spacer
spacer

PDBsum entry 1hpx

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Hydrolase/hydrolase inhibitor PDB id
1hpx

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
99 a.a. *
Ligands
KNI
Waters ×6
* Residue conservation analysis
PDB id:
1hpx
Name: Hydrolase/hydrolase inhibitor
Title: HIV-1 protease complexed with the inhibitor kni-272
Structure: HIV-1 protease. Chain: a, b. Engineered: yes
Source: Human immunodeficiency virus 1. Organism_taxid: 11676. Strain: hivlai. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Dimer (from PQS)
Resolution:
2.00Å     R-factor:   0.170    
Authors: T.N.Bhat,J.W.Erickson
Key ref:
E.T.Baldwin et al. (1995). Structure of HIV-1 protease with KNI-272, a tight-binding transition-state analog containing allophenylnorstatine. Structure, 3, 581-590. PubMed id: 8590019 DOI: 10.1016/S0969-2126(01)00192-7
Date:
18-May-95     Release date:   08-Mar-96    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P03367  (POL_HV1BR) -  Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BRU/LAI)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1447 a.a.
99 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 1: E.C.2.7.7.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: E.C.2.7.7.49  - RNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 3: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 4: E.C.3.1.-.-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 5: E.C.3.1.13.2  - exoribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
   Enzyme class 6: E.C.3.1.26.13  - retroviral ribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 7: E.C.3.4.23.16  - HIV-1 retropepsin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/S0969-2126(01)00192-7 Structure 3:581-590 (1995)
PubMed id: 8590019  
 
 
Structure of HIV-1 protease with KNI-272, a tight-binding transition-state analog containing allophenylnorstatine.
E.T.Baldwin, T.N.Bhat, S.Gulnik, B.Liu, I.A.Topol, Y.Kiso, T.Mimoto, H.Mitsuya, J.W.Erickson.
 
  ABSTRACT  
 
BACKGROUND: HIV-1 protease (HIV PR), an aspartic protease, cleaves Phe-Pro bonds in the Gag and Gag-Pol viral polyproteins. Substrate-based peptide mimics constitute a major class of inhibitors of HIV PR presently being developed for AIDS treatment. One such compound, KNI-272, which incorporates allophenylnorstatine (Apns)-thioproline (Thp) in place of Phe-Pro, has potent antiviral activity and is undergoing clinical trials. The structure of the enzyme-inhibitor complex should lead to an understanding of the structural basis for its tight binding properties and provide a framework for interpreting the emerging resistance to this drug. RESULTS: The three-dimensional crystal structure of KNI-272 bound to HIV PR has been determined to 2.0 A resolution and used to analyze structure-activity data and drug resistance for the Arg8-->Gln and ILe84-->Val mutations in HIV PR. The conformationally constrained Apns-Thp linkage is favorably recognized in its low energy trans conformation, which results in a symmetric mode of binding to the active-site aspartic acids and also explains the unusual preference of HIV PR for the S, or syn, hydroxyl group of the Apns residue. The inhibitor recognizes the enzyme via hydrogen bonds to three bridging water molecules, including one that is coordinated directly to the catalytic Asp125 residue. CONCLUSIONS: The structure of the HIV PR/KNI-272 complex illustrates the importance of limiting the conformational degrees of freedom and of using protein-bound water molecules for building potent inhibitors. The binding mode of HIV PR inhibitors can be predicted from the stereochemical relationship between adjacent hydroxyl-bearing and side chain bearing carbon atoms of the P1 substituent. Our structure also provides a framework for designing analogs targeted to drug-resistant mutant enzymes.
 
  Selected figure(s)  
 
Figure 5.
Figure 5. View of the active site showing the symmetric mode of core binding for KNI-272. Bridging water molecules (red spheres) are observed in the S3 and S3′ subsites; these waters appear to stabilize the structure of the active-site pocket while also providing flexibility. Atoms are colored by type; carbons for the enzyme and inhibitor are pink and white, respectively. Figure 5. View of the active site showing the symmetric mode of core binding for KNI-272. Bridging water molecules (red spheres) are observed in the S3 and S3′ subsites; these waters appear to stabilize the structure of the active-site pocket while also providing flexibility. Atoms are colored by type; carbons for the enzyme and inhibitor are pink and white, respectively.
Figure 8.
Figure 8. Comparison of modeled epimer (R-hydroxyl) of KNI-272 (blue) with the anti conformers epi-Ro-31-8959 (yellow) and A-77003 (white). Nitrogen, oxygen and sulfur atoms are colored by type. (a) Comparison of all three. (b) Comparison of epi-KNI-272 and epi-Ro-31-8959 only. Figure 8. Comparison of modeled epimer (R-hydroxyl) of KNI-272 (blue) with the anti conformers epi-Ro-31-8959 (yellow) and A-77003 (white). Nitrogen, oxygen and sulfur atoms are colored by type. (a) Comparison of all three. (b) Comparison of epi-KNI-272 and epi-Ro-31-8959 only.
 
  The above figures are reprinted by permission from Cell Press: Structure (1995, 3, 581-590) copyright 1995.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20197044 C.Gao, M.S.Park, and H.A.Stern (2010).
Accounting for ligand conformational restriction in calculations of protein-ligand binding affinities.
  Biophys J, 98, 901-910.  
19908272 D.M.Krüger, and A.Evers (2010).
Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors.
  ChemMedChem, 5, 148-158.  
19217848 D.Boda, M.Valiskó, D.Henderson, D.Gillespie, B.Eisenberg, and M.K.Gilson (2009).
Ions and inhibitors in the binding site of HIV protease: comparison of Monte Carlo simulations and the linearized Poisson-Boltzmann theory.
  Biophys J, 96, 1293-1306.  
19845314 H.Fan, J.J.Irwin, B.M.Webb, G.Klebe, B.K.Shoichet, and A.Sali (2009).
Molecular docking screens using comparative models of proteins.
  J Chem Inf Model, 49, 2512-2527.  
18498103 D.C.Bas, D.M.Rogers, and J.H.Jensen (2008).
Very fast prediction and rationalization of pKa values for protein-ligand complexes.
  Proteins, 73, 765-783.  
  18997326 H.Matsumura, M.Adachi, S.Sugiyama, S.Okada, M.Yamakami, T.Tamada, K.Hidaka, Y.Hayashi, T.Kimura, Y.Kiso, T.Kitatani, S.Maki, H.Y.Yoshikawa, H.Adachi, K.Takano, S.Murakami, T.Inoue, R.Kuroki, and Y.Mori (2008).
Crystallization and preliminary neutron diffraction studies of HIV-1 protease cocrystallized with inhibitor KNI-272.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 1003-1006.  
18763714 J.T.Nguyen, Y.Hamada, T.Kimura, and Y.Kiso (2008).
Design of potent aspartic protease inhibitors to treat various diseases.
  Arch Pharm (Weinheim), 341, 523-535.  
18481899 N.Kaushik-Basu, A.Basu, and D.Harris (2008).
Peptide inhibition of HIV-1: current status and future potential.
  BioDrugs, 22, 161-175.  
17242738 Z.Li, and T.Lazaridis (2007).
Water at biomolecular binding interfaces.
  Phys Chem Chem Phys, 9, 573-581.  
16941468 H.B.Thorsteinsdottir, T.Schwede, V.Zoete, and M.Meuwly (2006).
How inaccuracies in protein structure models affect estimates of protein-ligand interactions: computational analysis of HIV-I protease inhibitor binding.
  Proteins, 65, 407-423.  
16508960 M.D.Prasanna, J.Vondrasek, A.Wlodawer, H.Rodriguez, and T.N.Bhat (2006).
Chemical compound navigator: a web-based chem-BLAST, chemical taxonomy-based search engine for browsing compounds.
  Proteins, 63, 907-917.  
16537628 M.Prabu-Jeyabalan, E.A.Nalivaika, K.Romano, and C.A.Schiffer (2006).
Mechanism of substrate recognition by drug-resistant human immunodeficiency virus type 1 protease variants revealed by a novel structural intermediate.
  J Virol, 80, 3607-3616.
PDB codes: 2fns 2fnt
16555306 N.P.Todorov, C.L.Buenemann, and I.L.Alberts (2006).
De novo ligand design to an ensemble of protein structures.
  Proteins, 64, 43-59.  
16231289 H.Li, A.D.Robertson, and J.H.Jensen (2005).
Very fast empirical prediction and rationalization of protein pKa values.
  Proteins, 61, 704-721.  
15542562 K.Wittayanarakul, O.Aruksakunwong, S.Saen-oon, W.Chantratita, V.Parasuk, P.Sompornpisut, and S.Hannongbua (2005).
Insights into saquinavir resistance in the G48V HIV-1 protease: quantum calculations and molecular dynamic simulations.
  Biophys J, 88, 867-879.  
15340915 M.Lepsík, Z.Kríz, and Z.Havlas (2004).
Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations.
  Proteins, 57, 279-293.  
14622012 H.Ohtaka, A.Schön, and E.Freire (2003).
Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations.
  Biochemistry, 42, 13659-13666.  
12759910 S.Sirois, E.I.Proynov, J.F.Truchon, C.M.Tsoukas, and D.R.Salahub (2003).
A density functional study of the hydrogen-bond network within the HIV-1 protease catalytic site cleft.
  J Comput Chem, 24, 1110-1119.  
12180988 A.Fehér, I.T.Weber, P.Bagossi, P.Boross, B.Mahalingam, J.M.Louis, T.D.Copeland, I.Y.Torshin, R.W.Harrison, and J.Tözsér (2002).
Effect of sequence polymorphism and drug resistance on two HIV-1 Gag processing sites.
  Eur J Biochem, 269, 4114-4120.  
  11773409 K.Yoshimura, R.Kato, M.F.Kavlick, A.Nguyen, V.Maroun, K.Maeda, K.A.Hussain, A.K.Ghosh, S.V.Gulnik, J.W.Erickson, and H.Mitsuya (2002).
A potent human immunodeficiency virus type 1 protease inhibitor, UIC-94003 (TMC-126), and selection of a novel (A28S) mutation in the protease active site.
  J Virol, 76, 1349-1358.  
12005435 M.Prabu-Jeyabalan, E.Nalivaika, and C.A.Schiffer (2002).
Substrate shape determines specificity of recognition for HIV-1 protease: analysis of crystal structures of six substrate complexes.
  Structure, 10, 369-381.
PDB codes: 1kj4 1kj7 1kjf 1kjg 1kjh
12210150 R.Luo, L.David, and M.K.Gilson (2002).
Accelerated Poisson-Boltzmann calculations for static and dynamic systems.
  J Comput Chem, 23, 1244-1253.  
11932232 R.W.Shafer (2002).
Genotypic testing for human immunodeficiency virus type 1 drug resistance.
  Clin Microbiol Rev, 15, 247-277.  
12395431 V.Kairys, and M.K.Gilson (2002).
Enhanced docking with the mining minima optimizer: acceleration and side-chain flexibility.
  J Comput Chem, 23, 1656-1670.  
  11045625 A.Velazquez-Campoy, I.Luque, M.J.Todd, M.Milutinovich, Y.Kiso, and E.Freire (2000).
Thermodynamic dissection of the binding energetics of KNI-272, a potent HIV-1 protease inhibitor.
  Protein Sci, 9, 1801-1809.  
11104817 K.Ikuta, S.Suzuki, H.Horikoshi, T.Mukai, and R.B.Luftig (2000).
Positive and negative aspects of the human immunodeficiency virus protease: development of inhibitors versus its role in AIDS pathogenesis.
  Microbiol Mol Biol Rev, 64, 725-745.  
  10210196 J.Trylska, J.Antosiewicz, M.Geller, C.N.Hodge, R.M.Klabe, M.S.Head, and M.K.Gilson (1999).
Thermodynamic linkage between the binding of protons and inhibitors to HIV-1 protease.
  Protein Sci, 8, 180-195.  
10411934 K.Yoshimura, R.Kato, K.Yusa, M.F.Kavlick, V.Maroun, A.Nguyen, T.Mimoto, T.Ueno, M.Shintani, J.Falloon, H.Masur, H.Hayashi, J.Erickson, and H.Mitsuya (1999).
JE-2147: a dipeptide protease inhibitor (PI) that potently inhibits multi-PI-resistant HIV-1.
  Proc Natl Acad Sci U S A, 96, 8675-8680.  
10508781 R.Ishima, D.I.Freedberg, Y.X.Wang, J.M.Louis, and D.A.Torchia (1999).
Flap opening and dimer-interface flexibility in the free and inhibitor-bound HIV protease, and their implications for function.
  Structure, 7, 1047-1055.  
10328309 S.Kurihara, T.Tsumuraya, and I.Fujii (1999).
Structure-based design of diaminopyranosides as a novel inhibitor core unit of HIV proteases.
  Bioorg Med Chem Lett, 9, 1179-1184.  
10380353 Y.Kiso, H.Matsumoto, S.Mizumoto, T.Kimura, Y.Fujiwara, and K.Akaji (1999).
Small dipeptide-based HIV protease inhibitors containing the hydroxymethylcarbonyl isostere as an ideal transition-state mimic.
  Biopolymers, 51, 59-68.  
9860826 E.M.Towler, S.V.Gulnik, T.N.Bhat, D.Xie, E.Gustschina, T.R.Sumpter, N.Robertson, C.Jones, M.Sauter, N.Mueller-Lantzsch, C.Debouck, and J.W.Erickson (1998).
Functional characterization of the protease of human endogenous retrovirus, K10: can it complement HIV-1 protease?
  Biochemistry, 37, 17137-17144.  
  10082371 S.W.Rick, I.A.Topol, J.W.Erickson, and S.K.Burt (1998).
Molecular mechanisms of resistance: free energy calculations of mutation effects on inhibitor binding to HIV-1 protease.
  Protein Sci, 7, 1750-1756.  
8894104 R.S.Randad, L.Lubkowska, A.M.Silva, D.M.Guerin, S.V.Gulnik, B.Yu, and J.W.Erickson (1996).
Structure-based design of achiral, nonpeptidic hydroxybenzamide as a novel P2/P2' replacement for the symmetry-based HIV protease inhibitors.
  Bioorg Med Chem, 4, 1471-1480.  
8785365 Y.Kiso (1996).
Design and synthesis of substrate-based peptidomimetic human immunodeficiency virus protease inhibitors containing the hydroxymethylcarbonyl isostere.
  Biopolymers, 40, 235-244.  
8894113 Y.Ohno, Y.Kiso, and Y.Kobayashi (1996).
Solution conformations of KNI-272, a tripeptide HIV protease inhibitor designed on the basis of substrate transition state: determined by NMR spectroscopy and simulated annealing calculations.
  Bioorg Med Chem, 4, 1565-1572.  
8841113 Y.X.Wang, D.I.Freedberg, S.Grzesiek, D.A.Torchia, P.T.Wingfield, J.D.Kaufman, S.J.Stahl, C.H.Chang, and C.N.Hodge (1996).
Mapping hydration water molecules in the HIV-1 protease/DMP323 complex in solution by NMR spectroscopy.
  Biochemistry, 35, 12694-12704.  
8756455 Y.X.Wang, D.I.Freedberg, T.Yamazaki, P.T.Wingfield, S.J.Stahl, J.D.Kaufman, Y.Kiso, and D.A.Torchia (1996).
Solution NMR evidence that the HIV-1 protease catalytic aspartyl groups have different ionization states in the complex formed with the asymmetric drug KNI-272.
  Biochemistry, 35, 9945-9950.  
  8619594 S.Chokekijchai, E.Kojima, S.Anderson, M.Nomizu, M.Tanaka, M.Machida, T.Date, K.Toyota, S.Ishida, and K.Watanabe (1995).
NP-06: a novel anti-human immunodeficiency virus polypeptide produced by a Streptomyces species.
  Antimicrob Agents Chemother, 39, 2345-2347.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer