spacer
spacer

PDBsum entry 1qtm

Go to PDB code: 
protein dna_rna ligands metals links
Transferase/DNA PDB id
1qtm

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
539 a.a. *
DNA/RNA
Ligands
TTP
Metals
_MG ×2
Waters ×165
* Residue conservation analysis
PDB id:
1qtm
Name: Transferase/DNA
Title: Ddttp-trapped closed ternary complex of the large fragment of DNA polymerase i from thermus aquaticus
Structure: 5'-d( Gp Ap Cp Cp Ap Cp Gp Gp Cp Gp Cp (2Dt))-3'. Chain: b. Engineered: yes. 5'-d( Ap Ap Ap Gp Cp Gp Cp Cp Gp Tp Gp Gp Tp C)-3'. Chain: c. Engineered: yes. DNA polymerase i. Chain: a. Fragment: klenow fragment, residues 293-831.
Source: Synthetic: yes. Thermus aquaticus. Organism_taxid: 271. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Trimer (from PQS)
Resolution:
2.30Å     R-factor:   0.227     R-free:   0.280
Authors: Y.Li,V.Mitaxov,G.Waksman
Key ref:
Y.Li et al. (1999). Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation. Proc Natl Acad Sci U S A, 96, 9491-9496. PubMed id: 10449720 DOI: 10.1073/pnas.96.17.9491
Date:
28-Jun-99     Release date:   16-Aug-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P19821  (DPO1_THEAQ) -  DNA polymerase I, thermostable from Thermus aquaticus
Seq:
Struc:
 
Seq:
Struc:
832 a.a.
539 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

DNA/RNA chains
  G-A-C-C-A-C-G-G-C-G-C-2DT 12 bases
  A-A-A-G-C-G-C-C-G-T-G-G-T-C 14 bases

 Enzyme reactions 
   Enzyme class: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1073/pnas.96.17.9491 Proc Natl Acad Sci U S A 96:9491-9496 (1999)
PubMed id: 10449720  
 
 
Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation.
Y.Li, V.Mitaxov, G.Waksman.
 
  ABSTRACT  
 
The Taq DNA polymerase is the most commonly used enzyme in DNA sequencing. However, all versions of Taq polymerase are deficient in two respects: (i) these enzymes incorporate each of the four dideoxynucleoside 5' triphosphates (ddNTPs) at widely different rates during sequencing (ddGTP, for example, is incorporated 10 times faster than the other three ddNTPs), and (ii) these enzymes show uneven band-intensity or peak-height patterns in radio-labeled or dye-labeled DNA sequence profiles, respectively. We have determined the crystal structures of all four ddNTP-trapped closed ternary complexes of the large fragment of the Taq DNA polymerase (Klentaq1). The ddGTP-trapped complex structure differs from the other three ternary complex structures by a large shift in the position of the side chain of residue 660 in the O helix, resulting in additional hydrogen bonds being formed between the guanidinium group of this residue and the base of ddGTP. When Arg-660 is mutated to Asp, Ser, Phe, Tyr, or Leu, the enzyme has a marked and selective reduction in ddGTP incorporation rate. As a result, the G track generated during DNA sequencing by these Taq polymerase variants does not terminate prematurely, and higher molecular-mass G bands are detected. Another property of these Taq polymerase variants is that the sequencing patterns produced by these enzymes are remarkably even in band-intensity and peak-height distribution, thus resulting in a significant improvement in the accuracy of DNA sequencing.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Stereo diagram of the interactions between the side chain of Arg-660 and the incoming base. In the protein, only the O helix is represented and is colored in red, gold, dark blue, and dark green for the ddCTP-, ddATP-, ddTTP-, and ddGTP-trapped complexes, respectively. In the DNA, only the dCMP/ddGTP pair is represented and is colored in green. H-bond interactions between Arg-660 and the O6 and N7 atoms in the base of the ddGTP are indicated by lines. Distances between atoms involved in H-bonds are indicated.
Figure 2.
Fig. 2. Comparison of DNA sequencing by Taq-WT, Taq-RD, Taq-RL, Taq-RY, Taq-RS, and Taq-RF. The enzymes used for sequencing are indicated above the corresponding sequences.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20829187 G.Zhao, and Y.Guan (2010).
Polymerization behavior of Klenow fragment and Taq DNA polymerase in short primer extension reactions.
  Acta Biochim Biophys Sin (Shanghai), 42, 722-728.  
20235594 N.Ramsay, A.S.Jemth, A.Brown, N.Crampton, P.Dear, and P.Holliger (2010).
CyDNA: synthesis and replication of highly Cy-dye substituted DNA by an evolved polymerase.
  J Am Chem Soc, 132, 5096-5104.  
21123743 S.Obeid, A.Baccaro, W.Welte, K.Diederichs, and A.Marx (2010).
Structural basis for the synthesis of nucleobase modified DNA by Thermus aquaticus DNA polymerase.
  Proc Natl Acad Sci U S A, 107, 21327-21331.
PDB codes: 3ojs 3oju
19365630 C.Sandalli, K.Singh, M.J.Modak, A.Ketkar, S.Canakci, I.Demir, and A.O.Belduz (2009).
A new DNA polymerase I from Geobacillus caldoxylosilyticus TK4: cloning, characterization, and mutational analysis of two aromatic residues.
  Appl Microbiol Biotechnol, 84, 105-117.  
19778048 D.Loakes, J.Gallego, V.B.Pinheiro, E.T.Kool, and P.Holliger (2009).
Evolving a polymerase for hydrophobic base analogues.
  J Am Chem Soc, 131, 14827-14837.  
19819885 I.M.Carr, J.I.Robinson, R.Dimitriou, A.F.Markham, A.W.Morgan, and D.T.Bonthron (2009).
Inferring relative proportions of DNA variants from sequencing electropherograms.
  Bioinformatics, 25, 3244-3250.  
19686392 K.D.Eilert, and D.R.Foran (2009).
Polymerase resistance to polymerase chain reaction inhibitors in bone*.
  J Forensic Sci, 54, 1001-1007.  
19597696 M.D.Gibbs, R.A.Reeves, D.Mandelman, Q.Mi, J.Lee, and P.L.Bergquist (2009).
Molecular diversity and catalytic activity of Thermus DNA polymerases.
  Extremophiles, 13, 817-826.  
17553831 J.H.Wu, and W.T.Liu (2007).
Quantitative multiplexing analysis of PCR-amplified ribosomal RNA genes by hierarchical oligonucleotide primer extension reaction.
  Nucleic Acids Res, 35, e82.  
17183508 S.Melissis, N.E.Labrou, and Y.D.Clonis (2007).
One-step purification of Taq DNA polymerase using nucleotide-mimetic affinity chromatography.
  Biotechnol J, 2, 121-132.  
17054304 K.B.Sauter, and A.Marx (2006).
Evolving thermostable reverse transcriptase activity in a DNA polymerase scaffold.
  Angew Chem Int Ed Engl, 45, 7633-7635.  
16838276 S.Vichier-Guerre, S.Ferris, N.Auberger, K.Mahiddine, and J.L.Jestin (2006).
A population of thermostable reverse transcriptases evolved from Thermus aquaticus DNA polymerase I by phage display.
  Angew Chem Int Ed Engl, 45, 6133-6137.  
16615916 V.K.Batra, W.A.Beard, D.D.Shock, J.M.Krahn, L.C.Pedersen, and S.H.Wilson (2006).
Magnesium-induced assembly of a complete DNA polymerase catalytic complex.
  Structure, 14, 757-766.
PDB codes: 2fmp 2fmq 2fms
15995989 D.Summerer, N.Z.Rudinger, I.Detmer, and A.Marx (2005).
Enhanced fidelity in mismatch extension by DNA polymerase through directed combinatorial enzyme design.
  Angew Chem Int Ed Engl, 44, 4712-4715.  
16061181 P.J.Rothwell, V.Mitaksov, and G.Waksman (2005).
Motions of the fingers subdomain of klentaq1 are fast and not rate limiting: implications for the molecular basis of fidelity in DNA polymerases.
  Mol Cell, 19, 345-355.  
15857782 R.C.Holmberg, A.A.Henry, and F.E.Romesberg (2005).
Directed evolution of novel polymerases.
  Biomol Eng, 22, 39-49.  
15952890 S.Prakash, R.E.Johnson, and L.Prakash (2005).
Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function.
  Annu Rev Biochem, 74, 317-353.  
16055723 W.T.Wolfle, M.T.Washington, E.T.Kool, T.E.Spratt, S.A.Helquist, L.Prakash, and S.Prakash (2005).
Evidence for a Watson-Crick hydrogen bonding requirement in DNA synthesis by human DNA polymerase kappa.
  Mol Cell Biol, 25, 7137-7143.  
15109812 A.R.Pavlov, N.V.Pavlova, S.A.Kozyavkin, and A.I.Slesarev (2004).
Recent developments in the optimization of thermostable DNA polymerases for efficient applications.
  Trends Biotechnol, 22, 253-260.  
15345530 I.Andricioaei, A.Goel, D.Herschbach, and M.Karplus (2004).
Dependence of DNA polymerase replication rate on external forces: a model based on molecular dynamics simulations.
  Biophys J, 87, 1478-1497.  
15211513 L.L.Videau, W.B.Arendall, and J.S.Richardson (2004).
The cis-Pro touch-turn: a rare motif preferred at functional sites.
  Proteins, 56, 298-309.  
15496986 M.Seki, C.Masutani, L.W.Yang, A.Schuffert, S.Iwai, I.Bahar, and R.D.Wood (2004).
High-efficiency bypass of DNA damage by human DNA polymerase Q.
  EMBO J, 23, 4484-4494.  
12692307 M.T.Washington, W.T.Wolfle, T.E.Spratt, L.Prakash, and S.Prakash (2003).
Yeast DNA polymerase eta makes functional contacts with the DNA minor groove only at the incoming nucleoside triphosphate.
  Proc Natl Acad Sci U S A, 100, 5113-5118.  
14522052 N.Paul, V.C.Nashine, G.Hoops, P.Zhang, J.Zhou, D.E.Bergstrom, and V.J.Davisson (2003).
DNA polymerase template interactions probed by degenerate isosteric nucleobase analogs.
  Chem Biol, 10, 815-825.  
12368475 A.R.Pavlov, G.I.Belova, S.A.Kozyavkin, and A.I.Slesarev (2002).
Helix-hairpin-helix motifs confer salt resistance and processivity on chimeric DNA polymerases.
  Proc Natl Acad Sci U S A, 99, 13510-13515.  
11830658 D.T.Minnick, L.Liu, N.D.Grindley, T.A.Kunkel, and C.M.Joyce (2002).
Discrimination against purine-pyrimidine mispairs in the polymerase active site of DNA polymerase I: a structural explanation.
  Proc Natl Acad Sci U S A, 99, 1194-1199.  
11452018 B.Hong, K.Wu, J.S.Brockenbrough, P.Wu, and J.P.Aris (2001).
Temperature sensitive nop2 alleles defective in synthesis of 25S rRNA and large ribosomal subunits in Saccharomyces cerevisiae.
  Nucleic Acids Res, 29, 2927-2937.  
11274352 F.J.Ghadessy, J.L.Ong, and P.Holliger (2001).
Directed evolution of polymerase function by compartmentalized self-replication.
  Proc Natl Acad Sci U S A, 98, 4552-4557.  
11600709 K.Yoshida, A.Tosaka, H.Kamiya, T.Murate, H.Kasai, Y.Nimura, M.Ogawa, S.Yoshida, and M.Suzuki (2001).
Arg660Ser mutation in Thermus aquaticus DNA polymerase I suppresses T-->C transitions: implication of wobble base pair formation at the nucleotide incorporation step.
  Nucleic Acids Res, 29, 4206-4214.  
11258938 L.Dzantiev, Y.O.Alekseyev, J.C.Morales, E.T.Kool, and L.J.Romano (2001).
Significance of nucleobase shape complementarity and hydrogen bonding in the formation and stability of the closed polymerase-DNA complex.
  Biochemistry, 40, 3215-3221.  
11369861 Y.Li, and G.Waksman (2001).
Crystal structures of a ddATP-, ddTTP-, ddCTP, and ddGTP- trapped ternary complex of Klentaq1: insights into nucleotide incorporation and selectivity.
  Protein Sci, 10, 1225-1233.  
11087416 L.Sun, M.Wang, E.T.Kool, and J.S.Taylor (2000).
Pyrene nucleotide as a mechanistic probe: evidence for a transient abasic site-like intermediate in the bypass of dipyrimidine photoproducts by T7 DNA polymerase.
  Biochemistry, 39, 14603-14610.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer