spacer
spacer

PDBsum entry 1azt

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase PDB id
1azt

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
335 a.a. *
Ligands
PO4 ×16
GSP ×2
Metals
_MG ×2
Waters ×57
* Residue conservation analysis
PDB id:
1azt
Name: Hydrolase
Title: Gs-alpha complexed with gtp-gamma-s
Structure: Gs-alpha. Chain: a, b. Synonym: stimulatory g-protein alpha subunit. Engineered: yes. Mutation: yes
Source: Bos taurus. Cattle. Organism_taxid: 9913. Variant: short splice form. Organ: plasma. Cellular_location: cytoplasm and inner plasma membrane. Gene: gnas. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Biol. unit: Dimer (from PQS)
Resolution:
2.30Å     R-factor:   0.219     R-free:   0.282
Authors: J.J.G.Tesmer,S.R.Sprang
Key ref:
R.K.Sunahara et al. (1997). Crystal structure of the adenylyl cyclase activator Gsalpha. Science, 278, 1943-1947. PubMed id: 9395396 DOI: 10.1126/science.278.5345.1943
Date:
20-Nov-97     Release date:   25-Feb-98    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P04896  (GNAS2_BOVIN) -  Guanine nucleotide-binding protein G(s) subunit alpha isoforms short from Bos taurus
Seq:
Struc:
394 a.a.
335 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1126/science.278.5345.1943 Science 278:1943-1947 (1997)
PubMed id: 9395396  
 
 
Crystal structure of the adenylyl cyclase activator Gsalpha.
R.K.Sunahara, J.J.Tesmer, A.G.Gilman, S.R.Sprang.
 
  ABSTRACT  
 
The crystal structure of Gsalpha, the heterotrimeric G protein alpha subunit that stimulates adenylyl cyclase, was determined at 2.5 A in a complex with guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). Gsalpha is the prototypic member of a family of GTP-binding proteins that regulate the activities of effectors in a hormone-dependent manner. Comparison of the structure of Gsalpha.GTPgammaS with that of Gialpha.GTPgammaS suggests that their effector specificity is primarily dictated by the shape of the binding surface formed by the switch II helix and the alpha3-beta5 loop, despite the high sequence homology of these elements. In contrast, sequence divergence explains the inability of regulators of G protein signaling to stimulate the GTPase activity of Gsalpha. The betagamma binding surface of Gsalpha is largely conserved in sequence and structure to that of Gialpha, whereas differences in the surface formed by the carboxyl-terminal helix and the alpha4-beta6 loop may mediate receptor specificity.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. The structure of G[s][ ]·GTP S. (A) A dimer of G[s][ ]·GTP S was observed in the asymmetric unit of the crystals and^ is depicted here as a ribbon and coil diagram looking down the^ noncrystallographic twofold axis. The 16 phosphate anions are^ drawn as red tetrahedrons. Most of the anions bind within a groove^ at the dimer interface between the 5 helices. The two phosphate^ anions that bind near the NH[2]-termini of each molecule of G[s][ ]form crystal contacts. GTP S (yellow) and Mg2+ (black) are represented by ball-and-stick models and are located^ in the nucleotide binding pocket. Helices are green, strands are purple, and coils are gray. This and the other ribbon diagrams were generated with MOLSCRIPT (40) and rendered with RASTER3D^ (41). (B) Superposition of G[i][ ](transparent rose) on the structure of G[s][ ]·GTP S (solid gray). Only the nucleotide^ bound to G[s][ ]is shown. The approximate locations of two of^ the three major insertions in the G[s][ ]sequence relative to G[i][ ](i2 and i3) are indicated in white (see text). The two proteins superimpose with a rmsd of 1.0 Å for 260 C atom pairs. Their structures are essentially identical at the GTP binding site and are most divergent in various loops at the periphery of the molecule, most notably at the 3- 5 and 4- 6 loops. (C) Sequence alignment of representative proteins from three G[ ]subfamilies: bovine G[s][ ](Protein Information Resource accession number A23813), murine G[q][ ](A38414), and bovine G[i][ ][1]^ (A23631) (42). Secondary structure has been assigned on the^ basis of the structures of G[s][ ]and G[i][ ][1]·GTP S (7). The three conformationally flexible switch elements are indicated^ by red blocks. The arrow marks the site in G[s][ ]at which the^ long and short splice variants differ in length by 14 amino acids. Green amino acid letters indicate residues in G[s][ ]that contact adenylyl cyclase, whereas red amino acid letters indicate potential adenylyl cyclase binding residues in G[i][ ]identified by alanine-scanning mutagenesis (21). The general locations of the i1, i2, and i3^ insertions are also indicated.
Figure 2.
Fig. 2. Superposition of the putative effector binding loops ( 2- 4, 3- 5, and 4- 6) and the 5 helix from G[s][ ]onto G[i][ ]^(42). The side chains from residues of G[s][ ]are drawn as^ stick models with the use of conventional coloring. The backbone^ and side chains of G[i][ ]are illustrated in transparent rose.^ The model of G[i][ ]is derived from the structure of the G[i][ ][1]·RGS4^ complex (17), which has a completely ordered 5 helix. The superposition^ is essentially the same as that shown in Fig. 1B. The 2- 4 loops^ of each subunit are essentially identical. The 3- 5 loop of^ G[s][ ], although structurally similar to that of G[i][ ], is^ rotated downward in the figure. This rotation creates a hydrophobic^ pocket on the back side of the sheet, which is filled by the^ side chain of Met^386 from the 5 helix, and moves the residue at position 282 in G[s][ ]^toward the conserved Phe^238. In the G[s] subfamily, residue 282 is a leucine, which helps to^ accommodate the shift of the 3- 5 loop. The 4- 6 loop of G[s][ ]^is longer than and shares no sequence identity with its counterpart^ in G[i][ ]. The 3- 5 and 4- 6 loops are supported by a stacking^ interaction between Trp^277 and His^357, both of which are invariant in the G[s] subfamily. The 5 helix^ of G[s][ ]is bent, whereas that of G[i][ ]extends straight into^ solvent. The large differences observed in the 4- 6 and 5 structures^ may help account for receptor specificity among closely related^ subunits.
 
  The above figures are reprinted by permission from the AAAs: Science (1997, 278, 1943-1947) copyright 1997.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
23222958 T.Fuchs, R.Saunders-Pullman, I.Masuho, M.S.Luciano, D.Raymond, S.Factor, A.E.Lang, T.W.Liang, R.M.Trosch, S.White, E.Ainehsazan, D.Hervé, N.Sharma, M.E.Ehrlich, K.A.Martemyanov, S.B.Bressman, and L.J.Ozelius (2012).
Mutations in GNAL cause primary torsion dystonia.
  Nat Genet, 45, 88-92.  
21956331 K.Y.Chung, S.G.Rasmussen, T.Liu, S.Li, B.T.DeVree, P.S.Chae, D.Calinski, B.K.Kobilka, V.L.Woods, and R.K.Sunahara (2011).
Conformational changes in the G protein Gs induced by the β2 adrenergic receptor.
  Nature, 477, 611-615.  
21772288 S.G.Rasmussen, B.T.DeVree, Y.Zou, A.C.Kruse, K.Y.Chung, T.S.Kobilka, F.S.Thian, P.S.Chae, E.Pardon, D.Calinski, J.M.Mathiesen, S.T.Shah, J.A.Lyons, M.Caffrey, S.H.Gellman, J.Steyaert, G.Skiniotis, W.I.Weis, R.K.Sunahara, and B.K.Kobilka (2011).
Crystal structure of the β2 adrenergic receptor-Gs protein complex.
  Nature, 477, 549-555.
PDB code: 3sn6
20119640 A.Strasser, and H.J.Wittmann (2010).
Distinct interactions between the human adrenergic beta(2) receptor and Galpha(s)--an in silico study.
  J Mol Model, 16, 1307-1318.  
20976244 B.R.Temple, C.D.Jones, and A.M.Jones (2010).
Evolution of a signaling nexus constrained by protein interfaces and conformational States.
  PLoS Comput Biol, 6, e1000962.  
20139237 F.D.Ivey, F.X.Taglia, F.Yang, M.M.Lander, D.A.Kelly, and C.S.Hoffman (2010).
Activated alleles of the Schizosaccharomyces pombe gpa2+ Galpha gene identify residues involved in GDP-GTP exchange.
  Eukaryot Cell, 9, 626-633.  
20520658 J.J.Tesmer (2010).
The quest to understand heterotrimeric G protein signaling.
  Nat Struct Mol Biol, 17, 650-652.  
19212143 R.H.Dave, W.Saengsawang, J.Z.Yu, R.Donati, and M.M.Rasenick (2009).
Heterotrimeric G-proteins interact directly with cytoskeletal components to modify microtubule-dependent cellular processes.
  Neurosignals, 17, 100-108.  
19470481 X.J.Yao, G.Vélez Ruiz, M.R.Whorton, S.G.Rasmussen, B.T.DeVree, X.Deupi, R.K.Sunahara, and B.Kobilka (2009).
The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex.
  Proc Natl Acad Sci U S A, 106, 9501-9506.  
18936096 A.Shankaranarayanan, D.M.Thal, V.M.Tesmer, D.L.Roman, R.R.Neubig, T.Kozasa, and J.J.Tesmer (2008).
Assembly of high order G alpha q-effector complexes with RGS proteins.
  J Biol Chem, 283, 34923-34934.  
18249008 E.McCusker, and A.S.Robinson (2008).
Refolding of G protein alpha subunits from inclusion bodies expressed in Escherichia coli.
  Protein Expr Purif, 58, 342-355.  
18434540 K.C.Slep, M.A.Kercher, T.Wieland, C.K.Chen, M.I.Simon, and P.B.Sigler (2008).
Molecular architecture of Galphao and the structural basis for RGS16-mediated deactivation.
  Proc Natl Acad Sci U S A, 105, 6243-6248.
PDB codes: 3c7k 3c7l
18454845 K.Sayar, O.UÄŸur, T.Liu, V.J.Hilser, and O.Onaran (2008).
Exploring allosteric coupling in the alpha-subunit of Heterotrimeric G proteins using evolutionary and ensemble-based approaches.
  BMC Struct Biol, 8, 23.  
18541530 L.I.Jiang, J.Collins, R.Davis, I.D.Fraser, and P.C.Sternweis (2008).
Regulation of cAMP responses by the G12/13 pathway converges on adenylyl cyclase VII.
  J Biol Chem, 283, 23429-23439.  
18329041 R.J.Austin, W.W.Ja, and R.W.Roberts (2008).
Evolution of class-specific peptides targeting a hot spot of the Galphas subunit.
  J Mol Biol, 377, 1406-1418.  
17059864 D.Puett, Y.Li, G.DeMars, K.Angelova, and F.Fanelli (2007).
A functional transmembrane complex: the luteinizing hormone receptor with bound ligand and G protein.
  Mol Cell Endocrinol, 260, 126-136.  
17040990 J.Plati, N.Tsomaia, A.Piserchio, and D.F.Mierke (2007).
Structural features of parathyroid hormone receptor coupled to Galpha(s)-protein.
  Biophys J, 92, 535-540.  
17588669 L.S.Weinstein, T.Xie, Q.H.Zhang, and M.Chen (2007).
Studies of the regulation and function of the Gs alpha gene Gnas using gene targeting technology.
  Pharmacol Ther, 115, 271-291.  
17330901 M.Kaneda, S.Masuda, T.Tomohiro, and Y.Hatanaka (2007).
A simple and efficient photoaffinity method for proteomics of GTP-binding proteins.
  Chembiochem, 8, 595-598.  
16460808 V.V.Gurevich, and E.V.Gurevich (2006).
The structural basis of arrestin-mediated regulation of G-protein-coupled receptors.
  Pharmacol Ther, 110, 465-502.  
15779331 A.O.Shpakov, V.I.Korol'kov, S.A.Plesneva, L.A.Kuznetsova, and M.N.Pertseva (2005).
Effects of the C-terminal peptide of the alphaS subunit of the G protein on the regulation of adenylyl cyclase and protein kinase A activities by biogenic amines and glucagon in mollusk and rat muscles.
  Neurosci Behav Physiol, 35, 177-186.  
16004878 C.A.Johnston, F.S.Willard, M.R.Jezyk, Z.Fredericks, E.T.Bodor, M.B.Jones, R.Blaesius, V.J.Watts, T.K.Harden, J.Sondek, J.K.Ramer, and D.P.Siderovski (2005).
Structure of Galpha(i1) bound to a GDP-selective peptide provides insight into guanine nucleotide exchange.
  Structure, 13, 1069-1080.
PDB code: 1y3a
16041481 N.G.Abdulaev, C.Zhang, A.Dinh, T.Ngo, P.N.Bryan, D.M.Brabazon, J.P.Marino, and K.D.Ridge (2005).
Bacterial expression and one-step purification of an isotope-labeled heterotrimeric G-protein alpha-subunit.
  J Biomol NMR, 32, 31-40.  
15898053 S.Albrizio, G.Caliendo, G.D'Errico, E.Novellino, P.Rovero, and A.M.D'Ursi (2005).
Galphas protein C-terminal alpha-helix at the interface: does the plasma membrane play a critical role in the Galphas protein functionality?
  J Pept Sci, 11, 617-626.  
14978301 C.Blouin, D.Butt, and A.J.Roger (2004).
Rapid evolution in conformational space: a study of loop regions in a ubiquitous GTP binding domain.
  Protein Sci, 13, 608-616.  
15322542 C.D.Van Raamsdonk, K.R.Fitch, H.Fuchs, M.H.de Angelis, and G.S.Barsh (2004).
Effects of G-protein mutations on skin color.
  Nat Genet, 36, 961-968.  
15128951 C.J.Thomas, X.Du, P.Li, Y.Wang, E.M.Ross, and S.R.Sprang (2004).
Uncoupling conformational change from GTP hydrolysis in a heterotrimeric G protein alpha-subunit.
  Proc Natl Acad Sci U S A, 101, 7560-7565.
PDB codes: 1svk 1svs
12574119 C.Kleuss, and E.Krause (2003).
Galpha(s) is palmitoylated at the N-terminal glycine.
  EMBO J, 22, 826-832.  
12517447 J.Cherfils, and M.Chabre (2003).
Activation of G-protein Galpha subunits by receptors through Galpha-Gbeta and Galpha-Ggamma interactions.
  Trends Biochem Sci, 28, 13-17.  
12621129 L.De Sanctis, D.Romagnolo, M.Olivero, F.Buzi, M.Maghnie, G.Scirè, A.Crino, G.I.Baroncelli, M.Salerno, S.Di Maio, M.Cappa, S.Grosso, F.Rigon, R.Lala, C.De Sanctis, and I.Dianzani (2003).
Molecular analysis of the GNAS1 gene for the correct diagnosis of Albright hereditary osteodystrophy and pseudohypoparathyroidism.
  Pediatr Res, 53, 749-755.  
12212810 A.M.Dursi, S.Albrizio, G.Greco, S.Mazzeo, M.R.Mazzoni, E.Novellino, and P.Rovero (2002).
Conformational analysis of the Galpha(s) protein C-terminal region.
  J Pept Sci, 8, 476-488.  
12086589 D.L.Sheridan, C.H.Berlot, A.Robert, F.M.Inglis, K.B.Jakobsdottir, J.R.Howe, and T.E.Hughes (2002).
A new way to rapidly create functional, fluorescent fusion proteins: random insertion of GFP with an in vitro transposition reaction.
  BMC Neurosci, 3, 7.  
  12119276 L.S.Weinstein, M.Chen, and J.Liu (2002).
Gs(alpha) mutations and imprinting defects in human disease.
  Ann N Y Acad Sci, 968, 173-197.  
12057015 P.B.Wedegaertner (2002).
Characterization of subcellular localization and stability of a splice variant of G alpha i2.
  BMC Cell Biol, 3, 12.  
11752444 T.S.Weiss, C.E.Chamberlain, T.Takeda, P.Lin, K.M.Hahn, and M.G.Farquhar (2001).
Galpha i3 binding to calnuc on Golgi membranes in living cells monitored by fluorescence resonance energy transfer of green fluorescent protein fusion proteins.
  Proc Natl Acad Sci U S A, 98, 14961-14966.  
  11454767 W.J.Wolfgang, A.Hoskote, I.J.Roberts, S.Jackson, and M.Forte (2001).
Genetic analysis of the Drosophila Gs(alpha) gene.
  Genetics, 158, 1189-1201.  
10764527 F.A.Antoni (2000).
Molecular diversity of cyclic AMP signalling.
  Front Neuroendocrinol, 21, 103-132.  
10747781 K.G.Muradov, and N.O.Artemyev (2000).
Coupling between the N- and C-terminal domains influences transducin-alpha intrinsic GDP/GTP exchange.
  Biochemistry, 39, 3937-3942.  
10836135 L.De Vries, B.Zheng, T.Fischer, E.Elenko, and M.G.Farquhar (2000).
The regulator of G protein signaling family.
  Annu Rev Pharmacol Toxicol, 40, 235-271.  
10639138 P.Lin, T.Fischer, T.Weiss, and M.G.Farquhar (2000).
Calnuc, an EF-hand Ca(2+) binding protein, specifically interacts with the C-terminal alpha5-helix of G(alpha)i3.
  Proc Natl Acad Sci U S A, 97, 674-679.  
10861380 S.Albrizio, A.D'Ursi, C.Fattorusso, C.Galoppini, G.Greco, M.R.Mazzoni, E.Novellino, and P.Rovero (2000).
Conformational studies on a synthetic C-terminal fragment of the alpha subunit of G(S) proteins.
  Biopolymers, 54, 186-194.  
10649434 V.Echeverría, M.V.Hinrichs, M.Torrejón, S.Ropero, J.Martinez, M.J.Toro, and J.Olate (2000).
Mutagenesis in the switch IV of the helical domain of the human Gsalpha reduces its GDP/GTP exchange rate.
  J Cell Biochem, 76, 368-375.  
10400311 A.A.Maghazachi (1999).
Intracellular signalling pathways induced by chemokines in natural killer cells.
  Cell Signal, 11, 385-390.  
10025402 C.Ostermeier, and A.T.Brunger (1999).
Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A.
  Cell, 96, 363-374.
PDB code: 1zbd
10200251 D.R.Warner, and L.S.Weinstein (1999).
A mutation in the heterotrimeric stimulatory guanine nucleotide binding protein alpha-subunit with impaired receptor-mediated activation because of elevated GTPase activity.
  Proc Natl Acad Sci U S A, 96, 4268-4272.  
10584061 F.Fanelli, C.Menziani, A.Scheer, S.Cotecchia, and P.G.De Benedetti (1999).
Theoretical study of the electrostatically driven step of receptor-G protein recognition.
  Proteins, 37, 145-156.  
10371466 H.LeVine (1999).
Structural features of heterotrimeric G-protein-coupled receptors and their modulatory proteins.
  Mol Neurobiol, 19, 111-149.  
10714367 M.A.Levine (1999).
Clinical implications of genetic defects in G proteins: oncogenic mutations in G alpha s as the molecular basis for the McCune-Albright syndrome.
  Arch Med Res, 30, 522-531.  
  10493576 M.Young, K.Kirshenbaum, K.A.Dill, and S.Highsmith (1999).
Predicting conformational switches in proteins.
  Protein Sci, 8, 1752-1764.  
10079086 S.Weitmann, N.Würsig, J.M.Navarro, and C.Kleuss (1999).
A functional chimera of mammalian guanylyl and adenylyl cyclases.
  Biochemistry, 38, 3409-3413.  
10101967 W.F.Simonds (1999).
G protein regulation of adenylate cyclase.
  Trends Pharmacol Sci, 20, 66-73.  
9772163 D.E.Coleman, and S.R.Sprang (1998).
Crystal structures of the G protein Gi alpha 1 complexed with GDP and Mg2+: a crystallographic titration experiment.
  Biochemistry, 37, 14376-14385.
PDB code: 1bof
9562564 J.J.Dumas, and D.G.Lambright (1998).
Gs alpha meets its target--shedding light on a key signal transduction event.
  Structure, 6, 407-411.  
9753466 M.Natochin, and N.O.Artemyev (1998).
A single mutation Asp229 --> Ser confers upon Gs alpha the ability to interact with regulators of G protein signaling.
  Biochemistry, 37, 13776-13780.  
9461067 N.P.Skiba, and H.E.Hamm (1998).
How Gsalpha activates adenylyl cyclase.
  Nat Struct Biol, 5, 88-92.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer