spacer
spacer

PDBsum entry 1sdt

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase PDB id
1sdt

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
99 a.a. *
Ligands
MK1
Metals
_CL ×2
Waters ×170
* Residue conservation analysis
PDB id:
1sdt
Name: Hydrolase
Title: Crystal structures of HIV protease v82a and l90m mutants reveal changes in indinavir binding site.
Structure: Protease retropepsin. Chain: a, b. Synonym: HIV-1 protease. Engineered: yes. Other_details: complexed with indinavir
Source: Human immunodeficiency virus 1. Organism_taxid: 11676. Gene: gag-pol. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
Resolution:
1.30Å     R-factor:   0.155     R-free:   0.190
Authors: B.Mahalingam,Y.-F.Wang,P.I.Boross,J.Tozser,J.M.Louis,R.W.Harrison, I.T.Weber
Key ref:
B.Mahalingam et al. (2004). Crystal structures of HIV protease V82A and L90M mutants reveal changes in the indinavir-binding site. Eur J Biochem, 271, 1516-1524. PubMed id: 15066177 DOI: 10.1111/j.1432-1033.2004.04060.x
Date:
14-Feb-04     Release date:   25-May-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P03367  (POL_HV1BR) -  Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BRU/LAI)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1447 a.a.
99 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 5 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 1: E.C.2.7.7.49  - RNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 2: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 3: E.C.3.1.13.2  - exoribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
   Enzyme class 4: E.C.3.1.26.13  - retroviral ribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 5: E.C.3.4.23.16  - HIV-1 retropepsin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1111/j.1432-1033.2004.04060.x Eur J Biochem 271:1516-1524 (2004)
PubMed id: 15066177  
 
 
Crystal structures of HIV protease V82A and L90M mutants reveal changes in the indinavir-binding site.
B.Mahalingam, Y.F.Wang, P.I.Boross, J.Tozser, J.M.Louis, R.W.Harrison, I.T.Weber.
 
  ABSTRACT  
 
The crystal structures of the wild-type HIV-1 protease (PR) and the two resistant variants, PR(V82A) and PR(L90M), have been determined in complex with the antiviral drug, indinavir, to gain insight into the molecular basis of drug resistance. V82A and L90M correspond to an active site mutation and nonactive site mutation, respectively. The inhibition (K(i)) of PR(V82A) and PR(L90M) was 3.3- and 0.16-fold, respectively, relative to the value for PR. They showed only a modest decrease, of 10-15%, in their k(cat)/K(m) values relative to PR. The crystal structures were refined to resolutions of 1.25-1.4 A to reveal critical features associated with inhibitor resistance. PR(V82A) showed local changes in residues 81-82 at the site of the mutation, while PR(L90M) showed local changes near Met90 and an additional interaction with indinavir. These structural differences concur with the kinetic data.
 
  Selected figure(s)  
 
Figure 3.
Fig. 3. Interaction of Met90'and Asp25' in PR[L90M]. (A) The 2Fo–Fc electron density map showing Met90', Asp25' and Thr26'in the PR[L90M] structure. The side chain of Met90' has two conformations, and one conformation has a short separation from the carbonyl oxygen of the catalytic Asp25'. (B) Comparison of Met90' in PR[L90M] and Leu90' in the wild-type HIV-1 protease (PR) relative to Asp25'. The PR residues are in black and the PR[L90M] residues are in gray. Hydrogen bonds are indicated by dashed lines, with the distances shown in Å.
Figure 6.
Fig. 6. Structural variation in residues 81–82 near indinavir. Stereoview showing the benzyl group of indinavir interacting with residues 81–82, using the major conformation of Val82. The wild-type HIV-1 protease (PR) structure is in black and the mutant is in gray bonds. Interatomic distances are given in Å. (A) PR[V82A] superimposed on PR. (B) PR[L90M] superimposed on PR.
 
  The above figures are reprinted by permission from the Federation of European Biochemical Societies: Eur J Biochem (2004, 271, 1516-1524) copyright 2004.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
  21465560 S.Karthik, and S.Senapati (2011).
Dynamic flaps in HIV-1 protease adopt unique ordering at different stages in the catalytic cycle.
  Proteins, 79, 1830-1840.  
20695887 C.H.Shen, Y.F.Wang, A.Y.Kovalevsky, R.W.Harrison, and I.T.Weber (2010).
Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters.
  FEBS J, 277, 3699-3714.
PDB codes: 3nu3 3nu4 3nu5 3nu6 3nu9 3nuj 3nuo
20080674 J.Zhang, T.Hou, W.Wang, and J.S.Liu (2010).
Detecting and understanding combinatorial mutation patterns responsible for HIV drug resistance.
  Proc Natl Acad Sci U S A, 107, 1321-1326.  
19928916 D.Das, Y.Koh, Y.Tojo, A.K.Ghosh, and H.Mitsuya (2009).
Prediction of potency of protease inhibitors using free energy simulations with polarizable quantum mechanics-based ligand charges and a hybrid water model.
  J Chem Inf Model, 49, 2851-2862.  
18833280 C.Tang, J.M.Louis, A.Aniana, J.Y.Suh, and G.M.Clore (2008).
Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease.
  Nature, 455, 693-696.  
18281688 J.M.Sayer, F.Liu, R.Ishima, I.T.Weber, and J.M.Louis (2008).
Effect of the active site D25N mutation on the structure, stability, and ligand binding of the mature HIV-1 protease.
  J Biol Chem, 283, 13459-13470.
PDB codes: 3bva 3bvb
17854027 C.Garriga, M.J.Pérez-Elías, R.Delgado, L.Ruiz, R.Nájera, T.Pumarola, M.d.e.l. .M.Alonso-Socas, S.García-Bujalance, and L.Menéndez-Arias (2007).
Mutational patterns and correlated amino acid substitutions in the HIV-1 protease after virological failure to nelfinavir- and lopinavir/ritonavir-based treatments.
  J Med Virol, 79, 1617-1628.  
17537865 H.E.Klei, K.Kish, P.F.Lin, Q.Guo, J.Friborg, R.E.Rose, Y.Zhang, V.Goldfarb, D.R.Langley, M.Wittekind, and S.Sheriff (2007).
X-ray crystal structures of human immunodeficiency virus type 1 protease mutants complexed with atazanavir.
  J Virol, 81, 9525-9535.
PDB codes: 2fxd 2fxe
  17401206 R.M.Coman, A.Robbins, M.M.Goodenow, R.McKenna, and B.M.Dunn (2007).
Expression, purification and preliminary X-ray crystallographic studies of the human immunodeficiency virus 1 subtype C protease.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 63, 320-323.  
17696515 Y.F.Wang, Y.Tie, P.I.Boross, J.Tozser, A.K.Ghosh, R.W.Harrison, and I.T.Weber (2007).
Potent new antiviral compound shows similar inhibition and structural interactions with drug resistant mutants and wild type HIV-1 protease.
  J Med Chem, 50, 4509-4515.
PDB codes: 2qci 2qd6 2qd7 2qd8 2z4o
17243183 Y.Tie, A.Y.Kovalevsky, P.Boross, Y.F.Wang, A.K.Ghosh, J.Tozser, R.W.Harrison, and I.T.Weber (2007).
Atomic resolution crystal structures of HIV-1 protease and mutants V82A and I84V with saquinavir.
  Proteins, 67, 232-242.
PDB codes: 2nmw 2nmy 2nmz 2nnk 2nnp 3oxc
16962136 A.Y.Kovalevsky, F.Liu, S.Leshchenko, A.K.Ghosh, J.M.Louis, R.W.Harrison, and I.T.Weber (2006).
Ultra-high resolution crystal structure of HIV-1 protease mutant reveals two binding sites for clinical inhibitor TMC114.
  J Mol Biol, 363, 161-173.
PDB codes: 2hs1 2hs2
16480273 A.Y.Kovalevsky, Y.Tie, F.Liu, P.I.Boross, Y.F.Wang, S.Leshchenko, A.K.Ghosh, R.W.Harrison, and I.T.Weber (2006).
Effectiveness of nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly drug resistant mutations D30N, I50V, and L90M.
  J Med Chem, 49, 1379-1387.
PDB codes: 2f80 2f81 2f8g
16277992 F.Liu, P.I.Boross, Y.F.Wang, J.Tozser, J.M.Louis, R.W.Harrison, and I.T.Weber (2005).
Kinetic, stability, and structural changes in high-resolution crystal structures of HIV-1 protease with drug-resistant mutations L24I, I50V, and G73S.
  J Mol Biol, 354, 789-800.
PDB codes: 2avm 2avo 2avq 2avs 2avv
16218957 Y.Tie, P.I.Boross, Y.F.Wang, L.Gaddis, F.Liu, X.Chen, J.Tozser, R.W.Harrison, and I.T.Weber (2005).
Molecular basis for substrate recognition and drug resistance from 1.1 to 1.6 angstroms resolution crystal structures of HIV-1 protease mutants with substrate analogs.
  FEBS J, 272, 5265-5277.
PDB codes: 2aoc 2aod 2aoe 2aof 2aog 2aoh 2aoi 2aoj
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer