spacer
spacer

PDBsum entry 1t3r

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Hydrolase PDB id
1t3r

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
99 a.a. *
Ligands
PO4 ×5
017
Waters ×261
* Residue conservation analysis
PDB id:
1t3r
Name: Hydrolase
Title: HIV protease wild-type in complex with tmc114 inhibitor
Structure: Protease retropepsin. Chain: a, b. Synonym: HIV-1 protease. Engineered: yes. Mutation: yes. Other_details: complexed with tmc114
Source: Human immunodeficiency virus 1. Organism_taxid: 11676. Gene: gag-pol. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
Resolution:
1.20Å     R-factor:   0.140     R-free:   0.179
Authors: N.M.King,M.Prabu-Jeyabalan,E.A.Nalivaika,P.B.Wigernick,M.P.De Bethune,C.A.Schiffer
Key ref: D.L.Surleraux et al. (2005). Discovery and selection of TMC114, a next generation HIV-1 protease inhibitor. J Med Chem, 48, 1813-1822. PubMed id: 15771427 DOI: 10.1021/jm049560p
Date:
27-Apr-04     Release date:   03-May-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P03369  (POL_HV1A2) -  Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate ARV2/SF2)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1437 a.a.
99 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class 1: E.C.2.7.7.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: E.C.2.7.7.49  - RNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
Bound ligand (Het Group name = PO4)
matches with 55.56% similarity
+ diphosphate
   Enzyme class 3: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 4: E.C.3.1.-.-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 5: E.C.3.1.13.2  - exoribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
   Enzyme class 6: E.C.3.1.26.13  - retroviral ribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 7: E.C.3.4.23.16  - HIV-1 retropepsin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/jm049560p J Med Chem 48:1813-1822 (2005)
PubMed id: 15771427  
 
 
Discovery and selection of TMC114, a next generation HIV-1 protease inhibitor.
D.L.Surleraux, A.Tahri, W.G.Verschueren, G.M.Pille, H.A.de Kock, T.H.Jonckers, A.Peeters, S.De Meyer, H.Azijn, R.Pauwels, M.P.de Bethune, N.M.King, M.Prabu-Jeyabalan, C.A.Schiffer, P.B.Wigerinck.
 
  ABSTRACT  
 
The screening of known HIV-1 protease inhibitors against a panel of multi-drug-resistant viruses revealed the potent activity of TMC126 on drug-resistant mutants. In comparison to amprenavir, the improved affinity of TMC126 is largely the result of one extra hydrogen bond to the backbone of the protein in the P2 pocket. Modification of the substitution pattern on the phenylsulfonamide P2' substituent of TMC126 created an interesting SAR, with the close analogue TMC114 being found to have a similar antiviral activity against the mutant and the wild-type viruses. X-ray and thermodynamic studies on both wild-type and mutant enzymes showed an extremely high enthalpy driven affinity of TMC114 for HIV-1 protease. In vitro selection of mutants resistant to TMC114 starting from wild-type virus proved to be extremely difficult; this was not the case for other close analogues. Therefore, the extra H-bond to the backbone in the P2 pocket cannot be the only explanation for the interesting antiviral profile of TMC114. Absorption studies in animals indicated that TMC114 has pharmacokinetic properties comparable to currently approved HIV-1 protease inhibitors.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20695887 C.H.Shen, Y.F.Wang, A.Y.Kovalevsky, R.W.Harrison, and I.T.Weber (2010).
Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters.
  FEBS J, 277, 3699-3714.
PDB codes: 3nu3 3nu4 3nu5 3nu6 3nu9 3nuj 3nuo
20237088 M.N.Nalam, A.Ali, M.D.Altman, G.S.Reddy, S.Chellappan, V.Kairys, A.Ozen, H.Cao, M.K.Gilson, B.Tidor, T.M.Rana, and C.A.Schiffer (2010).
Evaluating the substrate-envelope hypothesis: structural analysis of novel HIV-1 protease inhibitors designed to be robust against drug resistance.
  J Virol, 84, 5368-5378.
PDB codes: 3gi4 3gi5 3gi6
20543885 Y.Cai, and C.A.Schiffer (2010).
Decomposing the energetic impact of drug resistant mutations in HIV-1 protease on binding DRV.
  J Chem Theory Comput, 6, 1358-1368.  
19400736 A.J.Kandathil, A.P.Joseph, R.Kannangai, N.Srinivasan, O.C.Abraham, S.A.Pulimood, and G.Sridharan (2009).
Structural basis of drug resistance by genetic variants of HIV type 1 clade c protease from India.
  AIDS Res Hum Retroviruses, 25, 511-519.  
19746963 A.K.Ghosh, S.Kulkarni, D.D.Anderson, L.Hong, A.Baldridge, Y.F.Wang, A.A.Chumanevich, A.Y.Kovalevsky, Y.Tojo, M.Amano, Y.Koh, J.Tang, I.T.Weber, and H.Mitsuya (2009).
Design, synthesis, protein-ligand X-ray structure, and biological evaluation of a series of novel macrocyclic human immunodeficiency virus-1 protease inhibitors to combat drug resistance.
  J Med Chem, 52, 7689-7705.
PDB codes: 3i6o 3i7e
19147519 D.Descamps, S.Lambert-Niclot, A.G.Marcelin, G.Peytavin, B.Roquebert, C.Katlama, P.Yeni, M.Felices, V.Calvez, and F.Brun-Vézinet (2009).
Mutations associated with virological response to darunavir/ritonavir in HIV-1-infected protease inhibitor-experienced patients.
  J Antimicrob Chemother, 63, 585-592.  
18781587 E.S.Bolstad, and A.C.Anderson (2009).
In pursuit of virtual lead optimization: pruning ensembles of receptor structures for increased efficiency and accuracy during docking.
  Proteins, 75, 62-74.  
19587054 H.Van Marck, I.Dierynck, G.Kraus, S.Hallenberger, T.Pattery, G.Muyldermans, L.Geeraert, L.Borozdina, R.Bonesteel, C.Aston, E.Shaw, Q.Chen, C.Martinez, V.Koka, J.Lee, E.Chi, M.P.de Béthune, and K.Hertogs (2009).
The impact of individual human immunodeficiency virus type 1 protease mutations on drug susceptibility is highly influenced by complex interactions with the background protease sequence.
  J Virol, 83, 9512-9520.  
19535439 K.G.Sasková, M.Kozísek, P.Rezácová, J.Brynda, T.Yashina, R.M.Kagan, and J.Konvalinka (2009).
Molecular characterization of clinical isolates of human immunodeficiency virus resistant to the protease inhibitor darunavir.
  J Virol, 83, 8810-8818.
PDB codes: 3ggt 3ggu 3u7s
19323590 K.McKeage, C.M.Perry, and S.J.Keam (2009).
Darunavir: A Review of its Use in the Management of HIV Infection in Adults.
  Drugs, 69, 477-503.  
19254207 P.M.Colman (2009).
New antivirals and drug resistance.
  Annu Rev Biochem, 78, 95.  
19643614 P.S.Marinec, C.G.Evans, G.S.Gibbons, M.A.Tarnowski, D.L.Overbeek, and J.E.Gestwicki (2009).
Synthesis of orthogonally reactive FK506 derivatives via olefin cross metathesis.
  Bioorg Med Chem, 17, 5763-5768.  
19164520 P.S.Marinec, L.Chen, K.J.Barr, M.W.Mutz, G.R.Crabtree, and J.E.Gestwicki (2009).
FK506-binding protein (FKBP) partitions a modified HIV protease inhibitor into blood cells and prolongs its lifetime in vivo.
  Proc Natl Acad Sci U S A, 106, 1336-1341.  
19193159 R.N.Jorissen, G.S.Reddy, A.Ali, M.D.Altman, S.Chellappan, S.G.Anjum, B.Tidor, C.A.Schiffer, T.M.Rana, and M.K.Gilson (2009).
Additivity in the analysis and design of HIV protease inhibitors.
  J Med Chem, 52, 737-754.  
18783203 A.K.Ghosh, S.Gemma, A.Baldridge, Y.F.Wang, A.Y.Kovalevsky, Y.Koh, I.T.Weber, and H.Mitsuya (2008).
Flexible cyclic ethers/polyethers as novel P2-ligands for HIV-1 protease inhibitors: design, synthesis, biological evaluation, and protein-ligand X-ray studies.
  J Med Chem, 51, 6021-6033.
PDB code: 3djk
18843400 A.K.Ghosh, S.Gemma, J.Takayama, A.Baldridge, S.Leshchenko-Yashchuk, H.B.Miller, Y.F.Wang, A.Y.Kovalevsky, Y.Koh, I.T.Weber, and H.Mitsuya (2008).
Potent HIV-1 protease inhibitors incorporating meso-bicyclic urethanes as P2-ligands: structure-based design, synthesis, biological evaluation and protein-ligand X-ray studies.
  Org Biomol Chem, 6, 3703-3713.
PDB code: 3dk1
18230615 C.Coffinier, S.E.Hudon, R.Lee, E.A.Farber, C.Nobumori, J.H.Miner, D.A.Andres, H.P.Spielmann, C.A.Hrycyna, L.G.Fong, and S.G.Young (2008).
A potent HIV protease inhibitor, darunavir, does not inhibit ZMPSTE24 or lead to an accumulation of farnesyl-prelamin A in cells.
  J Biol Chem, 283, 9797-9804.  
  19209258 C.L.Tremblay (2008).
Combating HIV resistance - focus on darunavir.
  Ther Clin Risk Manag, 4, 759-766.  
  18820715 E.Lefebvre, and C.A.Schiffer (2008).
Resilience to resistance of HIV-1 protease inhibitors: profile of darunavir.
  AIDS Rev, 10, 131-142.  
18375506 G.Verkhivker, G.Tiana, C.Camilloni, D.Provasi, and R.A.Broglia (2008).
Atomistic simulations of the HIV-1 protease folding inhibition.
  Biophys J, 95, 550-562.  
18327986 S.de Meyer, T.Vangeneugden, B.van Baelen, E.de Paepe, H.van Marck, G.Picchio, E.Lefebvre, and M.P.de Béthune (2008).
Resistance profile of darunavir: combined 24-week results from the POWER trials.
  AIDS Res Hum Retroviruses, 24, 379-388.  
18004760 T.Hou, W.A.McLaughlin, and W.Wang (2008).
Evaluating the potency of HIV-1 protease drugs to combat resistance.
  Proteins, 71, 1163-1174.  
17900913 A.K.Ghosh, Z.L.Dawson, and H.Mitsuya (2007).
Darunavir, a conceptually new HIV-1 protease inhibitor for the treatment of drug-resistant HIV.
  Bioorg Med Chem, 15, 7576-7580.  
17928344 I.Dierynck, M.De Wit, E.Gustin, I.Keuleers, J.Vandersmissen, S.Hallenberger, and K.Hertogs (2007).
Binding kinetics of darunavir to human immunodeficiency virus type 1 protease explain the potent antiviral activity and high genetic barrier.
  J Virol, 81, 13845-13851.  
17713972 M.Rittweger, and K.Arastéh (2007).
Clinical pharmacokinetics of darunavir.
  Clin Pharmacokinet, 46, 739-756.  
17474129 S.Chellappan, V.Kairys, M.X.Fernandes, C.Schiffer, and M.K.Gilson (2007).
Evaluation of the substrate envelope hypothesis for inhibitors of HIV-1 protease.
  Proteins, 68, 561-567.  
17360759 S.Muzammil, A.A.Armstrong, L.W.Kang, A.Jakalian, P.R.Bonneau, V.Schmelmer, L.M.Amzel, and E.Freire (2007).
Unique thermodynamic response of tipranavir to human immunodeficiency virus type 1 protease drug resistance mutations.
  J Virol, 81, 5144-5154.
PDB codes: 2o4k 2o4l 2o4n 2o4p 2o4s
18090302 S.Rusconi, N.Gianotti, F.Adorni, E.Boeri, S.Menzo, A.Gonnelli, V.Micheli, P.Meraviglia, M.Trezzi, E.Paolini, A.Giacometti, P.Corsi, M.Di Pietro, L.Monno, G.Punzi, and M.Zazzi (2007).
Determinants of HIV-1 genotypic resistance to darunavir (TMC114) in a large Italian resistance database (Antiretroviral Resistance Cohort Analysis).
  J Acquir Immune Defic Syndr, 46, 373-375.  
17955436 Y.Mitsuya, T.F.Liu, S.Y.Rhee, W.J.Fessel, and R.W.Shafer (2007).
Prevalence of darunavir resistance-associated mutations: patterns of occurrence and association with past treatment.
  J Infect Dis, 196, 1177-1179.  
16927344 A.K.Ghosh, P.Ramu Sridhar, N.Kumaragurubaran, Y.Koh, I.T.Weber, and H.Mitsuya (2006).
Bis-tetrahydrofuran: a privileged ligand for darunavir and a new generation of hiv protease inhibitors that combat drug resistance.
  ChemMedChem, 1, 939-950.  
16962136 A.Y.Kovalevsky, F.Liu, S.Leshchenko, A.K.Ghosh, J.M.Louis, R.W.Harrison, and I.T.Weber (2006).
Ultra-high resolution crystal structure of HIV-1 protease mutant reveals two binding sites for clinical inhibitor TMC114.
  J Mol Biol, 363, 161-173.
PDB codes: 2hs1 2hs2
16480273 A.Y.Kovalevsky, Y.Tie, F.Liu, P.I.Boross, Y.F.Wang, S.Leshchenko, A.K.Ghosh, R.W.Harrison, and I.T.Weber (2006).
Effectiveness of nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly drug resistant mutations D30N, I50V, and L90M.
  J Med Chem, 49, 1379-1387.
PDB codes: 2f80 2f81 2f8g
17166342 M.P.de Béthune, and K.Hertogs (2006).
Screening and selecting for optimized antiretroviral drugs: rising to the challenge of drug resistance.
  Curr Med Res Opin, 22, 2603-2612.  
16227435 P.Cígler, M.Kozísek, P.Rezácová, J.Brynda, Z.Otwinowski, J.Pokorná, J.Plesek, B.Grüner, L.Dolecková-Maresová, M.Mása, J.Sedlácek, J.Bodem, H.G.Kräusslich, V.Král, and J.Konvalinka (2005).
From nonpeptide toward noncarbon protease inhibitors: metallacarboranes as specific and potent inhibitors of HIV protease.
  Proc Natl Acad Sci U S A, 102, 15394-15399.
PDB code: 1ztz
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer