|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
558 a.a.
|
 |
|
|
|
|
|
|
|
430 a.a.
|
 |
|
|
|
|
|
|
|
214 a.a.
|
 |
|
|
|
|
|
|
|
220 a.a.
|
 |
|
|
|
|
|
|
|
|
 |
Obsolete entry |
 |
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transferase/immune system/DNA
|
 |
|
Title:
|
 |
Crystal structure of met184ile mutant of HIV-1 reverse transcriptase in complex with double stranded DNA template- primer
|
|
Structure:
|
 |
HIV-1 reverse transcriptase (chain a). Chain: a. Synonym: HIV-1 rt. Engineered: yes. Mutation: yes. HIV-1 reverse transcriptase (chain b). Chain: b. Synonym: HIV-1 rt. Engineered: yes.
|
|
Source:
|
 |
Human immunodeficiency virus type 1. Expressed in: escherichia coli. Mus musculus. Mouse. Synthetic: yes. Synthetic: yes
|
|
Biol. unit:
|
 |
Octamer (from
)
|
|
Resolution:
|
 |
|
3.50Å
|
R-factor:
|
0.262
|
R-free:
|
0.338
|
|
|
Authors:
|
 |
S.G.Sarafianos,K.Das,E.Arnold
|
Key ref:
|
 |
S.G.Sarafianos
et al.
(1999).
Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric hindrance with beta-branched amino acids.
Proc Natl Acad Sci U S A,
96,
10027-10032.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
03-Aug-99
|
Release date:
|
01-Sep-99
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P03366
(POL_HV1B1) -
Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BH10)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
1447 a.a.
558 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P03366
(POL_HV1B1) -
Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BH10)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
1447 a.a.
430 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chains A, B:
E.C.2.7.7.49
- RNA-directed Dna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
DNA(n)
|
+
|
2'-deoxyribonucleoside 5'-triphosphate
|
=
|
DNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Proc Natl Acad Sci U S A
96:10027-10032
(1999)
|
|
PubMed id:
|
|
|
|
|
| |
|
Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric hindrance with beta-branched amino acids.
|
|
S.G.Sarafianos,
K.Das,
A.D.Clark,
J.Ding,
P.L.Boyer,
S.H.Hughes,
E.Arnold.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
An important component of triple-drug anti-AIDS therapy is 2',
3'-dideoxy-3'-thiacytidine (3TC, lamivudine). Single mutations at residue 184 of
the reverse transcriptase (RT) in HIV cause high-level resistance to 3TC and
contribute to the failure of anti-AIDS combination therapy. We have determined
crystal structures of the 3TC-resistant mutant HIV-1 RT (M184I) in both the
presence and absence of a DNA/DNA template-primer. In the absence of a DNA
substrate, the wild-type and mutant structures are very similar. However,
comparison of crystal structures of M184I mutant and wild-type HIV-1 RT with and
without DNA reveals repositioning of the template-primer in the M184I/DNA binary
complex and other smaller changes in residues in the dNTP-binding site. On the
basis of these structural results, we developed a model that explains the
ability of the 3TC-resistant mutant M184I to incorporate dNTPs but not the
nucleotide analog 3TCTP. In this model, steric hindrance is expected for NRTIs
with beta- or L- ring configurations, as with the enantiomer of 3TC that is used
in therapy. Steric conflict between the oxathiolane ring of 3TCTP and the side
chain of beta-branched amino acids (Val, Ile, Thr) at position 184 perturbs
inhibitor binding, leading to a reduction in incorporation of the analog. The
model can also explain the 3TC resistance of analogous hepatitis B polymerase
mutants. Repositioning of the template-primer as observed in the binary complex
(M184I/DNA) may also occur in the catalytic ternary complex (M184I/DNA/3TCTP)
and contribute to 3TC resistance by interfering with the formation of a
catalytically competent closed complex.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Fig. 2. Superposition of the polymerase active sites of
wild-type HIV-1 RT/DNA/Fab and M184I HIV-1 RT/DNA/Fab. The
wild-type RT complex is shown in white, the mutant RT complex in
cyan. The wild-type and M184I RT structures were superimposed on
the basis of the core of the p66 palm subdomains (residues 107
to 112 and 151 to 215 of their corresponding p66 subunits).
|
 |
Figure 3.
Fig. 3. Ribbon diagram of the superimposed polymerase
active sites of wild-type HIV-1 RT/DNA/Fab and M184I HIV-1
RT/DNA/Fab. The wild-type protein and DNA are shown in gray, the
mutant protein in red, and DNA in the mutant RT/DNA complex in
yellow.
|
 |
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.Engelman,
and
P.Cherepanov
(2012).
The structural biology of HIV-1: mechanistic and therapeutic insights.
|
| |
Nat Rev Microbiol,
10,
279-290.
|
 |
|
|
|
|
 |
A.Hachiya,
E.N.Kodama,
M.M.Schuckmann,
K.A.Kirby,
E.Michailidis,
Y.Sakagami,
S.Oka,
K.Singh,
and
S.G.Sarafianos
(2011).
K70Q adds high-level tenofovir resistance to "Q151M complex" HIV reverse transcriptase through the enhanced discrimination mechanism.
|
| |
PLoS One,
6,
e16242.
|
 |
|
|
|
|
 |
D.Wree,
B.Wu,
T.Zeuthen,
and
E.Beitz
(2011).
Requirement for asparagine in the aquaporin NPA sequence signature motifs for cation exclusion.
|
| |
FEBS J,
278,
740-748.
|
 |
|
|
|
|
 |
S.Ibe,
and
W.Sugiura
(2011).
Clinical significance of HIV reverse-transcriptase inhibitor-resistance mutations.
|
| |
Future Microbiol,
6,
295-315.
|
 |
|
|
|
|
 |
S.Strauch,
E.Jantratid,
J.B.Dressman,
H.E.Junginger,
S.Kopp,
K.K.Midha,
V.P.Shah,
S.Stavchansky,
and
D.M.Barends
(2011).
Biowaiver monographs for immediate release solid oral dosage forms: Lamivudine.
|
| |
J Pharm Sci,
100,
2054-2063.
|
 |
|
|
|
|
 |
A.Herschhorn,
and
A.Hizi
(2010).
Retroviral reverse transcriptases.
|
| |
Cell Mol Life Sci,
67,
2717-2747.
|
 |
|
|
|
|
 |
A.J.Acosta-Hoyos,
and
W.A.Scott
(2010).
The Role of Nucleotide Excision by Reverse Transcriptase in HIV Drug Resistance.
|
| |
Viruses,
2,
372-394.
|
 |
|
|
|
|
 |
C.Ferrer-Orta,
M.Sierra,
R.Agudo,
I.de la Higuera,
A.Arias,
R.Pérez-Luque,
C.Escarmís,
E.Domingo,
and
N.Verdaguer
(2010).
Structure of foot-and-mouth disease virus mutant polymerases with reduced sensitivity to ribavirin.
|
| |
J Virol,
84,
6188-6199.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.A.Delviks-Frankenberry,
G.N.Nikolenko,
and
V.K.Pathak
(2010).
The "Connection" Between HIV Drug Resistance and RNase H.
|
| |
Viruses,
2,
1476-1503.
|
 |
|
|
|
|
 |
K.Singh,
B.Marchand,
K.A.Kirby,
E.Michailidis,
and
S.G.Sarafianos
(2010).
Structural Aspects of Drug Resistance and Inhibition of HIV-1 Reverse Transcriptase.
|
| |
Viruses,
2,
606-638.
|
 |
|
|
|
|
 |
P.Cahn,
and
M.A.Wainberg
(2010).
Resistance profile of the new nucleoside reverse transcriptase inhibitor apricitabine.
|
| |
J Antimicrob Chemother,
65,
213-217.
|
 |
|
|
|
|
 |
P.R.Daga,
J.Duan,
and
R.J.Doerksen
(2010).
Computational model of hepatitis B virus DNA polymerase: molecular dynamics and docking to understand resistant mutations.
|
| |
Protein Sci,
19,
796-807.
|
 |
|
|
|
|
 |
S.Gupta,
S.Fransen,
E.E.Paxinos,
E.Stawiski,
W.Huang,
and
C.J.Petropoulos
(2010).
Combinations of mutations in the connection domain of human immunodeficiency virus type 1 reverse transcriptase: assessing the impact on nucleoside and nonnucleoside reverse transcriptase inhibitor resistance.
|
| |
Antimicrob Agents Chemother,
54,
1973-1980.
|
 |
|
|
|
|
 |
X.Tu,
K.Das,
Q.Han,
J.D.Bauman,
A.D.Clark,
X.Hou,
Y.V.Frenkel,
B.L.Gaffney,
R.A.Jones,
P.L.Boyer,
S.H.Hughes,
S.G.Sarafianos,
and
E.Arnold
(2010).
Structural basis of HIV-1 resistance to AZT by excision.
|
| |
Nat Struct Mol Biol,
17,
1202-1209.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Katsoulidou,
D.Paraskevis,
E.Magiorkinis,
Z.Moschidis,
C.Haida,
E.Hatzitheodorou,
A.Varaklioti,
A.Karafoulidou,
M.Hatzitaki,
L.Kavallierou,
A.Mouzaki,
E.Andrioti,
C.Veneti,
A.Kaperoni,
E.Zervou,
C.Politis,
and
A.Hatzakis
(2009).
Molecular characterization of occult hepatitis B cases in Greek blood donors.
|
| |
J Med Virol,
81,
815-825.
|
 |
|
|
|
|
 |
G.Yang,
E.Paintsil,
G.E.Dutschman,
S.P.Grill,
C.J.Wang,
J.Wang,
H.Tanaka,
T.Hamasaki,
M.Baba,
and
Y.C.Cheng
(2009).
Impact of novel human immunodeficiency virus type 1 reverse transcriptase mutations P119S and T165A on 4'-ethynylthymidine analog resistance profile.
|
| |
Antimicrob Agents Chemother,
53,
4640-4646.
|
 |
|
|
|
|
 |
J.M.Seckler,
K.J.Howard,
M.D.Barkley,
and
P.L.Wintrode
(2009).
Solution structural dynamics of HIV-1 reverse transcriptase heterodimer.
|
| |
Biochemistry,
48,
7646-7655.
|
 |
|
|
|
|
 |
K.Das,
R.P.Bandwar,
K.L.White,
J.Y.Feng,
S.G.Sarafianos,
S.Tuske,
X.Tu,
A.D.Clark,
P.L.Boyer,
X.Hou,
B.L.Gaffney,
R.A.Jones,
M.D.Miller,
S.H.Hughes,
and
E.Arnold
(2009).
Structural basis for the role of the K65r mutation in HIV-1 reverse transcriptase polymerization, excision antagonism, and tenofovir resistance.
|
| |
J Biol Chem,
284,
35092-35100.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.L.Sharma,
J.H.Nettles,
A.Feldman,
K.Rapp,
and
R.F.Schinazi
(2009).
Comparative analysis of in vitro processivity of HIV-1 reverse transcriptases containing mutations 65R, 74V, 184V and 65R+74V.
|
| |
Antiviral Res,
83,
317-323.
|
 |
|
|
|
|
 |
S.G.Sarafianos,
B.Marchand,
K.Das,
D.M.Himmel,
M.A.Parniak,
S.H.Hughes,
and
E.Arnold
(2009).
Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition.
|
| |
J Mol Biol,
385,
693-713.
|
 |
|
|
|
|
 |
T.Matamoros,
M.Nevot,
M.A.Martínez,
and
L.Menéndez-Arias
(2009).
Thymidine analogue resistance suppression by V75I of HIV-1 reverse transcriptase: effects of substituting valine 75 on stavudine excision and discrimination.
|
| |
J Biol Chem,
284,
32792-32802.
|
 |
|
|
|
|
 |
A.Lavie,
Y.Su,
M.Ghassemi,
R.M.Novak,
M.Caffrey,
N.Sekulic,
C.Monnerjahn,
M.Konrad,
and
J.L.Cook
(2008).
Restoration of the antiviral activity of 3'-azido-3'-deoxythymidine (AZT) against AZT-resistant human immunodeficiency virus by delivery of engineered thymidylate kinase to T cells.
|
| |
J Gen Virol,
89,
1672-1679.
|
 |
|
|
|
|
 |
L.Gao,
M.N.Hanson,
M.Balakrishnan,
P.L.Boyer,
B.P.Roques,
S.H.Hughes,
B.Kim,
and
R.A.Bambara
(2008).
Apparent defects in processive DNA synthesis, strand transfer, and primer elongation of Met-184 mutants of HIV-1 reverse transcriptase derive solely from a dNTP utilization defect.
|
| |
J Biol Chem,
283,
9196-9205.
|
 |
|
|
|
|
 |
V.K.Jamburuthugoda,
J.M.Santos-Velazquez,
M.Skasko,
D.J.Operario,
V.Purohit,
P.Chugh,
E.A.Szymanski,
J.E.Wedekind,
R.A.Bambara,
and
B.Kim
(2008).
Reduced dNTP binding affinity of 3TC-resistant M184I HIV-1 reverse transcriptase variants responsible for viral infection failure in macrophage.
|
| |
J Biol Chem,
283,
9206-9216.
|
 |
|
|
|
|
 |
D.Perez-Bercoff,
S.Wurtzer,
S.Compain,
H.Benech,
and
F.Clavel
(2007).
Human immunodeficiency virus type 1: resistance to nucleoside analogues and replicative capacity in primary human macrophages.
|
| |
J Virol,
81,
4540-4550.
|
 |
|
|
|
|
 |
D.R.Langley,
A.W.Walsh,
C.J.Baldick,
B.J.Eggers,
R.E.Rose,
S.M.Levine,
A.J.Kapur,
R.J.Colonno,
and
D.J.Tenney
(2007).
Inhibition of hepatitis B virus polymerase by entecavir.
|
| |
J Virol,
81,
3992-4001.
|
 |
|
|
|
|
 |
J.H.Brehm,
D.Koontz,
J.D.Meteer,
V.Pathak,
N.Sluis-Cremer,
and
J.W.Mellors
(2007).
Selection of mutations in the connection and RNase H domains of human immunodeficiency virus type 1 reverse transcriptase that increase resistance to 3'-azido-3'-dideoxythymidine.
|
| |
J Virol,
81,
7852-7859.
|
 |
|
|
|
|
 |
J.Wang,
Y.Jin,
K.L.Rapp,
R.F.Schinazi,
and
C.K.Chu
(2007).
D- and L-2',3'-didehydro-2',3'-dideoxy-3'-fluoro-carbocyclic nucleosides: synthesis, anti-HIV activity and mechanism of resistance.
|
| |
J Med Chem,
50,
1828-1839.
|
 |
|
|
|
|
 |
M.A.Siddiqui,
and
V.E.Marquez
(2007).
The triphosphate of beta-D-4'-C-ethynyl-2',3'-dideoxycytidine is the preferred enantiomer substrate for HIV reverse transcriptase.
|
| |
Bioorg Med Chem,
15,
283-287.
|
 |
|
|
|
|
 |
W.C.Drosopoulos,
and
V.R.Prasad
(2007).
The active site residue Valine 867 in human telomerase reverse transcriptase influences nucleotide incorporation and fidelity.
|
| |
Nucleic Acids Res,
35,
1155-1168.
|
 |
|
|
|
|
 |
T.Okazaki,
M.Terabe,
A.T.Catanzaro,
C.D.Pendleton,
R.Yarchoan,
and
J.A.Berzofsky
(2006).
Possible therapeutic vaccine strategy against human immunodeficiency virus escape from reverse transcriptase inhibitors studied in HLA-A2 transgenic mice.
|
| |
J Virol,
80,
10645-10651.
|
 |
|
|
|
|
 |
Z.Ambrose,
J.G.Julias,
P.L.Boyer,
V.N.Kewalramani,
and
S.H.Hughes
(2006).
The level of reverse transcriptase (RT) in human immunodeficiency virus type 1 particles affects susceptibility to nonnucleoside RT inhibitors but not to lamivudine.
|
| |
J Virol,
80,
2578-2581.
|
 |
|
|
|
|
 |
F.Bouchonnet,
E.Dam,
F.Mammano,
V.de Soultrait,
G.Henneré,
H.Benech,
F.Clavel,
and
A.J.Hance
(2005).
Quantification of the effects on viral DNA synthesis of reverse transcriptase mutations conferring human immunodeficiency virus type 1 resistance to nucleoside analogues.
|
| |
J Virol,
79,
812-822.
|
 |
|
|
|
|
 |
J.L.Hammond,
U.M.Parikh,
D.L.Koontz,
S.Schlueter-Wirtz,
C.K.Chu,
H.Z.Bazmi,
R.F.Schinazi,
and
J.W.Mellors
(2005).
In vitro selection and analysis of human immunodeficiency virus type 1 resistant to derivatives of beta-2',3'-didehydro-2',3'-dideoxy-5-fluorocytidine.
|
| |
Antimicrob Agents Chemother,
49,
3930-3932.
|
 |
|
|
|
|
 |
K.L.White,
N.A.Margot,
J.K.Ly,
J.M.Chen,
A.S.Ray,
M.Pavelko,
R.Wang,
M.McDermott,
S.Swaminathan,
and
M.D.Miller
(2005).
A combination of decreased NRTI incorporation and decreased excision determines the resistance profile of HIV-1 K65R RT.
|
| |
AIDS,
19,
1751-1760.
|
 |
|
|
|
|
 |
S.Tuske,
S.G.Sarafianos,
X.Wang,
B.Hudson,
E.Sineva,
J.Mukhopadhyay,
J.J.Birktoft,
O.Leroy,
S.Ismail,
A.D.Clark,
C.Dharia,
A.Napoli,
O.Laptenko,
J.Lee,
S.Borukhov,
R.H.Ebright,
and
E.Arnold
(2005).
Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a straight-bridge-helix active-center conformation.
|
| |
Cell,
122,
541-552.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Lindström,
J.Odeberg,
and
J.Albert
(2004).
Pyrosequencing for detection of lamivudine-resistant hepatitis B virus.
|
| |
J Clin Microbiol,
42,
4788-4795.
|
 |
|
|
|
|
 |
G.Tachedjian,
and
A.Mijch
(2004).
Virological significance, prevalence and genetic basis of hypersusceptibility to nonnucleoside reverse transcriptase inhibitors.
|
| |
Sex Health,
1,
81-89.
|
 |
|
|
|
|
 |
J.D.Pata,
W.G.Stirtan,
S.W.Goldstein,
and
T.A.Steitz
(2004).
Structure of HIV-1 reverse transcriptase bound to an inhibitor active against mutant reverse transcriptases resistant to other nonnucleoside inhibitors.
|
| |
Proc Natl Acad Sci U S A,
101,
10548-10553.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Götte
(2004).
Inhibition of HIV-1 reverse transcription: basic principles of drug action and resistance.
|
| |
Expert Rev Anti Infect Ther,
2,
707-716.
|
 |
|
|
|
|
 |
S.Tuske,
S.G.Sarafianos,
A.D.Clark,
J.Ding,
L.K.Naeger,
K.L.White,
M.D.Miller,
C.S.Gibbs,
P.L.Boyer,
P.Clark,
G.Wang,
B.L.Gaffney,
R.A.Jones,
D.M.Jerina,
S.H.Hughes,
and
E.Arnold
(2004).
Structures of HIV-1 RT-DNA complexes before and after incorporation of the anti-AIDS drug tenofovir.
|
| |
Nat Struct Mol Biol,
11,
469-474.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Chin,
and
S.Locarnini
(2003).
Treatment of chronic hepatitis B: current challenges and future directions.
|
| |
Rev Med Virol,
13,
255-272.
|
 |
|
|
|
|
 |
C.S.Rinke,
P.L.Boyer,
M.D.Sullivan,
S.H.Hughes,
and
M.L.Linial
(2002).
Mutation of the catalytic domain of the foamy virus reverse transcriptase leads to loss of processivity and infectivity.
|
| |
J Virol,
76,
7560-7570.
|
 |
|
|
|
|
 |
K.Yusim,
C.Kesmir,
B.Gaschen,
M.M.Addo,
M.Altfeld,
S.Brunak,
A.Chigaev,
V.Detours,
and
B.T.Korber
(2002).
Clustering patterns of cytotoxic T-lymphocyte epitopes in human immunodeficiency virus type 1 (HIV-1) proteins reveal imprints of immune evasion on HIV-1 global variation.
|
| |
J Virol,
76,
8757-8768.
|
 |
|
|
|
|
 |
L.Menéndez-Arias
(2002).
Targeting HIV: antiretroviral therapy and development of drug resistance.
|
| |
Trends Pharmacol Sci,
23,
381-388.
|
 |
|
|
|
|
 |
N.Kamiya,
A.Kubota,
Y.Iwase,
K.Sekiya,
M.Ubasawa,
and
S.Yuasa
(2002).
Antiviral activities of MCC-478, a novel and specific inhibitor of hepatitis B virus.
|
| |
Antimicrob Agents Chemother,
46,
2872-2877.
|
 |
|
|
|
|
 |
P.L.Boyer,
S.G.Sarafianos,
E.Arnold,
and
S.H.Hughes
(2002).
The M184V mutation reduces the selective excision of zidovudine 5'-monophosphate (AZTMP) by the reverse transcriptase of human immunodeficiency virus type 1.
|
| |
J Virol,
76,
3248-3256.
|
 |
|
|
|
|
 |
P.L.Boyer,
S.G.Sarafianos,
E.Arnold,
and
S.H.Hughes
(2002).
Nucleoside analog resistance caused by insertions in the fingers of human immunodeficiency virus type 1 reverse transcriptase involves ATP-mediated excision.
|
| |
J Virol,
76,
9143-9151.
|
 |
|
|
|
|
 |
P.P.Chamberlain,
J.Ren,
C.E.Nichols,
L.Douglas,
J.Lennerstrand,
B.A.Larder,
D.I.Stuart,
and
D.K.Stammers
(2002).
Crystal structures of Zidovudine- or Lamivudine-resistant human immunodeficiency virus type 1 reverse transcriptases containing mutations at codons 41, 184, and 215.
|
| |
J Virol,
76,
10015-10019.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.W.Shafer
(2002).
Genotypic testing for human immunodeficiency virus type 1 drug resistance.
|
| |
Clin Microbiol Rev,
15,
247-277.
|
 |
|
|
|
|
 |
S.G.Sarafianos,
A.D.Clark,
K.Das,
S.Tuske,
J.J.Birktoft,
P.Ilankumaran,
A.R.Ramesha,
J.M.Sayer,
D.M.Jerina,
P.L.Boyer,
S.H.Hughes,
and
E.Arnold
(2002).
Structures of HIV-1 reverse transcriptase with pre- and post-translocation AZTMP-terminated DNA.
|
| |
EMBO J,
21,
6614-6624.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.I.Kodama,
S.Kohgo,
K.Kitano,
H.Machida,
H.Gatanaga,
S.Shigeta,
M.Matsuoka,
H.Ohrui,
and
H.Mitsuya
(2001).
4'-Ethynyl nucleoside analogs: potent inhibitors of multidrug-resistant human immunodeficiency virus variants in vitro.
|
| |
Antimicrob Agents Chemother,
45,
1539-1546.
|
 |
|
|
|
|
 |
K.Das,
X.Xiong,
H.Yang,
C.E.Westland,
C.S.Gibbs,
S.G.Sarafianos,
and
E.Arnold
(2001).
Molecular modeling and biochemical characterization reveal the mechanism of hepatitis B virus polymerase resistance to lamivudine (3TC) and emtricitabine (FTC).
|
| |
J Virol,
75,
4771-4779.
|
 |
|
|
|
|
 |
K.Lee,
and
C.K.Chu
(2001).
Molecular modeling approach to understanding the mode of action of L-nucleosides as antiviral agents.
|
| |
Antimicrob Agents Chemother,
45,
138-144.
|
 |
|
|
|
|
 |
K.P.Fischer,
K.S.Gutfreund,
and
D.L.Tyrrell
(2001).
Lamivudine resistance in hepatitis B: mechanisms and clinical implications.
|
| |
Drug Resist Updat,
4,
118-128.
|
 |
|
|
|
|
 |
P.L.Boyer,
H.Q.Gao,
P.K.Clark,
S.G.Sarafianos,
E.Arnold,
and
S.H.Hughes
(2001).
YADD mutants of human immunodeficiency virus type 1 and Moloney murine leukemia virus reverse transcriptase are resistant to lamivudine triphosphate (3TCTP) in vitro.
|
| |
J Virol,
75,
6321-6328.
|
 |
|
|
|
|
 |
P.L.Boyer,
S.G.Sarafianos,
E.Arnold,
and
S.H.Hughes
(2001).
Selective excision of AZTMP by drug-resistant human immunodeficiency virus reverse transcriptase.
|
| |
J Virol,
75,
4832-4842.
|
 |
|
|
|
|
 |
S.G.Sarafianos,
K.Das,
C.Tantillo,
A.D.Clark,
J.Ding,
J.M.Whitcomb,
P.L.Boyer,
S.H.Hughes,
and
E.Arnold
(2001).
Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA.
|
| |
EMBO J,
20,
1449-1461.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Urban,
S.Urban,
K.P.Fischer,
and
D.L.Tyrrell
(2001).
Efficient pyrophosphorolysis by a hepatitis B virus polymerase may be a primer-unblocking mechanism.
|
| |
Proc Natl Acad Sci U S A,
98,
4984-4989.
|
 |
|
|
|
|
 |
E.K.Halvas,
E.S.Svarovskaia,
E.O.Freed,
and
V.K.Pathak
(2000).
Wild-type and YMDD mutant murine leukemia virus reverse transcriptases are resistant to 2',3'-dideoxy-3'-thiacytidine.
|
| |
J Virol,
74,
6669-6674.
|
 |
|
|
|
|
 |
M.Götte,
D.Arion,
M.A.Parniak,
and
M.A.Wainberg
(2000).
The M184V mutation in the reverse transcriptase of human immunodeficiency virus type 1 impairs rescue of chain-terminated DNA synthesis.
|
| |
J Virol,
74,
3579-3585.
|
 |
|
|
|
|
 |
M.Götte,
and
M.A.Wainberg
(2000).
Biochemical mechanisms involved in overcoming HIV resistance to nucleoside inhibitors of reverse transcriptase.
|
| |
Drug Resist Updat,
3,
30-38.
|
 |
|
|
|
|
 |
N.Richard,
H.Salomon,
R.Rando,
T.Mansour,
T.L.Bowlin,
and
M.A.Wainberg
(2000).
Selection and characterization of human immunodeficiency virus type 1 variants resistant to the (+) and (-) enantiomers of 2'-deoxy-3'-oxa-4'-thio-5-fluorocytidine.
|
| |
Antimicrob Agents Chemother,
44,
1127-1131.
|
 |
|
|
|
|
 |
R.W.Shafer,
R.Kantor,
and
M.J.Gonzales
(2000).
The Genetic Basis of HIV-1 Resistance to Reverse Transcriptase and Protease Inhibitors.
|
| |
AIDS Rev,
2,
211-228.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
| |