spacer
spacer

PDBsum entry 1dmp

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Aspartyl proteinase PDB id
1dmp

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
99 a.a. *
Ligands
DMQ
* Residue conservation analysis
PDB id:
1dmp
Name: Aspartyl proteinase
Title: Structure of HIV-1 protease complex
Structure: HIV-1 protease. Chain: a, b. Engineered: yes. Other_details: complex with dmp450 of dupont merck
Source: Human immunodeficiency virus 1. Organism_taxid: 11676. Strain: bh102 isolate. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Dimer (from PQS)
Resolution:
2.00Å     R-factor:   0.210    
Authors: C.-H.Chang
Key ref: C.N.Hodge et al. (1996). Improved cyclic urea inhibitors of the HIV-1 protease: synthesis, potency, resistance profile, human pharmacokinetics and X-ray crystal structure of DMP 450. Chem Biol, 3, 301-314. PubMed id: 8807858
Date:
01-Nov-96     Release date:   12-Nov-97    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P04585  (POL_HV1H2) -  Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate HXB2)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1435 a.a.
99 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 1: E.C.2.7.7.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: E.C.2.7.7.49  - RNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 3: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 4: E.C.3.1.-.-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 5: E.C.3.1.13.2  - exoribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
   Enzyme class 6: E.C.3.1.26.13  - retroviral ribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 7: E.C.3.4.23.16  - HIV-1 retropepsin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
Chem Biol 3:301-314 (1996)
PubMed id: 8807858  
 
 
Improved cyclic urea inhibitors of the HIV-1 protease: synthesis, potency, resistance profile, human pharmacokinetics and X-ray crystal structure of DMP 450.
C.N.Hodge, P.E.Aldrich, L.T.Bacheler, C.H.Chang, C.J.Eyermann, S.Garber, M.Grubb, D.A.Jackson, P.K.Jadhav, B.Korant, P.Y.Lam, M.B.Maurin, J.L.Meek, M.J.Otto, M.M.Rayner, C.Reid, T.R.Sharpe, L.Shum, D.L.Winslow, S.Erickson-Viitanen.
 
  ABSTRACT  
 
BACKGROUND: Effective HIV protease inhibitors must combine potency towards wild-type and mutant variants of HIV with oral bioavailability such that drug levels in relevant tissues continuously exceed that required for inhibition of virus replication. Computer-aided design led to the discovery of cyclic urea inhibitors of the HIV protease. We set out to improve the physical properties and oral bioavailability of these compounds. RESULTS: We have synthesized DMP 450 (bis-methanesulfonic acid salt), a water-soluble cyclic urea compound and a potent inhibitor of HIV replication in cell culture that also inhibits variants of HIV with single amino acid substitutions in the protease. DMP 450 is highly selective for HIV protease, consistent with displacement of the retrovirus-specific structural water molecule. Single doses of 10 mg kg-1 DMP 450 result in plasma levels in man in excess of that required to inhibit wild-type and several mutant HIVs. A plasmid-based, in vivo assay model suggests that maintenance of plasma levels of DMP 450 near the antiviral IC90 suppresses HIV protease activity in the animal. We did identify mutants that are resistant to DMP 450, however; multiple mutations within the protease gene caused a significant reduction in the antiviral response. CONCLUSIONS: DMP 450 is a significant advance within the cyclic urea class of HIV protease inhibitors due to its exceptional oral bioavailability. The data presented here suggest that an optimal cyclic urea will provide clinical benefit in treating AIDS if it combines favorable pharmacokinetics with potent activity against not only single mutants of HIV, but also multiply-mutant variants.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
19294437 J.Chen, M.Yang, G.Hu, S.Shi, C.Yi, and Q.Zhang (2009).
Insights into the functional role of protonation states in the HIV-1 protease-BEA369 complex: molecular dynamics simulations and free energy calculations.
  J Mol Model, 15, 1245-1252.  
18027371 A.Tripathi, M.Fornabaio, F.Spyrakis, A.Mozzarelli, P.Cozzini, and G.E.Kellogg (2007).
Complexity in modeling and understanding protonation states: computational titration of HIV-1-protease-inhibitor complexes.
  Chem Biodivers, 4, 2564-2577.  
17696515 Y.F.Wang, Y.Tie, P.I.Boross, J.Tozser, A.K.Ghosh, R.W.Harrison, and I.T.Weber (2007).
Potent new antiviral compound shows similar inhibition and structural interactions with drug resistant mutants and wild type HIV-1 protease.
  J Med Chem, 50, 4509-4515.
PDB codes: 2qci 2qd6 2qd7 2qd8 2z4o
17242738 Z.Li, and T.Lazaridis (2007).
Water at biomolecular binding interfaces.
  Phys Chem Chem Phys, 9, 573-581.  
16480273 A.Y.Kovalevsky, Y.Tie, F.Liu, P.I.Boross, Y.F.Wang, S.Leshchenko, A.K.Ghosh, R.W.Harrison, and I.T.Weber (2006).
Effectiveness of nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly drug resistant mutations D30N, I50V, and L90M.
  J Med Chem, 49, 1379-1387.
PDB codes: 2f80 2f81 2f8g
16555306 N.P.Todorov, C.L.Buenemann, and I.L.Alberts (2006).
De novo ligand design to an ensemble of protein structures.
  Proteins, 64, 43-59.  
16054372 V.Frecer, E.Burello, and S.Miertus (2005).
Combinatorial design of nonsymmetrical cyclic urea inhibitors of aspartic protease of HIV-1.
  Bioorg Med Chem, 13, 5492-5501.  
14990731 B.C.Logsdon, J.F.Vickrey, P.Martin, G.Proteasa, J.I.Koepke, S.R.Terlecky, Z.Wawrzak, M.A.Winters, T.C.Merigan, and L.C.Kovari (2004).
Crystal structures of a multidrug-resistant human immunodeficiency virus type 1 protease reveal an expanded active-site cavity.
  J Virol, 78, 3123-3132.
PDB codes: 1rpi 1rq9 1rv7
12767995 J.H.Sun, J.A.Lemm, D.R.O'Boyle, J.Racela, R.Colonno, and M.Gao (2003).
Specific inhibition of bovine viral diarrhea virus replicase.
  J Virol, 77, 6753-6760.  
12631281 M.Kumar, and M.V.Hosur (2003).
Adaptability and flexibility of HIV-1 protease.
  Eur J Biochem, 270, 1231-1239.  
11818491 A.Wlodawer (2002).
Rational approach to AIDS drug design through structural biology.
  Annu Rev Med, 53, 595-614.  
12369088 E.De Clercq (2002).
New anti-HIV agents and targets.
  Med Res Rev, 22, 531-565.  
12542932 G.Moyle (2002).
Overcoming obstacles to the success of protease inhibitors in highly active antiretroviral therapy regimens.
  AIDS Patient Care STDS, 16, 585-597.  
11755395 C.A.Chen, S.M.Sieburth, A.Glekas, G.W.Hewitt, G.L.Trainor, S.Erickson-Viitanen, S.S.Garber, B.Cordova, S.Jeffry, and R.M.Klabe (2001).
Drug design with a new transition state analog of the hydrated carbonyl: silicon-based inhibitors of the HIV protease.
  Chem Biol, 8, 1161-1166.  
10891872 E.De Clercq (2000).
Novel compounds in preclinical/early clinical development for the treatment of HIV infections.
  Rev Med Virol, 10, 255-277.  
10770790 R.R.Speck, C.Flexner, C.J.Tian, and X.F.Yu (2000).
Comparison of human immunodeficiency virus type 1 Pr55(Gag) and Pr160(Gag-pol) processing intermediates that accumulate in primary and transformed cells treated with peptidic and nonpeptidic protease inhibitors.
  Antimicrob Agents Chemother, 44, 1397-1403.  
9562781 A.Hilgeroth (1998).
[HIV-1 protease inhibitors in review]
  Pharm Unserer Zeit, 27, 22-25.  
  9767059 A.K.Patick, and K.E.Potts (1998).
Protease inhibitors as antiviral agents.
  Clin Microbiol Rev, 11, 614-627.  
9754946 A.Molla, G.R.Granneman, E.Sun, and D.J.Kempf (1998).
Recent developments in HIV protease inhibitor therapy.
  Antiviral Res, 39, 1.  
9646869 A.Wlodawer, and J.Vondrasek (1998).
Inhibitors of HIV-1 protease: a major success of structure-assisted drug design.
  Annu Rev Biophys Biomol Struct, 27, 249-284.  
9818151 J.D.Rodgers, P.Y.Lam, B.L.Johnson, H.Wang, R.Li, Y.Ru, S.S.Ko, S.P.Seitz, G.L.Trainor, P.S.Anderson, R.M.Klabe, L.T.Bacheler, B.Cordova, S.Garber, C.Reid, M.R.Wright, C.H.Chang, and S.Erickson-Viitanen (1998).
Design and selection of DMP 850 and DMP 851: the next generation of cyclic urea HIV protease inhibitors.
  Chem Biol, 5, 597-608.  
9871548 M.Patel, L.T.Bacheler, M.M.Rayner, B.C.Cordova, R.M.Klabe, S.Erickson-Viitanen, and S.P.Seitz (1998).
The synthesis and evaluation of cyclic ureas as HIV protease inhibitors: modifications of the P1/P1' residues.
  Bioorg Med Chem Lett, 8, 823-828.  
9575185 P.J.Ala, R.J.DeLoskey, E.E.Huston, P.K.Jadhav, P.Y.Lam, C.J.Eyermann, C.N.Hodge, M.C.Schadt, F.A.Lewandowski, P.C.Weber, D.D.McCabe, J.L.Duke, and C.H.Chang (1998).
Molecular recognition of cyclic urea HIV-1 protease inhibitors.
  J Biol Chem, 273, 12325-12331.
PDB code: 1hwr
9628735 R.M.Klabe, L.T.Bacheler, P.J.Ala, S.Erickson-Viitanen, and J.L.Meek (1998).
Resistance to HIV protease inhibitors: a comparison of enzyme inhibition and antiviral potency.
  Biochemistry, 37, 8735-8742.  
9048541 P.J.Ala, E.E.Huston, R.M.Klabe, D.D.McCabe, J.L.Duke, C.J.Rizzo, B.D.Korant, R.J.DeLoskey, P.Y.Lam, C.N.Hodge, and C.H.Chang (1997).
Molecular basis of HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with cyclic urea inhibitors.
  Biochemistry, 36, 1573-1580.
PDB codes: 1mer 1mes 1met 1meu
  9371337 U.Nillroth, L.Vrang, P.O.Markgren, J.Hultén, A.Hallberg, and U.H.Danielson (1997).
Human immunodeficiency virus type 1 proteinase resistance to symmetric cyclic urea inhibitor analogs.
  Antimicrob Agents Chemother, 41, 2383-2388.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer