5uwu Citations

Nuclear export receptor CRM1 recognizes diverse conformations in nuclear export signals.

Elife 6 (2017)
Related entries: 5uwh, 5uwi, 5uwj, 5uwo, 5uwp, 5uwq, 5uwr, 5uws, 5uwt, 5uww

Cited: 44 times
EuropePMC logo PMID: 28282025

Abstract

Nuclear export receptor CRM1 binds highly variable nuclear export signals (NESs) in hundreds of different cargoes. Previously we have shown that CRM1 binds NESs in both polypeptide orientations (Fung et al., 2015). Here, we show crystal structures of CRM1 bound to eight additional NESs which reveal diverse conformations that range from loop-like to all-helix, which occupy different extents of the invariant NES-binding groove. Analysis of all NES structures show 5-6 distinct backbone conformations where the only conserved secondary structural element is one turn of helix that binds the central portion of the CRM1 groove. All NESs also participate in main chain hydrogen bonding with human CRM1 Lys568 side chain, which acts as a specificity filter that prevents binding of non-NES peptides. The large conformational range of NES backbones explains the lack of a fixed pattern for its 3-5 hydrophobic anchor residues, which in turn explains the large array of peptide sequences that can function as NESs.

Articles - 5uwu mentioned but not cited (3)

  1. Nuclear export receptor CRM1 recognizes diverse conformations in nuclear export signals. Fung HY, Fu SC, Chook YM. Elife 6 e23961 (2017)
  2. Structural prerequisites for CRM1-dependent nuclear export signaling peptides: accessibility, adapting conformation, and the stability at the binding site. Lee Y, Pei J, Baumhardt JM, Chook YM, Grishin NV. Sci Rep 9 6627 (2019)
  3. Identification of Novel Covalent XPO1 Inhibitors Based on a Hybrid Virtual Screening Strategy. Shen Z, Zhuang W, Li K, Guo Y, Qu B, Chen S, Gao J, Liu J, Xu L, Dong X, Che J, Li Q. Molecules 27 2543 (2022)


Reviews citing this publication (14)

  1. Karyopherin-mediated nucleocytoplasmic transport. Wing CE, Fung HYJ, Chook YM. Nat Rev Mol Cell Biol 23 307-328 (2022)
  2. Two Sides of the Coin: Ezrin/Radixin/Moesin and Merlin Control Membrane Structure and Contact Inhibition. Michie KA, Bermeister A, Robertson NO, Goodchild SC, Curmi PMG. Int J Mol Sci 20 E1996 (2019)
  3. Nucleocytoplasmic Transport: Regulatory Mechanisms and the Implications in Neurodegeneration. Ding B, Sepehrimanesh M. Int J Mol Sci 22 4165 (2021)
  4. Nuclear Ubiquitin-Proteasome Pathways in Proteostasis Maintenance. Franić D, Zubčić K, Boban M. Biomolecules 11 54 (2021)
  5. Tools for the Recognition of Sorting Signals and the Prediction of Subcellular Localization of Proteins From Their Amino Acid Sequences. Imai K, Nakai K. Front Genet 11 607812 (2020)
  6. Viral Appropriation: Laying Claim to Host Nuclear Transport Machinery. Tessier TM, Dodge MJ, Prusinkiewicz MA, Mymryk JS. Cells 8 E559 (2019)
  7. Paxillin actions in the nucleus. Ma X, Hammes SR. Steroids 133 87-92 (2018)
  8. The Role of Protein Disorder in Nuclear Transport and in Its Subversion by Viruses. Wubben JM, Atkinson SC, Borg NA. Cells 9 E2654 (2020)
  9. Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. Girdhar A, Guo L. Biology (Basel) 11 1009 (2022)
  10. Therapeutic Targeting of Exportin-1 in Childhood Cancer. Galinski B, Alexander TB, Mitchell DA, Chatwin HV, Awah C, Green AL, Weiser DA. Cancers (Basel) 13 6161 (2021)
  11. HOX Protein Activity Regulation by Cellular Localization. Bridoux L, Gofflot F, Rezsohazy R. J Dev Biol 9 56 (2021)
  12. Identification of the Karyopherin Superfamily in Maize and Its Functional Cues in Plant Development. Jin L, Zhang G, Yang G, Dong J. Int J Mol Sci 23 14103 (2022)
  13. Nuclear transport proteins: structure, function, and disease relevance. Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Signal Transduct Target Ther 8 425 (2023)
  14. Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host. Mghezzi-Habellah M, Prochasson L, Jalinot P, Mocquet V. Viruses 15 2218 (2023)

Articles citing this publication (27)

  1. Active nuclear import and passive nuclear export are the primary determinants of TDP-43 localization. Pinarbasi ES, Cağatay T, Fung HYJ, Li YC, Chook YM, Thomas PJ. Sci Rep 8 7083 (2018)
  2. Altered Nuclear Export Signal Recognition as a Driver of Oncogenesis. Taylor J, Sendino M, Gorelick AN, Pastore A, Chang MT, Penson AV, Gavrila EI, Stewart C, Melnik EM, Herrejon Chavez F, Bitner L, Yoshimi A, Lee SC, Inoue D, Liu B, Zhang XJ, Mato AR, Dogan A, Kharas MG, Chen Y, Wang D, Soni RK, Hendrickson RC, Prieto G, Rodriguez JA, Taylor BS, Abdel-Wahab O. Cancer Discov 9 1452-1467 (2019)
  3. Correlation of CRM1-NES affinity with nuclear export activity. Fu SC, Fung HYJ, Cağatay T, Baumhardt J, Chook YM. Mol Biol Cell 29 2037-2044 (2018)
  4. Nuclear export of ubiquitinated proteins via the UBIN-POST system. Hirayama S, Sugihara M, Morito D, Iemura SI, Natsume T, Murata S, Nagata K. Proc Natl Acad Sci U S A 115 E4199-E4208 (2018)
  5. Exportin Crm1 is repurposed as a docking protein to generate microtubule organizing centers at the nuclear pore. Bao XX, Spanos C, Kojidani T, Lynch EM, Rappsilber J, Hiraoka Y, Haraguchi T, Sawin KE. Elife 7 e33465 (2018)
  6. Multi-state recognition pathway of the intrinsically disordered protein kinase inhibitor by protein kinase A. Olivieri C, Wang Y, Li GC, V S M, Kim J, Stultz BR, Neibergall M, Porcelli F, Muretta JM, Thomas DD, Gao J, Blumenthal DK, Taylor SS, Veglia G. Elife 9 e55607 (2020)
  7. Recognition of nuclear export signals by CRM1 carrying the oncogenic E571K mutation. Baumhardt JM, Walker JS, Lee Y, Shakya B, Brautigam CA, Lapalombella R, Grishin N, Chook YM. Mol Biol Cell 31 1879-1891 (2020)
  8. Human genetic variants disrupt RGS14 nuclear shuttling and regulation of LTP in hippocampal neurons. Squires KE, Gerber KJ, Tillman MC, Lustberg DJ, Montañez-Miranda C, Zhao M, Ramineni S, Scharer CD, Saha RN, Shu FJ, Schroeder JP, Ortlund EA, Weinshenker D, Dudek SM, Hepler JR. J Biol Chem 296 100024 (2021)
  9. CK2 Inhibits TIMELESS Nuclear Export and Modulates CLOCK Transcriptional Activity to Regulate Circadian Rhythms. Cai YD, Xue Y, Truong CC, Del Carmen-Li J, Ochoa C, Vanselow JT, Murphy KA, Li YH, Liu X, Kunimoto BL, Zheng H, Zhao C, Zhang Y, Schlosser A, Chiu JC. Curr Biol 31 502-514.e7 (2021)
  10. NoLogo: a new statistical model highlights the diversity and suggests new classes of Crm1-dependent nuclear export signals. Liku ME, Legere EA, Moses AM. BMC Bioinformatics 19 65 (2018)
  11. TORC1 signaling exerts spatial control over microtubule dynamics by promoting nuclear export of Stu2. van der Vaart B, Fischböck J, Mieck C, Pichler P, Mechtler K, Medema RH, Westermann S. J Cell Biol 216 3471-3484 (2017)
  12. Crystal structure of the Xpo1p nuclear export complex bound to the SxFG/PxFG repeats of the nucleoporin Nup42p. Koyama M, Hirano H, Shirai N, Matsuura Y. Genes Cells 22 861-875 (2017)
  13. Distinct mutations in importin-β family nucleocytoplasmic transport receptors transportin-SR and importin-13 affect specific cargo binding. Kimura M, Imai K, Morinaka Y, Hosono-Sakuma Y, Horton P, Imamoto N. Sci Rep 11 15649 (2021)
  14. Engineering chromosome region maintenance 1 fragments that bind to nuclear export signals. Lei Y, An Q, Zhang Y, Luo P, Luo Y, Shen X, Jia D, Sun Q. Protein Sci 29 1366-1372 (2020)
  15. Using a Simple Cellular Assay to Map NES Motifs in Cancer-Related Proteins, Gain Insight into CRM1-Mediated NES Export, and Search for NES-Harboring Micropeptides. Sendino M, Omaetxebarria MJ, Prieto G, Rodriguez JA. Int J Mol Sci 21 E6341 (2020)
  16. Characterization of Localization and Export Signals of Bovine Torovirus Nucleocapsid Protein Responsible for Extensive Nuclear and Nucleolar Accumulation and Their Importance for Virus Growth. Ujike M, Kawachi Y, Matsunaga Y, Etho Y, Asanuma H, Kamitani W, Taguchi F. J Virol 95 e02111-20 (2021)
  17. Paxillin regulated genomic networks in prostate cancer. Ma X, Biswas A, Hammes SR. Steroids 151 108463 (2019)
  18. Letter An update to the CRM1 cargo/NES database NESdb. Fung HYJ, Niesman A, Chook YM. Mol Biol Cell 32 467-469 (2021)
  19. Cancer Therapy with Nanoparticle-Medicated Intracellular Expression of Peptide CRM1-Inhibitor. Sui M, Xiong M, Li Y, Zhou Q, Shen X, Jia D, Gou M, Sun Q. Int J Nanomedicine 16 2833-2847 (2021)
  20. Crystal structure of human CRM1, covalently modified by 2-mercaptoethanol on Cys528, in complex with RanGTP. Shaikhqasem A, Schmitt K, Valerius O, Ficner R. Acta Crystallogr F Struct Biol Commun 77 70-78 (2021)
  21. Crystallization of Nuclear Export Signals or Small-Molecule Inhibitors Bound to Nuclear Exporter CRM1. Fung HYJ, Chook YM. Methods Mol Biol 2502 285-297 (2022)
  22. Binding Affinity Measurement of Nuclear Export Signal Peptides to Their Exporter CRM1. Fung HYJ, Chook YM. Methods Mol Biol 2502 245-256 (2022)
  23. Characterization of Signal Sequences Determining the Nuclear/Nucleolar Import and Nuclear Export of the Caprine Arthritis-Encephalitis Virus Rev Protein. Labrecque M, Marchand C, Archambault D. Viruses 12 E900 (2020)
  24. DBF4 Dependent Kinase Inhibition Suppresses Hepatocellular Carcinoma Progression and Potentiates Anti-Programmed Cell Death-1 Therapy. Zhang L, Hong J, Chen W, Zhang W, Liu X, Lu J, Tang H, Yang Z, Zhou K, Xie H, Jia C, Jiang D, Zheng S. Int J Biol Sci 19 3412-3427 (2023)
  25. Exportin-mediated nucleocytoplasmic transport maintains Pch2 homeostasis during meiosis. Herruzo E, Sánchez-Díaz E, González-Arranz S, Santos B, Carballo JA, San-Segundo PA. PLoS Genet 19 e1011026 (2023)
  26. Karyopherins in the Remodeling of Extracellular Matrix: Implications in Tendon Injury. Diaz C, Thankam FG, Agrawal DK. J Orthop Sports Med 5 357-374 (2023)
  27. O-GlcNAcylation promotes the cytosolic localization of the m6A reader YTHDF1 and colorectal cancer tumorigenesis. Li J, Ahmad M, Sang L, Zhan Y, Wang Y, Yan Y, Liu Y, Mi W, Lu M, Dai Y, Zhang R, Dong MQ, Yang YG, Wang X, Sun J, Li J. J Biol Chem 299 104738 (2023)