 |
PDBsum entry 1hng
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
T lymphocyte adhesion glycoprotein
|
PDB id
|
|
|
|
1hng
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Nature
360:232-239
(1992)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure at 2.8 A resolution of a soluble form of the cell adhesion molecule CD2.
|
|
E.Y.Jones,
S.J.Davis,
A.F.Williams,
K.Harlos,
D.I.Stuart.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The crystal structure of a soluble form of the T lymphocyte antigen CD2 provides
the first complete view of the extracellular region of a cell adhesion molecule.
The topology of the molecule, which comprises two immunoglobulin-like domains,
is the same as that of the first two domains of CD4 but the relative domain
orientation is altered by a fairly flexible linker region. The putative
ligand-binding beta-sheet forms a flat surface towards the top of the molecule.
Crystal contacts between these surfaces suggest a plausible model for the
adhesive interaction.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
O.J.Harrison,
J.Vendome,
J.Brasch,
X.Jin,
S.Hong,
P.S.Katsamba,
G.Ahlsen,
R.B.Troyanovsky,
S.M.Troyanovsky,
B.Honig,
and
L.Shapiro
(2012).
Nectin ectodomain structures reveal a canonical adhesive interface.
|
| |
Nat Struct Mol Biol,
19,
906-915.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.K.Culyba,
J.L.Price,
S.R.Hanson,
A.Dhar,
C.H.Wong,
M.Gruebele,
E.T.Powers,
and
J.W.Kelly
(2011).
Protein native-state stabilization by placing aromatic side chains in N-glycosylated reverse turns.
|
| |
Science,
331,
571-575.
|
 |
|
|
|
|
 |
G.J.Bartlett,
A.Choudhary,
R.T.Raines,
and
D.N.Woolfson
(2010).
n-->pi* interactions in proteins.
|
| |
Nat Chem Biol,
6,
615-620.
|
 |
|
|
|
|
 |
G.J.Freeman,
J.M.Casasnovas,
D.T.Umetsu,
and
R.H.DeKruyff
(2010).
TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity.
|
| |
Immunol Rev,
235,
172-189.
|
 |
|
|
|
|
 |
X.C.Su,
and
G.Otting
(2010).
Paramagnetic labelling of proteins and oligonucleotides for NMR.
|
| |
J Biomol NMR,
46,
101-112.
|
 |
|
|
|
|
 |
H.Fazelinia,
P.C.Cirino,
and
C.D.Maranas
(2009).
OptGraft: A computational procedure for transferring a binding site onto an existing protein scaffold.
|
| |
Protein Sci,
18,
180-195.
|
 |
|
|
|
|
 |
S.Charrin,
F.le Naour,
O.Silvie,
P.E.Milhiet,
C.Boucheix,
and
E.Rubinstein
(2009).
Lateral organization of membrane proteins: tetraspanins spin their web.
|
| |
Biochem J,
420,
133-154.
|
 |
|
|
|
|
 |
Y.Huang,
Y.Zhou,
H.C.Wong,
Y.Chen,
Y.Chen,
S.Wang,
A.Castiblanco,
A.Liu,
and
J.J.Yang
(2009).
A single EF-hand isolated from STIM1 forms dimer in the absence and presence of Ca2+.
|
| |
FEBS J,
276,
5589-5597.
|
 |
|
|
|
|
 |
S.Li,
W.Yang,
A.W.Maniccia,
D.Barrow,
H.Tjong,
H.X.Zhou,
and
J.J.Yang
(2008).
Rational design of a conformation-switchable Ca2+- and Tb3+-binding protein without the use of multiple coupled metal-binding sites.
|
| |
FEBS J,
275,
5048-5061.
|
 |
|
|
|
|
 |
X.L.Yu,
T.Hu,
J.M.Du,
J.P.Ding,
X.M.Yang,
J.Zhang,
B.Yang,
X.Shen,
Z.Zhang,
W.D.Zhong,
N.Wen,
H.Jiang,
P.Zhu,
and
Z.N.Chen
(2008).
Crystal structure of HAb18G/CD147: implications for immunoglobulin superfamily homophilic adhesion.
|
| |
J Biol Chem,
283,
18056-18065.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.R.Aricescu,
and
E.Y.Jones
(2007).
Immunoglobulin superfamily cell adhesion molecules: zippers and signals.
|
| |
Curr Opin Cell Biol,
19,
543-550.
|
 |
|
|
|
|
 |
C.A.Velikovsky,
L.Deng,
L.K.Chlewicki,
M.M.Fernández,
V.Kumar,
and
R.A.Mariuzza
(2007).
Structure of natural killer receptor 2B4 bound to CD48 reveals basis for heterophilic recognition in signaling lymphocyte activation molecule family.
|
| |
Immunity,
27,
572-584.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Santiago,
A.Ballesteros,
C.Tami,
L.Martínez-Muñoz,
G.G.Kaplan,
and
J.M.Casasnovas
(2007).
Structures of T Cell immunoglobulin mucin receptors 1 and 2 reveal mechanisms for regulation of immune responses by the TIM receptor family.
|
| |
Immunity,
26,
299-310.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Hatherley,
K.Harlos,
D.C.Dunlop,
D.I.Stuart,
and
A.N.Barclay
(2007).
The structure of the macrophage signal regulatory protein alpha (SIRPalpha) inhibitory receptor reveals a binding face reminiscent of that used by T cell receptors.
|
| |
J Biol Chem,
282,
14567-14575.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.J.Mankelow,
N.Burton,
F.O.Stefansdottir,
F.A.Spring,
S.F.Parsons,
J.S.Pedersen,
C.L.Oliveira,
D.Lammie,
T.Wess,
N.Mohandas,
J.A.Chasis,
R.L.Brady,
and
D.J.Anstee
(2007).
The Laminin 511/521-binding site on the Lutheran blood group glycoprotein is located at the flexible junction of Ig domains 2 and 3.
|
| |
Blood,
110,
3398-3406.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Kitao,
and
G.Wagner
(2006).
Amplitudes and directions of internal protein motions from a JAM analysis of 15N relaxation data.
|
| |
Magn Reson Chem,
44,
S130-S142.
|
 |
|
|
|
|
 |
A.R.Aricescu,
R.Assenberg,
R.M.Bill,
D.Busso,
V.T.Chang,
S.J.Davis,
A.Dubrovsky,
L.Gustafsson,
K.Hedfalk,
U.Heinemann,
I.M.Jones,
D.Ksiazek,
C.Lang,
K.Maskos,
A.Messerschmidt,
S.Macieira,
Y.Peleg,
A.Perrakis,
A.Poterszman,
G.Schneider,
T.K.Sixma,
J.L.Sussman,
G.Sutton,
N.Tarboureich,
T.Zeev-Ben-Mordehai,
and
E.Y.Jones
(2006).
Eukaryotic expression: developments for structural proteomics.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
1114-1124.
|
 |
|
|
|
|
 |
A.R.Aricescu,
W.Lu,
and
E.Y.Jones
(2006).
A time- and cost-efficient system for high-level protein production in mammalian cells.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
1243-1250.
|
 |
|
|
|
|
 |
E.Cao,
U.A.Ramagopal,
A.Fedorov,
E.Fedorov,
Q.Yan,
J.W.Lary,
J.L.Cole,
S.G.Nathenson,
and
S.C.Almo
(2006).
NTB-A receptor crystal structure: insights into homophilic interactions in the signaling lymphocytic activation molecule receptor family.
|
| |
Immunity,
25,
559-570.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.J.Evans,
M.A.Castro,
R.O'Brien,
A.Kearney,
H.Walsh,
L.M.Sparks,
M.G.Tucknott,
E.A.Davies,
A.M.Carmo,
P.A.van der Merwe,
D.I.Stuart,
E.Y.Jones,
J.E.Ladbury,
S.Ikemizu,
and
S.J.Davis
(2006).
Crystal structure and binding properties of the CD2 and CD244 (2B4)-binding protein, CD48.
|
| |
J Biol Chem,
281,
29309-29320.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.R.James,
M.I.Oliveira,
A.M.Carmo,
A.Iaboni,
and
S.J.Davis
(2006).
A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer.
|
| |
Nat Methods,
3,
1001-1006.
|
 |
|
|
|
|
 |
J.W.Chen,
P.Romero,
V.N.Uversky,
and
A.K.Dunker
(2006).
Conservation of intrinsic disorder in protein domains and families: II. functions of conserved disorder.
|
| |
J Proteome Res,
5,
888-898.
|
 |
|
|
|
|
 |
D.J.Lynn,
A.R.Freeman,
C.Murray,
and
D.G.Bradley
(2005).
A genomics approach to the detection of positive selection in cattle: adaptive evolution of the T-cell and natural killer cell-surface protein CD2.
|
| |
Genetics,
170,
1189-1196.
|
 |
|
|
|
|
 |
J.B.Ames,
V.Vyas,
J.D.Lusin,
and
R.Mariuzza
(2005).
NMR structure of the natural killer cell receptor 2B4 (CD244): implications for ligand recognition.
|
| |
Biochemistry,
44,
6416-6423.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Liu,
J.Ying,
V.T.Chow,
V.J.Hruby,
and
S.D.Satyanarayanajois
(2005).
Structure-activity studies of peptides from the "hot-spot" region of human CD2 protein: development of peptides for immunomodulation.
|
| |
J Med Chem,
48,
6236-6249.
|
 |
|
|
|
|
 |
M.Letarte,
D.Voulgaraki,
D.Hatherley,
M.Foster-Cuevas,
N.J.Saunders,
and
A.N.Barclay
(2005).
Analysis of leukocyte membrane protein interactions using protein microarrays.
|
| |
BMC Biochem,
6,
2.
|
 |
|
|
|
|
 |
Y.Zhang,
and
J.Skolnick
(2005).
TM-align: a protein structure alignment algorithm based on the TM-score.
|
| |
Nucleic Acids Res,
33,
2302-2309.
|
 |
|
|
|
|
 |
L.Jining,
I.Makagiansar,
H.Yusuf-Makagiansar,
V.T.Chow,
T.J.Siahaan,
and
S.D.Jois
(2004).
Design, structure and biological activity of beta-turn peptides of CD2 protein for inhibition of T-cell adhesion.
|
| |
Eur J Biochem,
271,
2873-2886.
|
 |
|
|
|
|
 |
T.Stehle,
and
T.S.Dermody
(2004).
Structural similarities in the cellular receptors used by adenovirus and reovirus.
|
| |
Viral Immunol,
17,
129-143.
|
 |
|
|
|
|
 |
A.E.Prota,
J.A.Campbell,
P.Schelling,
J.C.Forrest,
M.J.Watson,
T.R.Peters,
M.Aurrand-Lions,
B.A.Imhof,
T.S.Dermody,
and
T.Stehle
(2003).
Crystal structure of human junctional adhesion molecule 1: implications for reovirus binding.
|
| |
Proc Natl Acad Sci U S A,
100,
5366-5371.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.N.Barclay
(2003).
Membrane proteins with immunoglobulin-like domains--a master superfamily of interaction molecules.
|
| |
Semin Immunol,
15,
215-223.
|
 |
|
|
|
|
 |
J.C.Forrest,
J.A.Campbell,
P.Schelling,
T.Stehle,
and
T.S.Dermody
(2003).
Structure-function analysis of reovirus binding to junctional adhesion molecule 1. Implications for the mechanism of reovirus attachment.
|
| |
J Biol Chem,
278,
48434-48444.
|
 |
|
|
|
|
 |
H.Yusuf-Makagiansar,
M.E.Anderson,
T.V.Yakovleva,
J.S.Murray,
and
T.J.Siahaan
(2002).
Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases.
|
| |
Med Res Rev,
22,
146-167.
|
 |
|
|
|
|
 |
K.Natarajan,
N.Dimasi,
J.Wang,
R.A.Mariuzza,
and
D.H.Margulies
(2002).
Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination.
|
| |
Annu Rev Immunol,
20,
853-885.
|
 |
|
|
|
|
 |
K.Tan,
B.D.Zelus,
R.Meijers,
J.H.Liu,
J.M.Bergelson,
N.Duke,
R.Zhang,
A.Joachimiak,
K.V.Holmes,
and
J.H.Wang
(2002).
Crystal structure of murine sCEACAM1a[1,4]: a coronavirus receptor in the CEA family.
|
| |
EMBO J,
21,
2076-2086.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Shimojima,
Y.Nishimura,
T.Miyazawa,
K.Kato,
K.Nakamura,
Y.Izumiya,
H.Akashi,
and
Y.Tohya
(2002).
A feline CD2 homologue interacts with human red blood cells.
|
| |
Immunology,
105,
360-366.
|
 |
|
|
|
|
 |
R.E.Georgescu,
E.G.Alexov,
and
M.R.Gunner
(2002).
Combining conformational flexibility and continuum electrostatics for calculating pK(a)s in proteins.
|
| |
Biophys J,
83,
1731-1748.
|
 |
|
|
|
|
 |
S.M.Warren,
and
M.T.Longaker
(2002).
Re: Sequence analysis of fibroblast growth factor receptor 2 (FGFR2) in Japanese patients with craniosynostosis. Sakai et al. J Craniofac. Surg. 2001, 12: 580-585.
|
| |
J Craniofac Surg,
13,
597-599.
|
 |
|
|
|
|
 |
W.Yang,
H.W.Lee,
H.Hellinga,
and
J.J.Yang
(2002).
Structural analysis, identification, and design of calcium-binding sites in proteins.
|
| |
Proteins,
47,
344-356.
|
 |
|
|
|
|
 |
Y.Liu,
and
D.Eisenberg
(2002).
3D domain swapping: as domains continue to swap.
|
| |
Protein Sci,
11,
1285-1299.
|
 |
|
|
|
|
 |
A.Carfí,
S.H.Willis,
J.C.Whitbeck,
C.Krummenacher,
G.H.Cohen,
R.J.Eisenberg,
and
D.C.Wiley
(2001).
Herpes simplex virus glycoprotein D bound to the human receptor HveA.
|
| |
Mol Cell,
8,
169-179.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.E.Gewurz,
R.Gaudet,
D.Tortorella,
E.W.Wang,
H.L.Ploegh,
and
D.C.Wiley
(2001).
Antigen presentation subverted: Structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2.
|
| |
Proc Natl Acad Sci U S A,
98,
6794-6799.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.M.Rudd,
T.Elliott,
P.Cresswell,
I.A.Wilson,
and
R.A.Dwek
(2001).
Glycosylation and the immune system.
|
| |
Science,
291,
2370-2376.
|
 |
|
|
|
|
 |
P.Taylor,
M.Bilsland,
and
M.D.Walkinshaw
(2001).
A new conformation of the integrin-binding fragment of human VCAM-1 crystallizes in a highly hydrated packing arrangement.
|
| |
Acta Crystallogr D Biol Crystallogr,
57,
1579-1583.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Kitao,
and
G.Wagner
(2000).
A space-time structure determination of human CD2 reveals the CD58-binding mode.
|
| |
Proc Natl Acad Sci U S A,
97,
2064-2068.
|
 |
|
|
|
|
 |
H.A.Chen,
M.Pfuhl,
M.S.McAlister,
and
P.C.Driscoll
(2000).
Determination of pK(a) values of carboxyl groups in the N-terminal domain of rat CD2: anomalous pK(a) of a glutamate on the ligand-binding surface.
|
| |
Biochemistry,
39,
6814-6824.
|
 |
|
|
|
|
 |
J.Wang,
and
E.L.Reinherz
(2000).
Structural basis of cell-cell interactions in the immune system.
|
| |
Curr Opin Struct Biol,
10,
656-661.
|
 |
|
|
|
|
 |
M.C.Deller,
and
E.Yvonne Jones
(2000).
Cell surface receptors.
|
| |
Curr Opin Struct Biol,
10,
213-219.
|
 |
|
|
|
|
 |
M.J.van Raaij,
E.Chouin,
H.van der Zandt,
J.M.Bergelson,
and
S.Cusack
(2000).
Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1.7 A resolution.
|
| |
Structure,
8,
1147-1155.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Anton van der Merwe,
S.J.Davis,
A.S.Shaw,
and
M.L.Dustin
(2000).
Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition.
|
| |
Semin Immunol,
12,
5.
|
 |
|
|
|
|
 |
S.Ikemizu,
R.J.Gilbert,
J.A.Fennelly,
A.V.Collins,
K.Harlos,
E.Y.Jones,
D.I.Stuart,
and
S.J.Davis
(2000).
Structure and dimerization of a soluble form of B7-1.
|
| |
Immunity,
12,
51-60.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.Sayers,
and
B.A.Helm
(1999).
The structural basis of human IgE-Fc receptor interactions.
|
| |
Clin Exp Allergy,
29,
585-594.
|
 |
|
|
|
|
 |
J.Clarke,
E.Cota,
S.B.Fowler,
and
S.J.Hamill
(1999).
Folding studies of immunoglobulin-like beta-sandwich proteins suggest that they share a common folding pathway.
|
| |
Structure,
7,
1145-1153.
|
 |
|
|
|
|
 |
J.H.Wang,
A.Smolyar,
K.Tan,
J.H.Liu,
M.Kim,
Z.Y.Sun,
G.Wagner,
and
E.L.Reinherz
(1999).
Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counterreceptors.
|
| |
Cell,
97,
791-803.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.K.Wild,
A.Cambiaggi,
M.H.Brown,
E.A.Davies,
H.Ohno,
T.Saito,
and
P.A.van der Merwe
(1999).
Dependence of T cell antigen recognition on the dimensions of an accessory receptor-ligand complex.
|
| |
J Exp Med,
190,
31-41.
|
 |
|
|
|
|
 |
M.Lorch,
J.M.Mason,
A.R.Clarke,
and
M.J.Parker
(1999).
Effects of core mutations on the folding of a beta-sheet protein: implications for backbone organization in the I-state.
|
| |
Biochemistry,
38,
1377-1385.
|
 |
|
|
|
|
 |
S.Ikemizu,
L.M.Sparks,
P.A.van der Merwe,
K.Harlos,
D.I.Stuart,
E.Y.Jones,
and
S.J.Davis
(1999).
Crystal structure of the CD2-binding domain of CD58 (lymphocyte function-associated antigen 3) at 1.8-A resolution.
|
| |
Proc Natl Acad Sci U S A,
96,
4289-4294.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.D.Butters,
L.M.Sparks,
K.Harlos,
S.Ikemizu,
D.I.Stuart,
E.Y.Jones,
and
S.J.Davis
(1999).
Effects of N-butyldeoxynojirimycin and the Lec3.2.8.1 mutant phenotype on N-glycan processing in Chinese hamster ovary cells: application to glycoprotein crystallization.
|
| |
Protein Sci,
8,
1696-1701.
|
 |
|
|
|
|
 |
Z.Y.Sun,
V.Dötsch,
M.Kim,
J.Li,
E.L.Reinherz,
and
G.Wagner
(1999).
Functional glycan-free adhesion domain of human cell surface receptor CD58: design, production and NMR studies.
|
| |
EMBO J,
18,
2941-2949.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.J.Murray,
J.G.Head,
J.J.Barker,
and
R.L.Brady
(1998).
Engineering an intertwined form of CD2 for stability and assembly.
|
| |
Nat Struct Biol,
5,
778-782.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.L.Gavin,
P.S.Tan,
and
P.M.Hogarth
(1998).
Gain-of-function mutations in FcgammaRI of NOD mice: implications for the evolution of the Ig superfamily.
|
| |
EMBO J,
17,
3850-3857.
|
 |
|
|
|
|
 |
A.P.Saint-Jean,
K.R.Phillips,
D.J.Creighton,
and
M.J.Stone
(1998).
Active monomeric and dimeric forms of Pseudomonas putida glyoxalase I: evidence for 3D domain swapping.
|
| |
Biochemistry,
37,
10345-10353.
|
 |
|
|
|
|
 |
D.M.Halaby,
and
J.P.Mornon
(1998).
The immunoglobulin superfamily: an insight on its tissular, species, and functional diversity.
|
| |
J Mol Evol,
46,
389-400.
|
 |
|
|
|
|
 |
E.Y.Jones,
J.Tormo,
S.W.Reid,
and
D.I.Stuart
(1998).
Recognition surfaces of MHC class I.
|
| |
Immunol Rev,
163,
121-128.
|
 |
|
|
|
|
 |
J.Bella,
P.R.Kolatkar,
C.W.Marlor,
J.M.Greve,
and
M.G.Rossmann
(1998).
The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand.
|
| |
Proc Natl Acad Sci U S A,
95,
4140-4145.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Li,
K.Nishizawa,
W.An,
R.E.Hussey,
F.E.Lialios,
R.Salgia,
R.Sunder-Plassmann,
and
E.L.Reinherz
(1998).
A cdc15-like adaptor protein (CD2BP1) interacts with the CD2 cytoplasmic domain and regulates CD2-triggered adhesion.
|
| |
EMBO J,
17,
7320-7336.
|
 |
|
|
|
|
 |
J.Wang,
and
T.A.Springer
(1998).
Structural specializations of immunoglobulin superfamily members for adhesion to integrins and viruses.
|
| |
Immunol Rev,
163,
197-215.
|
 |
|
|
|
|
 |
L.L.Chen,
R.R.Lobb,
J.H.Cuervo,
K.Lin,
S.P.Adams,
and
R.B.Pepinsky
(1998).
Identification of ligand binding sites on integrin alpha4beta1 through chemical cross-linking.
|
| |
Biochemistry,
37,
8743-8753.
|
 |
|
|
|
|
 |
L.Shapiro,
and
D.R.Colman
(1998).
Structural biology of cadherins in the nervous system.
|
| |
Curr Opin Neurobiol,
8,
593-599.
|
 |
|
|
|
|
 |
P.R.Pokkuluri,
D.B.Huang,
R.Raffen,
X.Cai,
G.Johnson,
P.W.Stevens,
F.J.Stevens,
and
M.Schiffer
(1998).
A domain flip as a result of a single amino-acid substitution.
|
| |
Structure,
6,
1067-1073.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.J.Davis,
E.A.Davies,
M.G.Tucknott,
E.Y.Jones,
and
P.A.van der Merwe
(1998).
The role of charged residues mediating low affinity protein-protein recognition at the cell surface by CD2.
|
| |
Proc Natl Acad Sci U S A,
95,
5490-5494.
|
 |
|
|
|
|
 |
S.J.Davis,
S.Ikemizu,
M.K.Wild,
and
P.A.van der Merwe
(1998).
CD2 and the nature of protein interactions mediating cell-cell recognition.
|
| |
Immunol Rev,
163,
217-236.
|
 |
|
|
|
|
 |
X.D.Su,
L.N.Gastinel,
D.E.Vaughn,
I.Faye,
P.Poon,
and
P.J.Bjorkman
(1998).
Crystal structure of hemolin: a horseshoe shape with implications for homophilic adhesion.
|
| |
Science,
281,
991-995.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.P.May,
R.C.Robinson,
R.T.Aplin,
P.Bradfield,
P.R.Crocker,
and
E.Y.Jones
(1997).
Expression, crystallization, and preliminary X-ray analysis of a sialic acid-binding fragment of sialoadhesin in the presence and absence of ligand.
|
| |
Protein Sci,
6,
717-721.
|
 |
|
|
|
|
 |
C.Chothia,
and
E.Y.Jones
(1997).
The molecular structure of cell adhesion molecules.
|
| |
Annu Rev Biochem,
66,
823-862.
|
 |
|
|
|
|
 |
D.F.Wyss,
K.T.Dayie,
and
G.Wagner
(1997).
The counterreceptor binding site of human CD2 exhibits an extended surface patch with multiple conformations fluctuating with millisecond to microsecond motions.
|
| |
Protein Sci,
6,
534-542.
|
 |
|
|
|
|
 |
D.J.Leahy
(1997).
Implications of atomic-resolution structures for cell adhesion.
|
| |
Annu Rev Cell Dev Biol,
13,
363-393.
|
 |
|
|
|
|
 |
G.Kadmon,
and
P.Altevogt
(1997).
The cell adhesion molecule L1: species- and cell-type-dependent multiple binding mechanisms.
|
| |
Differentiation,
61,
143-150.
|
 |
|
|
|
|
 |
K.L.Fisher,
J.Lu,
L.Riddle,
K.J.Kim,
L.G.Presta,
and
S.C.Bodary
(1997).
Identification of the binding site in intercellular adhesion molecule 1 for its receptor, leukocyte function-associated antigen 1.
|
| |
Mol Biol Cell,
8,
501-515.
|
 |
|
|
|
|
 |
M.Haniu,
S.Montestruque,
E.J.Bures,
J.Talvenheimo,
R.Toso,
S.Lewis-Sandy,
A.A.Welcher,
and
M.F.Rohde
(1997).
Interactions between brain-derived neurotrophic factor and the TRKB receptor. Identification of two ligand binding domains in soluble TRKB by affinity separation and chemical cross-linking.
|
| |
J Biol Chem,
272,
25296-25303.
|
 |
|
|
|
|
 |
M.J.Parker,
C.E.Dempsey,
M.Lorch,
and
A.R.Clarke
(1997).
Acquisition of native beta-strand topology during the rapid collapse phase of protein folding.
|
| |
Biochemistry,
36,
13396-13405.
|
 |
|
|
|
|
 |
P.M.Rudd,
and
R.A.Dwek
(1997).
Glycosylation: heterogeneity and the 3D structure of proteins.
|
| |
Crit Rev Biochem Mol Biol,
32,
1.
|
 |
|
|
|
|
 |
S.J.DeArmond,
H.Sánchez,
F.Yehiely,
Y.Qiu,
A.Ninchak-Casey,
V.Daggett,
A.P.Camerino,
J.Cayetano,
M.Rogers,
D.Groth,
M.Torchia,
P.Tremblay,
M.R.Scott,
F.E.Cohen,
and
S.B.Prusiner
(1997).
Selective neuronal targeting in prion disease.
|
| |
Neuron,
19,
1337-1348.
|
 |
|
|
|
|
 |
S.Li,
J.Gao,
T.Satoh,
T.M.Friedman,
A.E.Edling,
U.Koch,
S.Choksi,
X.Han,
R.Korngold,
and
Z.Huang
(1997).
A computer screening approach to immunoglobulin superfamily structures and interactions: discovery of small non-peptidic CD4 inhibitors as novel immunotherapeutics.
|
| |
Proc Natl Acad Sci U S A,
94,
73-78.
|
 |
|
|
|
|
 |
Z.Huang,
S.Li,
and
R.Korngold
(1997).
Immunoglobulin superfamily proteins: structure, mechanisms, and drug discovery.
|
| |
Biopolymers,
43,
367-382.
|
 |
|
|
|
|
 |
A.Lombardo,
Y.Wang,
C.Z.Ni,
X.Dai,
C.D.Dickinson,
R.Kodandapani,
S.Chiang,
C.A.White,
F.Pio,
N.H.Xuong,
R.C.Hamlin,
E.Ruoslahti,
and
K.R.Ely
(1996).
Conformational flexibility and crystallization of tandemly linked type III modules of human fibronectin.
|
| |
Protein Sci,
5,
1934-1938.
|
 |
|
|
|
|
 |
D.J.Leahy,
I.Aukhil,
and
H.P.Erickson
(1996).
2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region.
|
| |
Cell,
84,
155-164.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Y.Jones
(1996).
Three-dimensional structure of cell adhesion molecules.
|
| |
Curr Opin Cell Biol,
8,
602-608.
|
 |
|
|
|
|
 |
H.de Nobel,
P.N.Lipke,
and
J.Kurjan
(1996).
Identification of a ligand-binding site in an immunoglobulin fold domain of the Saccharomyces cerevisiae adhesion protein alpha-agglutinin.
|
| |
Mol Biol Cell,
7,
143-153.
|
 |
|
|
|
|
 |
J.M.McDonnell,
A.J.Beavil,
G.A.Mackay,
B.A.Jameson,
R.Korngold,
H.J.Gould,
and
B.J.Sutton
(1996).
Structure based design and characterization of peptides that inhibit IgE binding to its high-affinity receptor.
|
| |
Nat Struct Biol,
3,
419-426.
|
 |
|
|
|
|
 |
L.B.Klickstein,
M.R.York,
A.R.Fougerolles,
and
T.A.Springer
(1996).
Localization of the binding site on intercellular adhesion molecule-3 (ICAM-3) for lymphocyte function-associated antigen 1 (LFA-1).
|
| |
J Biol Chem,
271,
23920-23927.
|
 |
|
|
|
|
 |
M.L.Dustin,
L.M.Ferguson,
P.Y.Chan,
T.A.Springer,
and
D.E.Golan
(1996).
Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area.
|
| |
J Cell Biol,
132,
465-474.
|
 |
|
|
|
|
 |
M.Raghavan,
and
P.J.Bjorkman
(1996).
Fc receptors and their interactions with immunoglobulins.
|
| |
Annu Rev Cell Dev Biol,
12,
181-220.
|
 |
|
|
|
|
 |
M.S.McAlister,
H.R.Mott,
P.A.van der Merwe,
I.D.Campbell,
S.J.Davis,
and
P.C.Driscoll
(1996).
NMR analysis of interacting soluble forms of the cell-cell recognition molecules CD2 and CD48.
|
| |
Biochemistry,
35,
5982-5991.
|
 |
|
|
|
|
 |
P.Bork,
A.K.Downing,
B.Kieffer,
and
I.D.Campbell
(1996).
Structure and distribution of modules in extracellular proteins.
|
| |
Q Rev Biophys,
29,
119-167.
|
 |
|
|
|
|
 |
P.R.Crocker,
and
T.Feizi
(1996).
Carbohydrate recognition systems: functional triads in cell-cell interactions.
|
| |
Curr Opin Struct Biol,
6,
679-691.
|
 |
|
|
|
|
 |
S.E.O'Connor,
and
B.Imperiali
(1996).
Modulation of protein structure and function by asparagine-linked glycosylation.
|
| |
Chem Biol,
3,
803-812.
|
 |
|
|
|
|
 |
S.Improta,
A.S.Politou,
and
A.Pastore
(1996).
Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity.
|
| |
Structure,
4,
323-337.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Kelm,
R.Schauer,
and
P.R.Crocker
(1996).
The Sialoadhesins--a family of sialic acid-dependent cellular recognition molecules within the immunoglobulin superfamily.
|
| |
Glycoconj J,
13,
913-926.
|
 |
|
|
|
|
 |
W.A.Hendrickson
(1996).
Production of crystallizable fragments of membrane proteins.
|
| |
J Bioenerg Biomembr,
28,
35-40.
|
 |
|
|
|
|
 |
A.J.Murray,
S.J.Lewis,
A.N.Barclay,
and
R.L.Brady
(1995).
One sequence, two folds: a metastable structure of CD2.
|
| |
Proc Natl Acad Sci U S A,
92,
7337-7341.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.O.Wilkie,
S.F.Slaney,
M.Oldridge,
M.D.Poole,
G.J.Ashworth,
A.D.Hockley,
R.D.Hayward,
D.J.David,
L.J.Pulleyn,
and
P.Rutland
(1995).
Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome.
|
| |
Nat Genet,
9,
165-172.
|
 |
|
|
|
|
 |
A.S.Politou,
D.J.Thomas,
and
A.Pastore
(1995).
The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity.
|
| |
Biophys J,
69,
2601-2610.
|
 |
|
|
|
|
 |
C.L.Holness,
P.A.Bates,
A.J.Little,
C.D.Buckley,
A.McDowall,
D.Bossy,
N.Hogg,
and
D.L.Simmons
(1995).
Analysis of the binding site on intercellular adhesion molecule 3 for the leukocyte integrin lymphocyte function-associated antigen 1.
|
| |
J Biol Chem,
270,
877-884.
|
 |
|
|
|
|
 |
C.M.Dobson
(1995).
Finding the right fold.
|
| |
Nat Struct Biol,
2,
513-517.
|
 |
|
|
|
|
 |
D.I.Stuart,
and
E.Y.Jones
(1995).
Recognition at the cell surface: recent structural insights.
|
| |
Curr Opin Struct Biol,
5,
735-743.
|
 |
|
|
|
|
 |
J.H.Wang,
R.B.Pepinsky,
T.Stehle,
J.H.Liu,
M.Karpusas,
B.Browning,
and
L.Osborn
(1995).
The crystal structure of an N-terminal two-domain fragment of vascular cell adhesion molecule 1 (VCAM-1): a cyclic peptide based on the domain 1 C-D loop can inhibit VCAM-1-alpha 4 integrin interaction.
|
| |
Proc Natl Acad Sci U S A,
92,
5714-5718.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.A.Castonguay,
S.H.Bryant,
P.M.Snow,
and
J.S.Fetrow
(1995).
A proposed structural model of domain 1 of fasciclin III neural cell adhesion protein based on an inverse folding algorithm.
|
| |
Protein Sci,
4,
472-483.
|
 |
|
|
|
|
 |
L.Ge,
A.Lupas,
S.Peraldi-Roux,
S.Spada,
and
A.Plückthun
(1995).
A mouse Ig kappa domain of very unusual framework structure loses function when converted to the consensus.
|
| |
J Biol Chem,
270,
12446-12451.
|
 |
|
|
|
|
 |
L.Osborn,
E.S.Day,
G.T.Miller,
M.Karpusas,
R.Tizard,
S.C.Meuer,
and
P.S.Hochman
(1995).
Amino acid residues required for binding of lymphocyte function-associated antigen 3 (CD58) to its counter-receptor CD2.
|
| |
J Exp Med,
181,
429-434.
|
 |
|
|
|
|
 |
L.Shapiro,
P.D.Kwong,
A.M.Fannon,
D.R.Colman,
and
W.A.Hendrickson
(1995).
Considerations on the folding topology and evolutionary origin of cadherin domains.
|
| |
Proc Natl Acad Sci U S A,
92,
6793-6797.
|
 |
|
|
|
|
 |
M.B.Keown,
R.Ghirlando,
R.J.Young,
A.J.Beavil,
R.J.Owens,
S.J.Perkins,
B.J.Sutton,
and
H.J.Gould
(1995).
Hydrodynamic studies of a complex between the Fc fragment of human IgE and a soluble fragment of the Fc epsilon RI alpha chain.
|
| |
Proc Natl Acad Sci U S A,
92,
1841-1845.
|
 |
|
|
|
|
 |
M.J.Bennett,
M.P.Schlunegger,
and
D.Eisenberg
(1995).
3D domain swapping: a mechanism for oligomer assembly.
|
| |
Protein Sci,
4,
2455-2468.
|
 |
|
|
|
|
 |
P.A.van der Merwe,
P.N.McNamee,
E.A.Davies,
A.N.Barclay,
and
S.J.Davis
(1995).
Topology of the CD2-CD48 cell-adhesion molecule complex: implications for antigen recognition by T cells.
|
| |
Curr Biol,
5,
74-84.
|
 |
|
|
|
|
 |
P.S.Linsley,
S.G.Nadler,
J.Bajorath,
R.Peach,
H.T.Leung,
J.Rogers,
J.Bradshaw,
M.Stebbins,
G.Leytze,
and
W.Brady
(1995).
Binding stoichiometry of the cytotoxic T lymphocyte-associated molecule-4 (CTLA-4). A disulfide-linked homodimer binds two CD86 molecules.
|
| |
J Biol Chem,
270,
15417-15424.
|
 |
|
|
|
|
 |
R.W.Nelson,
P.A.Bates,
and
U.Rutishauser
(1995).
Protein determinants for specific polysialylation of the neural cell adhesion molecule.
|
| |
J Biol Chem,
270,
17171-17179.
|
 |
|
|
|
|
 |
S.J.Davis,
E.A.Davies,
A.N.Barclay,
S.Daenke,
D.L.Bodian,
E.Y.Jones,
D.I.Stuart,
T.D.Butters,
R.A.Dwek,
and
P.A.van der Merwe
(1995).
Ligand binding by the immunoglobulin superfamily recognition molecule CD2 is glycosylation-independent.
|
| |
J Biol Chem,
270,
369-375.
|
 |
|
|
|
|
 |
U.Nörenberg,
M.Hubert,
T.Brümmendorf,
A.Tárnok,
and
F.G.Rathjen
(1995).
Characterization of functional domains of the tenascin-R (restrictin) polypeptide: cell attachment site, binding with F11, and enhancement of F11-mediated neurite outgrowth by tenascin-R.
|
| |
J Cell Biol,
130,
473-484.
|
 |
|
|
|
|
 |
W.J.Park,
C.Theda,
N.E.Maestri,
G.A.Meyers,
J.S.Fryburg,
C.Dufresne,
M.M.Cohen,
and
E.W.Jabs
(1995).
Analysis of phenotypic features and FGFR2 mutations in Apert syndrome.
|
| |
Am J Hum Genet,
57,
321-328.
|
 |
|
|
|
|
 |
Z.Rao,
P.Handford,
M.Mayhew,
V.Knott,
G.G.Brownlee,
and
D.Stuart
(1995).
The structure of a Ca(2+)-binding epidermal growth factor-like domain: its role in protein-protein interactions.
|
| |
Cell,
82,
131-141.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.H.Huber,
Y.M.Wang,
A.J.Bieber,
and
P.J.Bjorkman
(1994).
Crystal structure of tandem type III fibronectin domains from Drosophila neuroglian at 2.0 A.
|
| |
Neuron,
12,
717-731.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.R.Arulanandam,
A.Kister,
M.J.McGregor,
D.F.Wyss,
G.Wagner,
and
E.L.Reinherz
(1994).
Interaction between human CD2 and CD58 involves the major beta sheet surface of each of their respective adhesion domains.
|
| |
J Exp Med,
180,
1861-1871.
|
 |
|
|
|
|
 |
A.S.Tavernor,
J.H.Kydd,
D.L.Bodian,
E.Y.Jones,
D.I.Stuart,
S.J.Davis,
and
G.W.Butcher
(1994).
Expression cloning of an equine T-lymphocyte glycoprotein CD2 cDNA. Structure-based analysis of conserved sequence elements.
|
| |
Eur J Biochem,
219,
969-976.
|
 |
|
|
|
|
 |
B.Rubin,
J.Arnaud,
S.Caspar-Bauguil,
F.Conte,
and
A.Huchenq
(1994).
Biological function of the extracellular domain of the T-cell receptor constant region.
|
| |
Scand J Immunol,
39,
517-525.
|
 |
|
|
|
|
 |
D.L.Bodian,
E.Y.Jones,
K.Harlos,
D.I.Stuart,
and
S.J.Davis
(1994).
Crystal structure of the extracellular region of the human cell adhesion molecule CD2 at 2.5 A resolution.
|
| |
Structure,
2,
755-766.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Lange,
S.J.Lewis,
G.N.Murshudov,
G.G.Dodson,
P.C.Moody,
J.P.Turkenburg,
A.N.Barclay,
and
R.L.Brady
(1994).
Crystal structure of an extracellular fragment of the rat CD4 receptor containing domains 3 and 4.
|
| |
Structure,
2,
469-481.
|
 |
|
|
|
|
 |
G.Wagner,
and
D.F.Wyss
(1994).
Cell surface adhesion receptors.
|
| |
Curr Opin Struct Biol,
4,
841-851.
|
 |
|
|
|
|
 |
I.Callebaut,
D.Portetelle,
A.Burny,
and
J.P.Mornon
(1994).
Identification of functional sites on bovine leukemia virus envelope glycoproteins using structural and immunological data.
|
| |
Eur J Biochem,
222,
405-414.
|
 |
|
|
|
|
 |
I.D.Campbell,
and
C.Spitzfaden
(1994).
Building proteins with fibronectin type III modules.
|
| |
Structure,
2,
333-337.
|
 |
|
|
|
|
 |
T.J.Dudgeon,
M.J.Bottomley,
P.C.Driscoll,
M.J.Humphries,
A.P.Mould,
G.I.Wingfield,
and
J.M.Clements
(1994).
Expression and characterisation of a very-late antigen-4 (alpha 4 beta 1) integrin-binding fragment of vascular cell-adhesion molecule-1.
|
| |
Eur J Biochem,
226,
517-523.
|
 |
|
|
|
|
 |
A.M.Carmo,
D.W.Mason,
and
A.D.Beyers
(1993).
Physical association of the cytoplasmic domain of CD2 with the tyrosine kinases p56lck and p59fyn.
|
| |
Eur J Immunol,
23,
2196-2201.
|
 |
|
|
|
|
 |
A.R.Arulanandam,
J.M.Withka,
D.F.Wyss,
G.Wagner,
A.Kister,
P.Pallai,
M.A.Recny,
and
E.L.Reinherz
(1993).
The CD58 (LFA-3) binding site is a localized and highly charged surface area on the AGFCC'C" face of the human CD2 adhesion domain.
|
| |
Proc Natl Acad Sci U S A,
90,
11613-11617.
|
 |
|
|
|
|
 |
A.W.Chan,
E.G.Hutchinson,
D.Harris,
and
J.M.Thornton
(1993).
Identification, classification, and analysis of beta-bulges in proteins.
|
| |
Protein Sci,
2,
1574-1590.
|
 |
|
|
|
|
 |
C.A.Janeway,
and
P.Golstein
(1993).
Lymphocyte activation and effector functions. Editorial overview. The role of cell surface molecules.
|
| |
Curr Opin Immunol,
5,
313-323.
|
 |
|
|
|
|
 |
C.Somoza,
P.C.Driscoll,
J.G.Cyster,
and
A.F.Williams
(1993).
Mutational analysis of the CD2/CD58 interaction: the binding site for CD58 lies on one face of the first domain of human CD2.
|
| |
J Exp Med,
178,
549-558.
|
 |
|
|
|
|
 |
H.Zhou,
A.Fuks,
G.Alcaraz,
T.J.Bolling,
and
C.P.Stanners
(1993).
Homophilic adhesion between Ig superfamily carcinoembryonic antigen molecules involves double reciprocal bonds.
|
| |
J Cell Biol,
122,
951-960.
|
 |
|
|
|
|
 |
J.Bajorath,
R.Stenkamp,
and
A.Aruffo
(1993).
Knowledge-based model building of proteins: concepts and examples.
|
| |
Protein Sci,
2,
1798-1810.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.F.Zagury,
J.Bernard,
A.Achour,
A.Astgen,
A.Lachgar,
L.Fall,
C.Carelli,
W.Issing,
J.P.Mbika,
and
O.Picard
(1993).
Identification of CD4 and major histocompatibility complex functional peptide sites and their homology with oligopeptides from human immunodeficiency virus type 1 glycoprotein gp120: role in AIDS pathogenesis.
|
| |
Proc Natl Acad Sci U S A,
90,
7573-7577.
|
 |
|
|
|
|
 |
J.M.Rodríguez,
R.J.Yáñez,
F.Almazán,
E.Viñuela,
and
J.F.Rodriguez
(1993).
African swine fever virus encodes a CD2 homolog responsible for the adhesion of erythrocytes to infected cells.
|
| |
J Virol,
67,
5312-5320.
|
 |
|
|
|
|
 |
J.M.Withka,
D.F.Wyss,
G.Wagner,
A.R.Arulanandam,
E.L.Reinherz,
and
M.A.Recny
(1993).
Structure of the glycosylated adhesion domain of human T lymphocyte glycoprotein CD2.
|
| |
Structure,
1,
69-81.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.A.Navia,
and
D.A.Peattie
(1993).
Structure-based drug design: applications in immunopharmacology and immunosuppression.
|
| |
Trends Pharmacol Sci,
14,
189-195.
|
 |
|
|
|
|
 |
P.A.van der Merwe,
D.C.McPherson,
M.H.Brown,
A.N.Barclay,
J.G.Cyster,
A.F.Williams,
and
S.J.Davis
(1993).
The NH2-terminal domain of rat CD2 binds rat CD48 with a low affinity and binding does not require glycosylation of CD2.
|
| |
Eur J Immunol,
23,
1373-1377.
|
 |
|
|
|
|
 |
P.A.van der Merwe,
M.H.Brown,
S.J.Davis,
and
A.N.Barclay
(1993).
Affinity and kinetic analysis of the interaction of the cell adhesion molecules rat CD2 and CD48.
|
| |
EMBO J,
12,
4945-4954.
|
 |
|
|
|
|
 |
P.Holliger,
T.Prospero,
and
G.Winter
(1993).
"Diabodies": small bivalent and bispecific antibody fragments.
|
| |
Proc Natl Acad Sci U S A,
90,
6444-6448.
|
 |
|
|
|
|
 |
U.Rutishauser
(1993).
Adhesion molecules of the nervous system.
|
| |
Curr Opin Neurobiol,
3,
709-715.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |