spacer
spacer

PDBsum entry 1ft1

Go to PDB code: 
protein metals Protein-protein interface(s) links
Transferase PDB id
1ft1

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
315 a.a. *
416 a.a. *
Metals
_ZN
Waters ×402
* Residue conservation analysis
PDB id:
1ft1
Name: Transferase
Title: Crystal structure of protein farnesyltransferase at 2.25 angstroms resolution
Structure: Protein farnesyltransferase. Chain: a. Engineered: yes. Protein farnesyltransferase. Chain: b. Engineered: yes
Source: Rattus norvegicus. Norway rat. Organism_taxid: 10116. Organ: brain. Cellular_location: cytoplasm. Gene: cdna. Expressed in: spodoptera frugiperda. Expression_system_taxid: 7108. Expression_system_cell_line: sf9.
Biol. unit: Dimer (from PQS)
Resolution:
2.25Å     R-factor:   0.210     R-free:   0.260
Authors: L.S.Beese,H.-W.Park
Key ref:
H.W.Park et al. (1997). Crystal structure of protein farnesyltransferase at 2.25 angstrom resolution. Science, 275, 1800-1804. PubMed id: 9065406 DOI: 10.1126/science.275.5307.1800
Date:
17-Mar-97     Release date:   18-Mar-98    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q04631  (FNTA_RAT) -  Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha from Rattus norvegicus
Seq:
Struc:
377 a.a.
315 a.a.
Protein chain
Pfam   ArchSchema ?
Q02293  (FNTB_RAT) -  Protein farnesyltransferase subunit beta from Rattus norvegicus
Seq:
Struc:
437 a.a.
416 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 1: Chains A, B: E.C.2.5.1.58  - protein farnesyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-cysteinyl-[protein] + (2E,6E)-farnesyl diphosphate = S-(2E,6E)- farnesyl-L-cysteinyl-[protein] + diphosphate
L-cysteinyl-[protein]
+ (2E,6E)-farnesyl diphosphate
= S-(2E,6E)- farnesyl-L-cysteinyl-[protein]
+ diphosphate
      Cofactor: Mg(2+); Zn(2+)
   Enzyme class 2: Chain A: E.C.2.5.1.59  - protein geranylgeranyltransferase type I.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: geranylgeranyl diphosphate + L-cysteinyl-[protein] = S-geranylgeranyl-L- cysteinyl-[protein] + diphosphate
geranylgeranyl diphosphate
+ L-cysteinyl-[protein]
= S-geranylgeranyl-L- cysteinyl-[protein]
+ diphosphate
      Cofactor: Zn(2+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1126/science.275.5307.1800 Science 275:1800-1804 (1997)
PubMed id: 9065406  
 
 
Crystal structure of protein farnesyltransferase at 2.25 angstrom resolution.
H.W.Park, S.R.Boduluri, J.F.Moomaw, P.J.Casey, L.S.Beese.
 
  ABSTRACT  
 
Protein farnesyltransferase (FTase) catalyzes the carboxyl-terminal lipidation of Ras and several other cellular signal transduction proteins. The essential nature of this modification for proper function of these proteins has led to the emergence of FTase as a target for the development of new anticancer therapy. Inhibition of this enzyme suppresses the transformed phenotype in cultured cells and causes tumor regression in animal models. The crystal structure of heterodimeric mammalian FTase was determined at 2.25 angstrom resolution. The structure shows a combination of two unusual domains: a crescent-shaped seven-helical hairpin domain and an alpha-alpha barrel domain. The active site is formed by two clefts that intersect at a bound zinc ion. One cleft contains a nine-residue peptide that may mimic the binding of the Ras substrate; the other cleft is lined with highly conserved aromatic residues appropriate for binding the farnesyl isoprenoid with required specificity.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. The subunit. (A) Aromatic pocket in the center of the - barrel of the subunit. This view is a 90° clockwise^ rotation relative to Fig. 1A. Only helices 2 to 13 are shown. Yellow, the nine aromatic residues that line the pocket; magenta, the zinc ion [MOLSCRIPT (40) and RASTER3D (41)]. (B) A portion of the solvent-accessible surface showing some of the^ aromatic residues that line the putative FPP binding pocket. FPP is modeled with the isoprenoid in the hydrophobic cleft and the^ diphosphate moiety positioned near the zinc. The carbon atoms of FPP are yellow, oxygens are red, and phosphates are green. The program INSIGHT II (43) was used to construct an energy-minimized^ model of FPP and GRASP (44) was used to calculate the accessible^ surface.
Figure 3.
Fig. 3. (A) Solvent-accessible surface and electrostatic surface potential. The dashed box highlights the cleft where the^ nonapeptide binds. The most negative electrostatic surface potential (-10 kT) is colored red. The most positive electrostatic surface^ potential (10 kT) is blue. The orientation is similar to that of Fig. 1. The arrow indicates the putative FPP binding site [GRASP (44)]. (B) Close-up view of the nonapeptide binding cleft bounded by the dashed lines in (A). The COOH-terminus and six residues of the nonapeptide (Ala^9-Val8-Thr7-Ser6-Asp5-Pro4) are visible. Atom colors for the nonapeptide are coral, carbons; red, oxygen; light blue, nitrogen; and zinc, magenta. (C) Stereo view of the nonapeptide (COOH-terminus of a symmetry-related^ subunit). The nonapeptide is numbered from the COOH-terminus. Atom colors in the nonapeptide are coral, carbons; orange, oxygen; and light blue, nitrogen. Atom colors of residues forming the^ binding pocket are khaki, carbons; red, oxygen; and blue, nitrogen. Zinc is a magenta sphere. Water molecules are red spheres. Dotted^ lines represent potential hydrogen bonds.
 
  The above figures are reprinted by permission from the AAAs: Science (1997, 275, 1800-1804) copyright 1997.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22020205 N.Berndt, A.D.Hamilton, and S.M.Sebti (2011).
Targeting protein prenylation for cancer therapy.
  Nat Rev Cancer, 11, 775-791.  
21440964 Y.Qiao, J.Gao, Y.Qiu, L.Wu, F.Guo, K.K.Lo, and D.Li (2011).
Design, synthesis, and characterization of piperazinedione-based dual protein inhibitors for both farnesyltransferase and geranylgeranyltransferase-I.
  Eur J Med Chem, 46, 2264-2273.  
20565889 M.Andrews, D.H.Huizinga, and D.N.Crowell (2010).
The CaaX specificities of Arabidopsis protein prenyltransferases explain era1 and ggb phenotypes.
  BMC Plant Biol, 10, 118.  
20432425 U.T.Nguyen, R.S.Goody, and K.Alexandrov (2010).
Understanding and exploiting protein prenyltransferases.
  Chembiochem, 11, 1194-1201.  
19447628 O.Henry, F.Lopez-Gallego, S.A.Agger, C.Schmidt-Dannert, S.Sen, D.Shintani, K.Cornish, and M.D.Distefano (2009).
A versatile photoactivatable probe designed to label the diphosphate binding site of farnesyl diphosphate utilizing enzymes.
  Bioorg Med Chem, 17, 4797-4805.  
19301336 S.F.Sousa, P.A.Fernandes, and M.J.Ramos (2009).
The search for the mechanism of the reaction catalyzed by farnesyltransferase.
  Chemistry, 15, 4243-4247.  
19528316 W.Zhang, L.Wang, Y.Liu, J.Xu, G.Zhu, H.Cang, X.Li, M.Bartlam, K.Hensley, G.Li, Z.Rao, and X.C.Zhang (2009).
Structure of human lanthionine synthetase C-like protein 1 and its interaction with Eps8 and glutathione.
  Genes Dev, 23, 1387-1392.
PDB codes: 3e6u 3e73
18249199 D.W.Christianson (2008).
Unearthing the roots of the terpenome.
  Curr Opin Chem Biol, 12, 141-150.  
18713740 M.A.Hast, and L.S.Beese (2008).
Structure of protein geranylgeranyltransferase-I from the human pathogen Candida albicans complexed with a lipid substrate.
  J Biol Chem, 283, 31933-31940.
PDB code: 3dra
18296644 M.Koutmos, R.Pejchal, T.M.Bomer, R.G.Matthews, J.L.Smith, and M.L.Ludwig (2008).
Metal active site elasticity linked to activation of homocysteine in methionine synthases.
  Proc Natl Acad Sci U S A, 105, 3286-3291.
PDB codes: 3bof 3bol 3bq5 3bq6
18985644 T.Subramanian, S.Liu, J.M.Troutman, D.A.Andres, and H.P.Spielmann (2008).
Protein farnesyltransferase-catalyzed isoprenoid transfer to peptide depends on lipid size and shape, not hydrophobicity.
  Chembiochem, 9, 2872-2882.  
18438977 U.A.Mirza, G.Chen, Y.H.Liu, R.J.Doll, V.M.Girijavallabhan, A.K.Ganguly, and B.N.Pramanik (2008).
Mass spectrometric studies of potent inhibitors of farnesyl protein transferase--detection of pentameric noncovalent complexes.
  J Mass Spectrom, 43, 1393-1401.  
17623850 B.Tamames, S.F.Sousa, J.Tamames, P.A.Fernandes, and M.J.Ramos (2007).
Analysis of zinc-ligand bond lengths in metalloproteins: trends and patterns.
  Proteins, 69, 466-475.  
17380304 C.Wang, Q.Tian, Z.Hou, M.Mucha, M.Aukerman, and O.A.Olsen (2007).
The Arabidopsis thaliana AT PRP39-1 gene, encoding a tetratricopeptide repeat protein with similarity to the yeast pre-mRNA processing protein PRP39, affects flowering time.
  Plant Cell Rep, 26, 1357-1366.  
17918965 G.Cui, and K.M.Merz (2007).
Computational studies of the farnesyltransferase ternary complex part II: the conformational activation of farnesyldiphosphate.
  Biochemistry, 46, 12375-12381.  
17376731 J.Penner-Hahn (2007).
Zinc-promoted alkyl transfer: a new role for zinc.
  Curr Opin Chem Biol, 11, 166-171.  
17480057 M.Paul, G.C.Patton, and W.A.van der Donk (2007).
Mutants of the zinc ligands of lacticin 481 synthetase retain dehydration activity but have impaired cyclization activity.
  Biochemistry, 46, 6268-6276.  
17705859 R.Rasteiro, and J.B.Pereira-Leal (2007).
Multiple domain insertions and losses in the evolution of the Rab prenylation complex.
  BMC Evol Biol, 7, 140.  
17536018 T.Raz, V.Nardi, M.Azam, J.Cortes, and G.Q.Daley (2007).
Farnesyl transferase inhibitor resistance probed by target mutagenesis.
  Blood, 110, 2102-2109.  
17292915 W.Xie, C.Zhou, and R.H.Huang (2007).
Structure of tRNA dimethylallyltransferase: RNA modification through a channel.
  J Mol Biol, 367, 872-881.
PDB codes: 3crm 3crq 3crr
17386263 Y.Bai, T.C.Auperin, C.Y.Chou, G.G.Chang, J.L.Manley, and L.Tong (2007).
Crystal structure of murine CstF-77: dimeric association and implications for polyadenylation of mRNA precursors.
  Mol Cell, 25, 863-875.
PDB codes: 2ond 2ooe
16418269 G.Hao, B.Derakhshan, L.Shi, F.Campagne, and S.S.Gross (2006).
SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures.
  Proc Natl Acad Sci U S A, 103, 1012-1017.  
16624901 Y.Nakase, K.Fukuda, Y.Chikashige, C.Tsutsumi, D.Morita, S.Kawamoto, M.Ohnuki, Y.Hiraoka, and T.Matsumoto (2006).
A defect in protein farnesylation suppresses a loss of Schizosaccharomyces pombe tsc2+, a homolog of the human gene predisposing to tuberous sclerosis complex.
  Genetics, 173, 569-578.  
16342942 G.Cui, B.Wang, and K.M.Merz (2005).
Computational studies of the farnesyltransferase ternary complex part I: substrate binding.
  Biochemistry, 44, 16513-16523.  
16191483 N.Ferri, R.Paoletti, and A.Corsini (2005).
Lipid-modified proteins as biomarkers for cardiovascular disease: a review.
  Biomarkers, 10, 219-237.  
15501930 S.F.Sousa, P.A.Fernandes, and M.J.Ramos (2005).
Farnesyltransferase--new insights into the zinc-coordination sphere paradigm: evidence for a carboxylate-shift mechanism.
  Biophys J, 88, 483-494.  
15959519 T.Kuzuyama, J.P.Noel, and S.B.Richard (2005).
Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products.
  Nature, 435, 983-987.
PDB codes: 1zb6 1zcw 1zdw 1zdy
16607571 W.C.Guida, A.D.Hamilton, J.W.Crotty, and S.M.Sebti (2005).
Protein farnesyltransferase: flexible docking studies on inhibitors using computational modeling.
  J Comput Aided Mol Des, 19, 871-885.  
15747135 W.Kou, H.S.Kolla, A.Ortiz-Acevedo, D.C.Haines, M.Junker, and G.R.Dieckmann (2005).
Modulation of zinc- and cobalt-binding affinities through changes in the stability of the zinc ribbon protein L36.
  J Biol Inorg Chem, 10, 167-180.  
15469499 K.Bracha-Drori, K.Shichrur, A.Katz, M.Oliva, R.Angelovici, S.Yalovsky, and N.Ohad (2004).
Detection of protein-protein interactions in plants using bimolecular fluorescence complementation.
  Plant J, 40, 419-427.  
15044730 S.Y.Chang, T.P.Ko, A.P.Chen, A.H.Wang, and P.H.Liang (2004).
Substrate binding mode and reaction mechanism of undecaprenyl pyrophosphate synthase deduced from crystallographic studies.
  Protein Sci, 13, 971-978.
PDB code: 1v7u
14609943 J.S.Taylor, T.S.Reid, K.L.Terry, P.J.Casey, and L.S.Beese (2003).
Structure of mammalian protein geranylgeranyltransferase type-I.
  EMBO J, 22, 5963-5974.
PDB codes: 1n4p 1n4q 1n4r 1n4s
12702202 S.Maurer-Stroh, S.Washietl, and F.Eisenhaber (2003).
Protein prenyltransferases.
  Genome Biol, 4, 212.  
12432096 D.A.Whittington, M.L.Wise, M.Urbansky, R.M.Coates, R.B.Croteau, and D.W.Christianson (2002).
Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase.
  Proc Natl Acad Sci U S A, 99, 15375-15380.
PDB codes: 1n1b 1n1z 1n20 1n21 1n22 1n23 1n24
12220488 J.C.Evans, D.P.Huddler, J.Jiracek, C.Castro, N.S.Millian, T.A.Garrow, and M.L.Ludwig (2002).
Betaine-homocysteine methyltransferase: zinc in a distorted barrel.
  Structure, 10, 1159-1171.
PDB codes: 1lt7 1lt8
12510823 K.N.Cho, and K.I.Lee (2002).
Chemistry and biology of Ras farnesyltransferase.
  Arch Pharm Res, 25, 759-769.  
12012345 M.A.Huntley, and G.B.Golding (2002).
Simple sequences are rare in the Protein Data Bank.
  Proteins, 48, 134-140.  
12135472 P.H.Liang, T.P.Ko, and A.H.Wang (2002).
Structure, mechanism and function of prenyltransferases.
  Eur J Biochem, 269, 3339-3354.  
12374986 S.B.Long, P.J.Casey, and L.S.Beese (2002).
Reaction path of protein farnesyltransferase at atomic resolution.
  Nature, 419, 645-650.
PDB codes: 1kzo 1kzp 1kzr
11867442 X.X.Dong, M.Ospeck, and K.H.Iwasa (2002).
Piezoelectric reciprocal relationship of the membrane motor in the cochlear outer hair cell.
  Biophys J, 82, 1254-1259.  
11709169 C.Steegborn, O.Danot, R.Huber, and T.Clausen (2001).
Crystal structure of transcription factor MalT domain III: a novel helix repeat fold implicated in regulated oligomerization.
  Structure, 9, 1051-1060.
PDB code: 1hz4
11501754 H.C.Schmid, U.Oster, J.Kögel, S.Lenz, and W.Rüdiger (2001).
Cloning and characterisation of chlorophyll synthase from Avena sativa.
  Biol Chem, 382, 903-911.  
11170422 K.E.Hightower, P.J.Casey, and C.A.Fierke (2001).
Farnesylation of nonpeptidic thiol compounds by protein farnesyltransferase.
  Biochemistry, 40, 1002-1010.  
11606265 K.H.Iwasa (2001).
A two-state piezoelectric model for outer hair cell motility.
  Biophys J, 81, 2495-2506.  
11290863 M.Crul, G.J.de Klerk, J.H.Beijnen, and J.H.Schellens (2001).
Ras biochemistry and farnesyl transferase inhibitors: a literature survey.
  Anticancer Drugs, 12, 163-184.  
11287651 M.Fujihashi, Y.W.Zhang, Y.Higuchi, X.Y.Li, T.Koyama, and K.Miki (2001).
Crystal structure of cis-prenyl chain elongating enzyme, undecaprenyl diphosphate synthase.
  Proc Natl Acad Sci U S A, 98, 4337-4342.
PDB code: 1f75
11478901 R.Roskoski, and P.A.Ritchie (2001).
Time-dependent inhibition of protein farnesyltransferase by a benzodiazepine peptide mimetic.
  Biochemistry, 40, 9329-9335.  
11687658 S.B.Long, P.J.Hancock, A.M.Kral, H.W.Hellinga, and L.S.Beese (2001).
The crystal structure of human protein farnesyltransferase reveals the basis for inhibition by CaaX tetrapeptides and their mimetics.
  Proc Natl Acad Sci U S A, 98, 12948-12953.
PDB codes: 1jcq 1jcr 1jcs
11336708 X.Wang, P.D.Zamore, and T.M.Hall (2001).
Crystal structure of a Pumilio homology domain.
  Mol Cell, 7, 855-865.
PDB codes: 1ib2 1ib3 1m8z
11050437 B.Kobe, and A.V.Kajava (2000).
When protein folding is simplified to protein coiling: the continuum of solenoid protein structures.
  Trends Biochem Sci, 25, 509-515.  
10704208 C.Huang, K.E.Hightower, and C.A.Fierke (2000).
Mechanistic studies of rat protein farnesyltransferase indicate an associative transition state.
  Biochemistry, 39, 2593-2602.  
10698452 C.Z.Ding, J.T.Hunt, C.Ricca, and V.Manne (2000).
3-Imidazolylmethylaminophenylsulfonyltetrahydroquinolines, a novel series of farnesyltransferase inhibitors.
  Bioorg Med Chem Lett, 10, 273-275.  
10840062 E.C.Ziegelhoffer, L.J.Medrano, and E.M.Meyerowitz (2000).
Cloning of the Arabidopsis WIGGUM gene identifies a role for farnesylation in meristem development.
  Proc Natl Acad Sci U S A, 97, 7633-7638.  
10749864 F.S.Buckner, K.Yokoyama, L.Nguyen, A.Grewal, H.Erdjument-Bromage, P.Tempst, C.L.Strickland, L.Xiao, W.C.Van Voorhis, and M.H.Gelb (2000).
Cloning, heterologous expression, and distinct substrate specificity of protein farnesyltransferase from Trypanosoma brucei.
  J Biol Chem, 275, 21870-21876.  
10675327 F.Vallée, F.Lipari, P.Yip, B.Sleno, A.Herscovics, and P.L.Howell (2000).
Crystal structure of a class I alpha1,2-mannosidase involved in N-glycan processing and endoplasmic reticulum quality control.
  EMBO J, 19, 581-588.
PDB code: 1dl2
11170866 G.C.Prendergast, and A.Oliff (2000).
Farnesyltransferase inhibitors: antineoplastic properties, mechanisms of action, and clinical prospects.
  Semin Cancer Biol, 10, 443-452.  
10745007 H.Zhang, M.C.Seabra, and J.Deisenhofer (2000).
Crystal structure of Rab geranylgeranyltransferase at 2.0 A resolution.
  Structure, 8, 241-251.
PDB code: 1dce
  10888661 J.T.Stickney, and J.E.Buss (2000).
Murine guanylate-binding protein: incomplete geranylgeranyl isoprenoid modification of an interferon-gamma-inducible guanosine triphosphate-binding protein.
  Mol Biol Cell, 11, 2191-2200.  
10785368 K.Sauer, and R.K.Thauer (2000).
Methyl-coenzyme M formation in methanogenic archaea. Involvement of zinc in coenzyme M activation.
  Eur J Biochem, 267, 2498-2504.  
11015220 M.J.Saderholm, K.E.Hightower, and C.A.Fierke (2000).
Role of metals in the reaction catalyzed by protein farnesyltransferase.
  Biochemistry, 39, 12398-12405.  
11076503 R.A.Spence, K.E.Hightower, K.L.Terry, L.S.Beese, C.A.Fierke, and P.J.Casey (2000).
Conversion of Tyr361 beta to Leu in mammalian protein farnesyltransferase impairs product release but not substrate recognition.
  Biochemistry, 39, 13651-13659.  
10673434 S.B.Long, P.J.Casey, and L.S.Beese (2000).
The basis for K-Ras4B binding specificity to protein farnesyltransferase revealed by 2 A resolution ternary complex structures.
  Structure, 8, 209-222.
PDB codes: 1d8d 1d8e
  11106157 Y.P.Pang, K.Xu, J.E.Yazal, and F.G.Prendergas (2000).
Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach.
  Protein Sci, 9, 1857-1865.
PDB code: 1qe2
10382537 A.Oliff (1999).
Farnesyltransferase inhibitors: targeting the molecular basis of cancer.
  Biochim Biophys Acta, 1423, C19-C30.  
10378263 B.Kobe, T.Gleichmann, J.Horne, I.G.Jennings, P.D.Scotney, and T.Teh (1999).
Turn up the HEAT.
  Structure, 7, R91-R97.  
10491163 H.Kim, and C.H.Yang (1999).
Active site determination of yeast geranylgeranyl protein transferase type I expressed in Escherichia coli.
  Eur J Biochem, 265, 105-111.  
  10452610 H.Zhang, and N.V.Grishin (1999).
The alpha-subunit of protein prenyltransferases is a member of the tetratricopeptide repeat family.
  Protein Sci, 8, 1658-1667.  
10206346 J.A.Boutin, W.Marande, L.Petit, A.Loynel, C.Desmet, E.Canet, and J.L.Fauchère (1999).
Investigation of S-farnesyl transferase substrate specificity with combinatorial tetrapeptide libraries.
  Cell Signal, 11, 59-69.  
10226042 K.E.Hightower, and C.A.Fierke (1999).
Zinc-catalyzed sulfur alkyation:insights from protein farnesyltransferase.
  Curr Opin Chem Biol, 3, 176-181.  
10361086 M.R.Groves, and D.Barford (1999).
Topological characteristics of helical repeat proteins.
  Curr Opin Struct Biol, 9, 383-389.  
9989501 M.R.Groves, N.Hanlon, P.Turowski, B.A.Hemmings, and D.Barford (1999).
The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs.
  Cell, 96, 99.
PDB code: 1b3u
10450968 T.M.Ciccarone, S.C.MacTough, T.M.Williams, C.J.Dinsmore, T.J.O'Neill, D.Shah, J.C.Culberson, K.S.Koblan, N.E.Kohl, J.B.Gibbs, A.I.Oliff, S.L.Graham, and G.D.Hartman (1999).
Non-thiol 3-aminomethylbenzamide inhibitors of farnesyl-protein transferase.
  Bioorg Med Chem Lett, 9, 1991-1996.  
10625458 Z.S.Zhou, K.Peariso, J.E.Penner-Hahn, and R.G.Matthews (1999).
Identification of the zinc ligands in cobalamin-independent methionine synthase (MetE) from Escherichia coli.
  Biochemistry, 38, 15915-15926.  
9843427 C.L.Strickland, W.T.Windsor, R.Syto, L.Wang, R.Bond, Z.Wu, J.Schwartz, H.V.Le, L.S.Beese, and P.C.Weber (1998).
Crystal structure of farnesyl protein transferase complexed with a CaaX peptide and farnesyl diphosphate analogue.
  Biochemistry, 37, 16601-16611.
PDB code: 1qbq
9665732 C.T.Pool, and T.E.Thompson (1998).
Chain length and temperature dependence of the reversible association of model acylated proteins with lipid bilayers.
  Biochemistry, 37, 10246-10255.  
9561854 D.C.Heimbrook, and A.Oliff (1998).
Therapeutic intervention and signaling.
  Curr Opin Cell Biol, 10, 284-288.  
9521766 H.W.Fu, L.S.Beese, and P.J.Casey (1998).
Kinetic analysis of zinc ligand mutants of mammalian protein farnesyltransferase.
  Biochemistry, 37, 4465-4472.  
9667939 J.E.Coleman (1998).
Zinc enzymes.
  Curr Opin Chem Biol, 2, 222-234.  
9730828 J.S.Anant, L.Desnoyers, M.Machius, B.Demeler, J.C.Hansen, K.D.Westover, J.Deisenhofer, and M.C.Seabra (1998).
Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex.
  Biochemistry, 37, 12559-12568.  
9799520 K.E.Hightower, C.C.Huang, P.J.Casey, and C.A.Fierke (1998).
H-Ras peptide and protein substrates bind protein farnesyltransferase as an ionized thiolate.
  Biochemistry, 37, 15555-15562.  
9519404 K.U.Wendt, and G.E.Schulz (1998).
Isoprenoid biosynthesis: manifold chemistry catalyzed by similar enzymes.
  Structure, 6, 127-133.  
9770475 L.Desnoyers, and M.C.Seabra (1998).
Single prenyl-binding site on protein prenyl transferases.
  Proc Natl Acad Sci U S A, 95, 12266-12270.  
9667914 M.H.Gelb, J.D.Scholten, and J.S.Sebolt-Leopold (1998).
Protein prenylation: from discovery to prospects for cancer treatment.
  Curr Opin Chem Biol, 2, 40-48.  
9894422 M.Schlitzer (1998).
[Inhibitors of farnesyltransferase: a new approach for development of potential cancer drugs]
  Pharm Unserer Zeit, 27, 278-288.  
9609683 P.Dunten, U.Kammlott, R.Crowther, D.Weber, R.Palermo, and J.Birktoft (1998).
Protein farnesyltransferase: structure and implications for substrate binding.
  Biochemistry, 37, 7907-7912.
PDB code: 1fpp
9660863 R.G.Kibbey, J.Rizo, L.M.Gierasch, and R.G.Anderson (1998).
The LDL receptor clustering motif interacts with the clathrin terminal domain in a reverse turn conformation.
  J Cell Biol, 142, 59-67.  
9657673 S.B.Long, P.J.Casey, and L.S.Beese (1998).
Cocrystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate.
  Biochemistry, 37, 9612-9618.
PDB codes: 1ft2 1fti
9380709 C.E.Trueblood, V.L.Boyartchuk, and J.Rine (1997).
Substrate specificity determinants in the farnesyltransferase beta-subunit.
  Proc Natl Acad Sci U S A, 94, 10774-10779.  
9434909 H.W.Park, and L.S.Beese (1997).
Protein farnesyltransferase.
  Curr Opin Struct Biol, 7, 873-880.  
9667853 J.B.Gibbs, S.L.Graham, G.D.Hartman, K.S.Koblan, N.E.Kohl, C.A.Omer, and A.Oliff (1997).
Farnesyltransferase inhibitors versus Ras inhibitors.
  Curr Opin Chem Biol, 1, 197-203.  
9230058 J.M.Dolence, D.B.Rozema, and C.D.Poulter (1997).
Yeast protein farnesyltransferase. Site-directed mutagenesis of conserved residues in the beta-subunit.
  Biochemistry, 36, 9246-9252.  
9434896 M.Geyer, and A.Wittinghofer (1997).
GEFs, GAPs, GDIs and effectors: taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins.
  Curr Opin Struct Biol, 7, 786-792.  
9667865 R.G.Matthews, and C.W.Goulding (1997).
Enzyme-catalyzed methyl transfers to thiols: the role of zinc.
  Curr Opin Chem Biol, 1, 332-339.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer