|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
558 a.a.
|
 |
|
|
|
|
|
|
|
429 a.a.
|
 |
|
|
|
|
|
|
|
211 a.a.
|
 |
|
|
|
|
|
|
|
225 a.a.
|
 |
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transferase/immune system/DNA
|
 |
|
Title:
|
 |
HIV-1 reverse transcriptase crosslinked to pre-translocation aztmp- terminated DNA (complex n)
|
|
Structure:
|
 |
5'-d( Ap T Gp Cp Ap Tp Gp Gp Cp Gp Cp Cp Cp Gp Ap Ap Cp Ap Gp Gp Gp Ap Cp Tp Gp Tp G)-3'. Chain: t. Engineered: yes. Other_details: DNA template. 5'-d( A Cp Ap Gp Tp Cp Cp Cp Tp Gp Tp Tp Cp Gp Gp (Mrg) p Cp Gp Cp Cp Ap (Atm))-3'. Chain: p. Engineered: yes.
|
|
Source:
|
 |
Synthetic: yes. Human immunodeficiency virus 1. Organism_taxid: 11676. Gene: pol. Expressed in: escherichia coli. Expression_system_taxid: 562. Mus musculus. House mouse. Organism_taxid: 10090.
|
|
Biol. unit:
|
 |
Hexamer (from
)
|
|
Resolution:
|
 |
|
3.00Å
|
R-factor:
|
0.247
|
R-free:
|
0.284
|
|
|
Authors:
|
 |
S.G.Sarafianos,A.D.Clark Jr.,K.Das,S.Tuske,J.J.Birktoft, I.Ilankumaran,A.R.Ramesha,J.M.Sayer,D.M.Jerina,P.L.Boyer,S.H.Hughes, E.Arnold
|
Key ref:
|
 |
S.G.Sarafianos
et al.
(2002).
Structures of HIV-1 reverse transcriptase with pre- and post-translocation AZTMP-terminated DNA.
EMBO J,
21,
6614-6624.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
11-Nov-02
|
Release date:
|
14-Jan-03
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P03366
(POL_HV1B1) -
Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BH10)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
1447 a.a.
558 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P03366
(POL_HV1B1) -
Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BH10)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
1447 a.a.
429 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
|
|
 |
 |
 |
 |
Enzyme class 1:
|
 |
Chains A, B:
E.C.2.7.7.-
- ?????
|
|
 |
 |
 |
 |
 |
Enzyme class 2:
|
 |
Chains A, B:
E.C.2.7.7.49
- RNA-directed Dna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
DNA(n)
|
+
|
2'-deoxyribonucleoside 5'-triphosphate
|
=
|
DNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 3:
|
 |
Chains A, B:
E.C.2.7.7.7
- DNA-directed Dna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
DNA(n)
|
+
|
2'-deoxyribonucleoside 5'-triphosphate
|
=
|
DNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 4:
|
 |
Chains A, B:
E.C.3.1.-.-
|
|
 |
 |
 |
 |
 |
Enzyme class 5:
|
 |
Chains A, B:
E.C.3.1.13.2
- exoribonuclease H.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
|
 |
 |
 |
 |
 |
Enzyme class 6:
|
 |
Chains A, B:
E.C.3.1.26.13
- retroviral ribonuclease H.
|
|
 |
 |
 |
 |
 |
Enzyme class 7:
|
 |
Chains A, B:
E.C.3.4.23.16
- HIV-1 retropepsin.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
|
 |
 |
 |
 |
 |
 |
 |
|
Note, where more than one E.C. class is given (as above), each may
correspond to a different protein domain or, in the case of polyprotein
precursors, to a different mature protein.
|
|
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
EMBO J
21:6614-6624
(2002)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structures of HIV-1 reverse transcriptase with pre- and post-translocation AZTMP-terminated DNA.
|
|
S.G.Sarafianos,
A.D.Clark,
K.Das,
S.Tuske,
J.J.Birktoft,
P.Ilankumaran,
A.R.Ramesha,
J.M.Sayer,
D.M.Jerina,
P.L.Boyer,
S.H.Hughes,
E.Arnold.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
AZT (3'-azido-3'-deoxythymidine) resistance involves the enhanced excision of
AZTMP from the end of the primer strand by HIV-1 reverse transcriptase. This
reaction can occur when an AZTMP-terminated primer is bound at the
nucleotide-binding site (pre-translocation complex N) but not at the 'priming'
site (post-translocation complex P). We determined the crystal structures of N
and P complexes at 3.0 and 3.1 A resolution. These structures provide insight
into the structural basis of AZTMP excision and the mechanism of translocation.
Docking of a dNTP in the P complex structure suggests steric crowding in forming
a stable ternary complex that should increase the relative amount of the N
complex, which is the substrate for excision. Structural differences between
complexes N and P suggest that the conserved YMDD loop is involved in
translocation, acting as a springboard that helps to propel the primer terminus
from the N to the P site after dNMP incorporation.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 5.
Figure 5 (A) Ribbon representation of superposed polymerase
active sites (same basis of superposition as used for Figure 4)
of complex N and HIV-1 RT/DNA/dNTP ternary complex
[RT(ter)−ddNMP−dTTP complex] (Huang et al., 1998); PDB code
1RTD. Color scheme: side chains of complex N (cyan), primer
strand of complex N (magenta), incoming dNTP of the ternary
complex (yellow), metals A and B in the ternary complex
(yellow). In complex N, the corresponding metals (A' and B') are
either not seen in the structure and may have been released
together with PPi (A'), or are observed (Figure 3) at a position
shifted by 4.7
Å (metal B'). (B) Superposition of polymerase active sites
of the non-terminated [RT(P)−dNMP, green] (Ding et al., 1998;
PDB code 2HMI) and AZTMP-terminated P complex [RT(P)−AZTMP,
white]. The main structural difference is in the inclination of
the terminal nucleotide. (C) Superposition of the polymerase
active sites (aligned using p66 residues 107−112 and
155−215) of complex P (in white) on the RT(ter)−ddNMP/dTTP
ternary complex (in cyan) (Huang et al., 1998); PDB code 1RTD.
The ternary complex YMDD loop is displaced 1.0
Å from its position in the P complex. Steric conflicts (in
red) are mostly between the C5' of the incoming dNTP and the
side chain of Asp185.
|
 |
Figure 8.
Figure 8 Schematic relationships among events that affect
excision-based NRTI resistance (dNTP binding, translocation,
excision). Factors that affect any stage will affect the overall
equilibrium. X is an NRTI (red), A is ATP (orange) and dNTP
(cyan) is the cognate nucleotide triphosphate.
|
 |
|
|
|
| |
The above figures are
reprinted
from an Open Access publication published by Macmillan Publishers Ltd:
EMBO J
(2002,
21,
6614-6624)
copyright 2002.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
M.Mason,
A.Schuller,
and
E.Skordalakes
(2011).
Telomerase structure function.
|
| |
Curr Opin Struct Biol,
21,
92.
|
 |
|
|
|
|
 |
S.Ibe,
and
W.Sugiura
(2011).
Clinical significance of HIV reverse-transcriptase inhibitor-resistance mutations.
|
| |
Future Microbiol,
6,
295-315.
|
 |
|
|
|
|
 |
A.Herschhorn,
and
A.Hizi
(2010).
Retroviral reverse transcriptases.
|
| |
Cell Mol Life Sci,
67,
2717-2747.
|
 |
|
|
|
|
 |
A.J.Acosta-Hoyos,
and
W.A.Scott
(2010).
The Role of Nucleotide Excision by Reverse Transcriptase in HIV Drug Resistance.
|
| |
Viruses,
2,
372-394.
|
 |
|
|
|
|
 |
K.A.Johnson
(2010).
The kinetic and chemical mechanism of high-fidelity DNA polymerases.
|
| |
Biochim Biophys Acta,
1804,
1041-1048.
|
 |
|
|
|
|
 |
K.Singh,
B.Marchand,
K.A.Kirby,
E.Michailidis,
and
S.G.Sarafianos
(2010).
Structural Aspects of Drug Resistance and Inhibition of HIV-1 Reverse Transcriptase.
|
| |
Viruses,
2,
606-638.
|
 |
|
|
|
|
 |
M.Götte,
J.W.Rausch,
B.Marchand,
S.Sarafianos,
and
S.F.Le Grice
(2010).
Reverse transcriptase in motion: conformational dynamics of enzyme-substrate interactions.
|
| |
Biochim Biophys Acta,
1804,
1202-1212.
|
 |
|
|
|
|
 |
M.Yokoyama,
H.Mori,
and
H.Sato
(2010).
Allosteric regulation of HIV-1 reverse transcriptase by ATP for nucleotide selection.
|
| |
PLoS One,
5,
e8867.
|
 |
|
|
|
|
 |
R.Sakuma,
T.Sakuma,
S.Ohmine,
R.H.Silverman,
and
Y.Ikeda
(2010).
Xenotropic murine leukemia virus-related virus is susceptible to AZT.
|
| |
Virology,
397,
1-6.
|
 |
|
|
|
|
 |
X.Tu,
K.Das,
Q.Han,
J.D.Bauman,
A.D.Clark,
X.Hou,
Y.V.Frenkel,
B.L.Gaffney,
R.A.Jones,
P.L.Boyer,
S.H.Hughes,
S.G.Sarafianos,
and
E.Arnold
(2010).
Structural basis of HIV-1 resistance to AZT by excision.
|
| |
Nat Struct Mol Biol,
17,
1202-1209.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Castro,
E.D.Smidansky,
J.J.Arnold,
K.R.Maksimchuk,
I.Moustafa,
A.Uchida,
M.Götte,
W.Konigsberg,
and
C.E.Cameron
(2009).
Nucleic acid polymerases use a general acid for nucleotidyl transfer.
|
| |
Nat Struct Mol Biol,
16,
212-218.
|
 |
|
|
|
|
 |
E.Michailidis,
B.Marchand,
E.N.Kodama,
K.Singh,
M.Matsuoka,
K.A.Kirby,
E.M.Ryan,
A.M.Sawani,
E.Nagy,
N.Ashida,
H.Mitsuya,
M.A.Parniak,
and
S.G.Sarafianos
(2009).
Mechanism of inhibition of HIV-1 reverse transcriptase by 4'-Ethynyl-2-fluoro-2'-deoxyadenosine triphosphate, a translocation-defective reverse transcriptase inhibitor.
|
| |
J Biol Chem,
284,
35681-35691.
|
 |
|
|
|
|
 |
E.P.Tchesnokov,
A.Obikhod,
I.Massud,
A.Lisco,
C.Vanpouille,
B.Brichacek,
J.Balzarini,
C.McGuigan,
M.Derudas,
L.Margolis,
R.F.Schinazi,
and
M.Götte
(2009).
Mechanisms Associated with HIV-1 Resistance to Acyclovir by the V75I Mutation in Reverse Transcriptase.
|
| |
J Biol Chem,
284,
21496-21504.
|
 |
|
|
|
|
 |
E.Skordalakes
(2009).
Telomerase structure paves the way for new cancer therapies.
|
| |
Future Oncol,
5,
163-167.
|
 |
|
|
|
|
 |
J.M.Seckler,
K.J.Howard,
M.D.Barkley,
and
P.L.Wintrode
(2009).
Solution structural dynamics of HIV-1 reverse transcriptase heterodimer.
|
| |
Biochemistry,
48,
7646-7655.
|
 |
|
|
|
|
 |
M.C.Puertas,
M.J.Buzón,
A.Artese,
S.Alcaro,
L.Menendez-Arias,
C.F.Perno,
B.Clotet,
F.Ceccherini-Silberstein,
and
J.Martinez-Picado
(2009).
Effect of the human immunodeficiency virus type 1 reverse transcriptase polymorphism Leu-214 on replication capacity and drug susceptibility.
|
| |
J Virol,
83,
7434-7439.
|
 |
|
|
|
|
 |
P.L.Sharma,
J.H.Nettles,
A.Feldman,
K.Rapp,
and
R.F.Schinazi
(2009).
Comparative analysis of in vitro processivity of HIV-1 reverse transcriptases containing mutations 65R, 74V, 184V and 65R+74V.
|
| |
Antiviral Res,
83,
317-323.
|
 |
|
|
|
|
 |
S.G.Sarafianos,
B.Marchand,
K.Das,
D.M.Himmel,
M.A.Parniak,
S.H.Hughes,
and
E.Arnold
(2009).
Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition.
|
| |
J Mol Biol,
385,
693-713.
|
 |
|
|
|
|
 |
A.J.Gillis,
A.P.Schuller,
and
E.Skordalakes
(2008).
Structure of the Tribolium castaneum telomerase catalytic subunit TERT.
|
| |
Nature,
455,
633-637.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.A.Abbondanzieri,
G.Bokinsky,
J.W.Rausch,
J.X.Zhang,
S.F.Le Grice,
and
X.Zhuang
(2008).
Dynamic binding orientations direct activity of HIV reverse transcriptase.
|
| |
Nature,
453,
184-189.
|
 |
|
|
|
|
 |
M.Ehteshami,
B.J.Scarth,
E.P.Tchesnokov,
C.Dash,
S.F.Le Grice,
S.Hallenberger,
D.Jochmans,
and
M.Götte
(2008).
Mutations M184V and Y115F in HIV-1 Reverse Transcriptase Discriminate against "Nucleotide-competing Reverse Transcriptase Inhibitors".
|
| |
J Biol Chem,
283,
29904-29911.
|
 |
|
|
|
|
 |
M.Ehteshami,
G.L.Beilhartz,
B.J.Scarth,
E.P.Tchesnokov,
S.McCormick,
B.Wynhoven,
P.R.Harrigan,
and
M.Götte
(2008).
Connection domain mutations N348I and A360V in HIV-1 reverse transcriptase enhance resistance to 3'-azido-3'-deoxythymidine through both RNase H-dependent and -independent mechanisms.
|
| |
J Biol Chem,
283,
22222-22232.
|
 |
|
|
|
|
 |
M.J.Hartl,
B.Kretzschmar,
A.Frohn,
A.Nowrouzi,
A.Rethwilm,
and
B.M.Wöhrl
(2008).
AZT resistance of simian foamy virus reverse transcriptase is based on the excision of AZTMP in the presence of ATP.
|
| |
Nucleic Acids Res,
36,
1009-1016.
|
 |
|
|
|
|
 |
M.L.Coté,
and
M.J.Roth
(2008).
Murine leukemia virus reverse transcriptase: structural comparison with HIV-1 reverse transcriptase.
|
| |
Virus Res,
134,
186-202.
|
 |
|
|
|
|
 |
M.Pandey,
S.S.Patel,
and
A.Gabriel
(2008).
Kinetic pathway of pyrophosphorolysis by a retrotransposon reverse transcriptase.
|
| |
PLoS ONE,
3,
e1389.
|
 |
|
|
|
|
 |
S.Liu,
E.A.Abbondanzieri,
J.W.Rausch,
S.F.Le Grice,
and
X.Zhuang
(2008).
Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates.
|
| |
Science,
322,
1092-1097.
|
 |
|
|
|
|
 |
S.Zelina,
C.W.Sheen,
J.Radzio,
J.W.Mellors,
and
N.Sluis-Cremer
(2008).
Mechanisms by Which the G333D Mutation in Human Immunodeficiency Virus Type 1 Reverse Transcriptase Facilitates Dual Resistance to Zidovudine and Lamivudine.
|
| |
Antimicrob Agents Chemother,
52,
157-163.
|
 |
|
|
|
|
 |
W.Rutvisuttinunt,
P.R.Meyer,
and
W.A.Scott
(2008).
Interactions between HIV-1 reverse transcriptase and the downstream template strand in stable complexes with primer-template.
|
| |
PLoS ONE,
3,
e3561.
|
 |
|
|
|
|
 |
B.Marchand,
E.P.Tchesnokov,
and
M.Götte
(2007).
The pyrophosphate analogue foscarnet traps the pre-translocational state of HIV-1 reverse transcriptase in a Brownian ratchet model of polymerase translocation.
|
| |
J Biol Chem,
282,
3337-3346.
|
 |
|
|
|
|
 |
B.Marchand,
K.L.White,
J.K.Ly,
N.A.Margot,
R.Wang,
M.McDermott,
M.D.Miller,
and
M.Götte
(2007).
Effects of the translocation status of human immunodeficiency virus type 1 reverse transcriptase on the efficiency of excision of tenofovir.
|
| |
Antimicrob Agents Chemother,
51,
2911-2919.
|
 |
|
|
|
|
 |
J.Deval,
M.H.Powdrill,
C.M.D'Abramo,
L.Cellai,
and
M.Götte
(2007).
Pyrophosphorolytic excision of nonobligate chain terminators by hepatitis C virus NS5B polymerase.
|
| |
Antimicrob Agents Chemother,
51,
2920-2928.
|
 |
|
|
|
|
 |
J.E.Corn,
and
J.M.Berger
(2007).
FASTDXL: a generalized screen to trap disulfide-stabilized complexes for use in structural studies.
|
| |
Structure,
15,
773-780.
|
 |
|
|
|
|
 |
J.H.Brehm,
D.Koontz,
J.D.Meteer,
V.Pathak,
N.Sluis-Cremer,
and
J.W.Mellors
(2007).
Selection of mutations in the connection and RNase H domains of human immunodeficiency virus type 1 reverse transcriptase that increase resistance to 3'-azido-3'-dideoxythymidine.
|
| |
J Virol,
81,
7852-7859.
|
 |
|
|
|
|
 |
P.J.Rothwell,
and
G.Waksman
(2007).
A pre-equilibrium before nucleotide binding limits fingers subdomain closure by Klentaq1.
|
| |
J Biol Chem,
282,
28884-28892.
|
 |
|
|
|
|
 |
P.R.Meyer,
W.Rutvisuttinunt,
S.E.Matsuura,
A.G.So,
and
W.A.Scott
(2007).
Stable complexes formed by HIV-1 reverse transcriptase at distinct positions on the primer-template controlled by binding deoxynucleoside triphosphates or foscarnet.
|
| |
J Mol Biol,
369,
41-54.
|
 |
|
|
|
|
 |
C.Cruchaga,
E.Ansó,
A.Rouzaut,
and
J.J.Martínez-Irujo
(2006).
Selective excision of chain-terminating nucleotides by HIV-1 reverse transcriptase with phosphonoformate as substrate.
|
| |
J Biol Chem,
281,
27744-27752.
|
 |
|
|
|
|
 |
C.T.Ranjith-Kumar,
and
C.C.Kao
(2006).
Recombinant viral RdRps can initiate RNA synthesis from circular templates.
|
| |
RNA,
12,
303-312.
|
 |
|
|
|
|
 |
D.Jochmans,
J.Deval,
B.Kesteleyn,
H.Van Marck,
E.Bettens,
I.De Baere,
P.Dehertogh,
T.Ivens,
M.Van Ginderen,
B.Van Schoubroeck,
M.Ehteshami,
P.Wigerinck,
M.Götte,
and
K.Hertogs
(2006).
Indolopyridones inhibit human immunodeficiency virus reverse transcriptase with a novel mechanism of action.
|
| |
J Virol,
80,
12283-12292.
|
 |
|
|
|
|
 |
W.Lewis,
J.J.Kohler,
S.H.Hosseini,
C.P.Haase,
W.C.Copeland,
R.J.Bienstock,
T.Ludaway,
J.McNaught,
R.Russ,
T.Stuart,
and
R.Santoianni
(2006).
Antiretroviral nucleosides, deoxynucleotide carrier and mitochondrial DNA: evidence supporting the DNA pol gamma hypothesis.
|
| |
AIDS,
20,
675-684.
|
 |
|
|
|
|
 |
A.Bibillo,
D.Lener,
G.J.Klarmann,
and
S.F.Le Grice
(2005).
Functional roles of carboxylate residues comprising the DNA polymerase active site triad of Ty3 reverse transcriptase.
|
| |
Nucleic Acids Res,
33,
171-181.
|
 |
|
|
|
|
 |
A.Mulky,
and
J.C.Kappes
(2005).
Analysis of human immunodeficiency virus type 1 reverse transcriptase subunit structure/function in the context of infectious virions and human target cells.
|
| |
Antimicrob Agents Chemother,
49,
3762-3769.
|
 |
|
|
|
|
 |
E.Crespan,
G.A.Locatelli,
R.Cancio,
U.Hübscher,
S.Spadari,
and
G.Maga
(2005).
Drug resistance mutations in the nucleotide binding pocket of human immunodeficiency virus type 1 reverse transcriptase differentially affect the phosphorolysis-dependent primer unblocking activity in the presence of stavudine and zidovudine and its inhibition by efavirenz.
|
| |
Antimicrob Agents Chemother,
49,
342-349.
|
 |
|
|
|
|
 |
J.Ren,
and
D.K.Stammers
(2005).
HIV reverse transcriptase structures: designing new inhibitors and understanding mechanisms of drug resistance.
|
| |
Trends Pharmacol Sci,
26,
4-7.
|
 |
|
|
|
|
 |
K.L.White,
N.A.Margot,
J.K.Ly,
J.M.Chen,
A.S.Ray,
M.Pavelko,
R.Wang,
M.McDermott,
S.Swaminathan,
and
M.D.Miller
(2005).
A combination of decreased NRTI incorporation and decreased excision determines the resistance profile of HIV-1 K65R RT.
|
| |
AIDS,
19,
1751-1760.
|
 |
|
|
|
|
 |
N.Sluis-Cremer,
D.Arion,
U.Parikh,
D.Koontz,
R.F.Schinazi,
J.W.Mellors,
and
M.A.Parniak
(2005).
The 3'-azido group is not the primary determinant of 3'-azido-3'-deoxythymidine (AZT) responsible for the excision phenotype of AZT-resistant HIV-1.
|
| |
J Biol Chem,
280,
29047-29052.
|
 |
|
|
|
|
 |
R.Chen,
M.Yokoyama,
H.Sato,
C.Reilly,
and
L.M.Mansky
(2005).
Human immunodeficiency virus mutagenesis during antiviral therapy: impact of drug-resistant reverse transcriptase and nucleoside and nonnucleoside reverse transcriptase inhibitors on human immunodeficiency virus type 1 mutation frequencies.
|
| |
J Virol,
79,
12045-12057.
|
 |
|
|
|
|
 |
W.Zheng,
B.R.Brooks,
S.Doniach,
and
D.Thirumalai
(2005).
Network of dynamically important residues in the open/closed transition in polymerases is strongly conserved.
|
| |
Structure,
13,
565-577.
|
 |
|
|
|
|
 |
A.Basavapathruni,
C.M.Bailey,
and
K.S.Anderson
(2004).
Defining a molecular mechanism of synergy between nucleoside and nonnucleoside AIDS drugs.
|
| |
J Biol Chem,
279,
6221-6224.
|
 |
|
|
|
|
 |
J.D.Pata,
W.G.Stirtan,
S.W.Goldstein,
and
T.A.Steitz
(2004).
Structure of HIV-1 reverse transcriptase bound to an inhibitor active against mutant reverse transcriptases resistant to other nonnucleoside inhibitors.
|
| |
Proc Natl Acad Sci U S A,
101,
10548-10553.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.L.White,
J.M.Chen,
N.A.Margot,
T.Wrin,
C.J.Petropoulos,
L.K.Naeger,
S.Swaminathan,
and
M.D.Miller
(2004).
Molecular mechanisms of tenofovir resistance conferred by human immunodeficiency virus type 1 reverse transcriptase containing a diserine insertion after residue 69 and multiple thymidine analog-associated mutations.
|
| |
Antimicrob Agents Chemother,
48,
992.
|
 |
|
|
|
|
 |
M.Götte
(2004).
Inhibition of HIV-1 reverse transcription: basic principles of drug action and resistance.
|
| |
Expert Rev Anti Infect Ther,
2,
707-716.
|
 |
|
|
|
|
 |
N.Sluis-Cremer,
N.A.Temiz,
and
I.Bahar
(2004).
Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding.
|
| |
Curr HIV Res,
2,
323-332.
|
 |
|
|
|
|
 |
P.L.Boyer,
T.Imamichi,
S.G.Sarafianos,
E.Arnold,
and
S.H.Hughes
(2004).
Effects of the Delta67 complex of mutations in human immunodeficiency virus type 1 reverse transcriptase on nucleoside analog excision.
|
| |
J Virol,
78,
9987-9997.
|
 |
|
|
|
|
 |
P.R.Meyer,
A.J.Smith,
S.E.Matsuura,
and
W.A.Scott
(2004).
Effects of primer-template sequence on ATP-dependent removal of chain-terminating nucleotide analogues by HIV-1 reverse transcriptase.
|
| |
J Biol Chem,
279,
45389-45398.
|
 |
|
|
|
|
 |
R.A.Smith,
D.J.Anderson,
and
B.D.Preston
(2004).
Purifying selection masks the mutational flexibility of HIV-1 reverse transcriptase.
|
| |
J Biol Chem,
279,
26726-26734.
|
 |
|
|
|
|
 |
S.Tuske,
S.G.Sarafianos,
A.D.Clark,
J.Ding,
L.K.Naeger,
K.L.White,
M.D.Miller,
C.S.Gibbs,
P.L.Boyer,
P.Clark,
G.Wang,
B.L.Gaffney,
R.A.Jones,
D.M.Jerina,
S.H.Hughes,
and
E.Arnold
(2004).
Structures of HIV-1 RT-DNA complexes before and after incorporation of the anti-AIDS drug tenofovir.
|
| |
Nat Struct Mol Biol,
11,
469-474.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Matamoros,
S.Franco,
B.M.Vázquez-Alvarez,
A.Mas,
M.A.Martínez,
and
L.Menéndez-Arias
(2004).
Molecular determinants of multi-nucleoside analogue resistance in HIV-1 reverse transcriptases containing a dipeptide insertion in the fingers subdomain: effect of mutations D67N and T215Y on removal of thymidine nucleotide analogues from blocked DNA primers.
|
| |
J Biol Chem,
279,
24569-24577.
|
 |
|
|
|
|
 |
Y.W.Yin,
and
T.A.Steitz
(2004).
The structural mechanism of translocation and helicase activity in T7 RNA polymerase.
|
| |
Cell,
116,
393-404.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Marchand,
and
M.Götte
(2003).
Site-specific footprinting reveals differences in the translocation status of HIV-1 reverse transcriptase. Implications for polymerase translocation and drug resistance.
|
| |
J Biol Chem,
278,
35362-35372.
|
 |
|
|
|
|
 |
G.L.Verdine,
and
D.P.Norman
(2003).
Covalent trapping of protein-DNA complexes.
|
| |
Annu Rev Biochem,
72,
337-366.
|
 |
|
|
|
|
 |
P.R.Meyer,
S.E.Matsuura,
D.Zonarich,
R.R.Chopra,
E.Pendarvis,
H.Z.Bazmi,
J.W.Mellors,
and
W.A.Scott
(2003).
Relationship between 3'-azido-3'-deoxythymidine resistance and primer unblocking activity in foscarnet-resistant mutants of human immunodeficiency virus type 1 reverse transcriptase.
|
| |
J Virol,
77,
6127-6137.
|
 |
|
|
|
|
 |
S.G.Sarafianos,
A.D.Clark,
S.Tuske,
C.J.Squire,
K.Das,
D.Sheng,
P.Ilankumaran,
A.R.Ramesha,
H.Kroth,
J.M.Sayer,
D.M.Jerina,
P.L.Boyer,
S.H.Hughes,
and
E.Arnold
(2003).
Trapping HIV-1 reverse transcriptase before and after translocation on DNA.
|
| |
J Biol Chem,
278,
16280-16288.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
| |