters (2003).
Ubiquitin recognition by the DNA repair protein hHR23a.
  Biochemistry, 42, 13529-13535.  
12672455 R.Hartmann-Petersen, C.A.Semple, C.P.Ponting, K.B.Hendil, and C.Gordon (2003).
UBA domain containing proteins in fission yeast.
  Int J Biochem Cell Biol, 35, 629-636.  
12517449 R.Hartmann-Petersen, M.Seeger, and C.Gordon (2003).
Transferring substrates to the 26S proteasome.
  Trends Biochem Sci, 28, 26-31.  
12787503 R.S.Kang, C.M.Daniels, S.A.Francis, S.C.Shih, W.J.Salerno, L.Hicke, and I.Radhakrishnan (2003).
Solution structure of a CUE-ubiquitin complex reveals a conserved mode of ubiquitin binding.
  Cell, 113, 621-630.
PDB code: 1otr
12628920 S.C.Shih, G.Prag, S.A.Francis, M.A.Sutanto, J.H.Hurley, and L.Hicke (2003).
A ubiquitin-binding motif required for intramolecular monoubiquitylation, the CUE domain.
  EMBO J, 22, 1273-1281.  
12643283 S.Raasi, and C.M.Pickart (2003).
Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains.
  J Biol Chem, 278, 8951-8959.  
12970176 T.D.Mueller, and J.Feigon (2003).
Structural determinants for the binding of ubiquitin-like domains to the proteasome.
  EMBO J, 22, 4634-4645.
PDB codes: 1p98 1p9c 1p9d
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer