5iou Citations

Mechanism of NMDA Receptor Inhibition and Activation.

Cell 165 704-14 (2016)
Related entries: 5iov, 5ipq, 5ipr, 5ips, 5ipt, 5ipu, 5ipv

Cited: 105 times
EuropePMC logo PMID: 27062927

Abstract

N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated, calcium-permeable ion channels that mediate synaptic transmission and underpin learning and memory. NMDAR dysfunction is directly implicated in diseases ranging from seizure to ischemia. Despite its fundamental importance, little is known about how the NMDAR transitions between inactive and active states and how small molecules inhibit or activate ion channel gating. Here, we report electron cryo-microscopy structures of the GluN1-GluN2B NMDA receptor in an ensemble of competitive antagonist-bound states, an agonist-bound form, and a state bound with agonists and the allosteric inhibitor Ro25-6981. Together with double electron-electron resonance experiments, we show how competitive antagonists rupture the ligand binding domain (LBD) gating "ring," how agonists retain the ring in a dimer-of-dimers configuration, and how allosteric inhibitors, acting within the amino terminal domain, further stabilize the LBD layer. These studies illuminate how the LBD gating ring is fundamental to signal transduction and gating in NMDARs.

Reviews - 5iou mentioned but not cited (4)

  1. Structure and symmetry inform gating principles of ionotropic glutamate receptors. Zhu S, Gouaux E. Neuropharmacology 112 11-15 (2017)
  2. The Challenge of Interpreting Glutamate-Receptor Ion-Channel Structures. Mayer ML. Biophys J 113 2143-2151 (2017)
  3. Mapping the Conformational Landscape of Glutamate Receptors Using Single Molecule FRET. MacLean DM, Durham RJ, Jayaraman V. Trends Neurosci 42 128-139 (2019)
  4. The Extracellular Domains of GluN Subunits Play an Essential Role in Processing NMDA Receptors in the ER. Horak M, Barackova P, Langore E, Netolicky J, Rivas-Ramirez P, Rehakova K. Front Neurosci 15 603715 (2021)

Articles - 5iou mentioned but not cited (6)

  1. Mechanism of NMDA Receptor Inhibition and Activation. Zhu S, Stein RA, Yoshioka C, Lee CH, Goehring A, Mchaourab HS, Gouaux E. Cell 165 704-714 (2016)
  2. Triheteromeric NMDA receptors: from structure to synaptic physiology. Stroebel D, Casado M, Paoletti P. Curr Opin Physiol 2 1-12 (2018)
  3. The Bioactive Protein-Ligand Conformation of GluN2C-Selective Positive Allosteric Modulators Bound to the NMDA Receptor. Kaiser TM, Kell SA, Kusumoto H, Shaulsky G, Bhattacharya S, Epplin MP, Strong KL, Miller EJ, Cox BD, Menaldino DS, Liotta DC, Traynelis SF, Burger PB. Mol Pharmacol 93 141-156 (2018)
  4. Computer Simulations Predict High Structural Heterogeneity of Functional State of NMDA Receptors. Sinitskiy AV, Pande VS. Biophys J 115 841-852 (2018)
  5. The effect of high pressure on the NMDA receptor: molecular dynamics simulations. Bliznyuk A, Grossman Y, Moskovitz Y. Sci Rep 9 10814 (2019)
  6. Conformational rearrangement of the NMDA receptor amino-terminal domain during activation and allosteric modulation. Vyklicky V, Stanley C, Habrian C, Isacoff EY. Nat Commun 12 2694 (2021)


Reviews citing this publication (21)

  1. Structure, function, and allosteric modulation of NMDA receptors. Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, Traynelis SF. J Gen Physiol 150 1081-1105 (2018)
  2. Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins. Greger IH, Watson JF, Cull-Candy SG. Neuron 94 713-730 (2017)
  3. Unravelling biological macromolecules with cryo-electron microscopy. Fernandez-Leiro R, Scheres SH. Nature 537 339-346 (2016)
  4. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Pharmacol Rev 73 298-487 (2021)
  5. Supramolecular organization of NMDA receptors and the postsynaptic density. Frank RA, Grant SG. Curr Opin Neurobiol 45 139-147 (2017)
  6. The dual-gate model for pentameric ligand-gated ion channels activation and desensitization. Gielen M, Corringer PJ. J Physiol 596 1873-1902 (2018)
  7. Resolution advances in cryo-EM enable application to drug discovery. Subramaniam S, Earl LA, Falconieri V, Milne JL, Egelman EH. Curr Opin Struct Biol 41 194-202 (2016)
  8. A GluD Coming-Of-Age Story. Yuzaki M, Aricescu AR. Trends Neurosci 40 138-150 (2017)
  9. Mutations of N-Methyl-D-Aspartate Receptor Subunits in Epilepsy. Xu XX, Luo JH. Neurosci Bull 34 549-565 (2018)
  10. From bedside-to-bench: What disease-associated variants are teaching us about the NMDA receptor. Amin JB, Moody GR, Wollmuth LP. J Physiol 599 397-416 (2021)
  11. Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins. Majeed S, Ahmad AB, Sehar U, Georgieva ER. Membranes (Basel) 11 685 (2021)
  12. Advancing NMDA Receptor Physiology by Integrating Multiple Approaches. Zhou HX, Wollmuth LP. Trends Neurosci 40 129-137 (2017)
  13. Neurobiology of autoimmune encephalitis. Fukata M, Yokoi N, Fukata Y. Curr Opin Neurobiol 48 1-8 (2018)
  14. Activation and desensitization of ionotropic glutamate receptors by selectively triggering pre-existing motions. Krieger J, Lee JY, Greger IH, Bahar I. Neurosci Lett 700 22-29 (2019)
  15. Loop Interrupted: Dysfunctional Chromatin Relations in Neurological Diseases. Behrends M, Engmann O. Front Genet 12 732033 (2021)
  16. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry. Hanson JE, Yuan H, Perszyk RE, Banke TG, Xing H, Tsai MC, Menniti FS, Traynelis SF. Neuropsychopharmacology 49 51-66 (2024)
  17. An Insight into Animal Glutamate Receptors Homolog of Arabidopsis thaliana and Their Potential Applications-A Review. Naz R, Khan A, Alghamdi BS, Ashraf GM, Alghanmi M, Ahmad A, Bashir SS, Haq QMR. Plants (Basel) 11 2580 (2022)
  18. GluD receptors are functional ion channels. Kumar J, Popescu GK, Gantz SC. Biophys J 122 2383-2395 (2023)
  19. Pharmacological Potential of 3-Benzazepines in NMDAR-Linked Pathophysiological Processes. Ritter N, Disse P, Wünsch B, Seebohm G, Strutz-Seebohm N. Biomedicines 11 1367 (2023)
  20. Structural insights into NMDA receptor pharmacology. Zhou C, Tajima N. Biochem Soc Trans 51 1713-1731 (2023)
  21. Diabetic Encephalopathy: Role of Oxidative and Nitrosative Factors in Type 2 Diabetes. Mazumdar D, Singh S. Indian J Clin Biochem 39 3-17 (2024)

Articles citing this publication (74)

  1. NMDA Receptors in the Central Nervous System. Hansen KB, Yi F, Perszyk RE, Menniti FS, Traynelis SF. Methods Mol Biol 1677 1-80 (2017)
  2. Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Lü W, Du J, Goehring A, Gouaux E. Science 355 eaal3729 (2017)
  3. Architecture of fully occupied GluA2 AMPA receptor-TARP complex elucidated by cryo-EM. Zhao Y, Chen S, Yoshioka C, Baconguis I, Gouaux E. Nature 536 108-111 (2016)
  4. Structural Mechanisms of Gating in Ionotropic Glutamate Receptors. Twomey EC, Sobolevsky AI. Biochemistry 57 267-276 (2018)
  5. Mechanisms for Zinc and Proton Inhibition of the GluN1/GluN2A NMDA Receptor. Jalali-Yazdi F, Chowdhury S, Yoshioka C, Gouaux E. Cell 175 1520-1532.e15 (2018)
  6. Molecular Basis for Subtype Specificity and High-Affinity Zinc Inhibition in the GluN1-GluN2A NMDA Receptor Amino-Terminal Domain. Romero-Hernandez A, Simorowski N, Karakas E, Furukawa H. Neuron 92 1324-1336 (2016)
  7. Structural Basis of Functional Transitions in Mammalian NMDA Receptors. Chou TH, Tajima N, Romero-Hernandez A, Furukawa H. Cell 182 357-371.e13 (2020)
  8. A de novo loss-of-function GRIN2A mutation associated with childhood focal epilepsy and acquired epileptic aphasia. Gao K, Tankovic A, Zhang Y, Kusumoto H, Zhang J, Chen W, XiangWei W, Shaulsky GH, Hu C, Traynelis SF, Yuan H, Jiang Y. PLoS One 12 e0170818 (2017)
  9. Structural basis of ketamine action on human NMDA receptors. Zhang Y, Ye F, Zhang T, Lv S, Zhou L, Du D, Lin H, Guo F, Luo C, Zhu S. Nature 596 301-305 (2021)
  10. Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties. Fedele L, Newcombe J, Topf M, Gibb A, Harvey RJ, Smart TG. Nat Commun 9 957 (2018)
  11. The structure-energy landscape of NMDA receptor gating. Dolino DM, Chatterjee S, MacLean DM, Flatebo C, Bishop LDC, Shaikh SA, Landes CF, Jayaraman V. Nat Chem Biol 13 1232-1238 (2017)
  12. Comparing Plant and Animal Glutamate Receptors: Common Traits but Different Fates? Wudick MM, Michard E, Oliveira Nunes C, Feijó JA. J Exp Bot (2018)
  13. Glutamate and Glycine Binding to the NMDA Receptor. Yu A, Lau AY. Structure 26 1035-1043.e2 (2018)
  14. A structurally derived model of subunit-dependent NMDA receptor function. Gibb AJ, Ogden KK, McDaniel MJ, Vance KM, Kell SA, Butch C, Burger P, Liotta DC, Traynelis SF. J Physiol 596 4057-4089 (2018)
  15. An inter-dimer allosteric switch controls NMDA receptor activity. Esmenjaud JB, Stroebel D, Chan K, Grand T, David M, Wollmuth LP, Taly A, Paoletti P. EMBO J 38 e99894 (2019)
  16. An NMDAR positive and negative allosteric modulator series share a binding site and are interconverted by methyl groups. Perszyk R, Katzman BM, Kusumoto H, Kell SA, Epplin MP, Tahirovic YA, Moore RL, Menaldino D, Burger P, Liotta DC, Traynelis SF. Elife 7 e34711 (2018)
  17. N-acetylaspartate release by glutaminolytic ovarian cancer cells sustains protumoral macrophages. Menga A, Favia M, Spera I, Vegliante MC, Gissi R, De Grassi A, Laera L, Campanella A, Gerbino A, Carrà G, Canton M, Loizzi V, Pierri CL, Cormio G, Mazzone M, Castegna A. EMBO Rep 22 e51981 (2021)
  18. GRIN2B gain of function mutations are sensitive to radiprodil, a negative allosteric modulator of GluN2B-containing NMDA receptors. Mullier B, Wolff C, Sands ZA, Ghisdal P, Muglia P, Kaminski RM, André VM. Neuropharmacology 123 322-331 (2017)
  19. Novel Mode of Antagonist Binding in NMDA Receptors Revealed by the Crystal Structure of the GluN1-GluN2A Ligand-Binding Domain Complexed to NVP-AAM077. Romero-Hernandez A, Furukawa H. Mol Pharmacol 92 22-29 (2017)
  20. Probing the Structural Dynamics of the NMDA Receptor Activation by Coarse-Grained Modeling. Zheng W, Wen H, Iacobucci GJ, Popescu GK. Biophys J 112 2589-2601 (2017)
  21. The LILI Motif of M3-S2 Linkers Is a Component of the NMDA Receptor Channel Gate. Ladislav M, Cerny J, Krusek J, Horak M, Balik A, Vyklicky L. Front Mol Neurosci 11 113 (2018)
  22. Biased modulators of NMDA receptors control channel opening and ion selectivity. Perszyk RE, Swanger SA, Shelley C, Khatri A, Fernandez-Cuervo G, Epplin MP, Zhang J, Le P, Bülow P, Garnier-Amblard E, Gangireddy PKR, Bassell GJ, Yuan H, Menaldino DS, Liotta DC, Liebeskind LS, Traynelis SF. Nat Chem Biol 16 188-196 (2020)
  23. Lupus autoantibodies act as positive allosteric modulators at GluN2A-containing NMDA receptors and impair spatial memory. Chan K, Nestor J, Huerta TS, Certain N, Moody G, Kowal C, Huerta PT, Volpe BT, Diamond B, Wollmuth LP. Nat Commun 11 1403 (2020)
  24. Conformational spread and dynamics in allostery of NMDA receptors. Durham RJ, Paudyal N, Carrillo E, Bhatia NK, Maclean DM, Berka V, Dolino DM, Gorfe AA, Jayaraman V. Proc Natl Acad Sci U S A 117 3839-3847 (2020)
  25. Control of Kir channel gating by cytoplasmic domain interface interactions. Borschel WF, Wang S, Lee S, Nichols CG. J Gen Physiol 149 561-576 (2017)
  26. All atom NMDA receptor transmembrane domain model development and simulations in lipid bilayers and water. Mesbahi-Vasey S, Veras L, Yonkunas M, Johnson JW, Kurnikova MG. PLoS One 12 e0177686 (2017)
  27. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors. Sinitskiy AV, Stanley NH, Hackos DH, Hanson JE, Sellers BD, Pande VS. Sci Rep 7 44578 (2017)
  28. Modulating synaptic NMDA receptors. Tovar KR, Westbrook GL. Neuropharmacology 112 29-33 (2017)
  29. Structural insights into binding of therapeutic channel blockers in NMDA receptors. Chou TH, Epstein M, Michalski K, Fine E, Biggin PC, Furukawa H. Nat Struct Mol Biol 29 507-518 (2022)
  30. Regulation of NMDA Receptor Plasticity in the BNST Following Adolescent Alcohol Exposure. Carzoli KL, Sharfman NM, Lerner MR, Miller MC, Holmgren EB, Wills TA. Front Cell Neurosci 13 440 (2019)
  31. The GluN2B-Glu413Gly NMDA receptor variant arising from a de novo GRIN2B mutation promotes ligand-unbinding and domain opening. Wells G, Yuan H, McDaniel MJ, Kusumoto H, Snyder JP, Liotta DC, Traynelis SF. Proteins 86 1265-1276 (2018)
  32. The structural arrangement and dynamics of the heteromeric GluK2/GluK5 kainate receptor as determined by smFRET. Litwin DB, Paudyal N, Carrillo E, Berka V, Jayaraman V. Biochim Biophys Acta Biomembr 1862 183001 (2020)
  33. NMDA Receptors Require Multiple Pre-opening Gating Steps for Efficient Synaptic Activity. Amin JB, Gochman A, He M, Certain N, Wollmuth LP. Neuron 109 488-501.e4 (2021)
  34. The structural arrangement at intersubunit interfaces in homomeric kainate receptors. Litwin DB, Carrillo E, Shaikh SA, Berka V, Jayaraman V. Sci Rep 9 6969 (2019)
  35. Auxiliary subunits keep AMPA receptors compact during activation and desensitization. Baranovic J, Plested AJ. Elife 7 e40548 (2018)
  36. Comparative Pharmacological Study of Common NMDA Receptor Open Channel Blockers Regarding Their Affinity and Functional Activity toward GluN2A and GluN2B NMDA Receptors. Temme L, Schepmann D, Schreiber JA, Frehland B, Wünsch B. ChemMedChem 13 446-452 (2018)
  37. Development and characterization of functional antibodies targeting NMDA receptors. Tajima N, Simorowski N, Yovanno RA, Regan MC, Michalski K, Gómez R, Lau AY, Furukawa H. Nat Commun 13 923 (2022)
  38. Expression and Purification of the Pain Receptor TRPV1 for Spectroscopic Analysis. Velisetty P, Stein RA, Sierra-Valdez FJ, Vásquez V, Cordero-Morales JF. Sci Rep 7 9861 (2017)
  39. First in human evaluation of [18F]PK-209, a PET ligand for the ion channel binding site of NMDA receptors. van der Aart J, Golla SSV, van der Pluijm M, Schwarte LA, Schuit RC, Klein PJ, Metaxas A, Windhorst AD, Boellaard R, Lammertsma AA, van Berckel BNM. EJNMMI Res 8 69 (2018)
  40. Protein functional dynamics from the rigorous global analysis of DEER data: Conditions, components, and conformations. Hustedt EJ, Stein RA, Mchaourab HS. J Gen Physiol 153 e201711954 (2021)
  41. GluN2A and GluN2B NMDA receptors use distinct allosteric routes. Tian M, Stroebel D, Piot L, David M, Ye S, Paoletti P. Nat Commun 12 4709 (2021)
  42. Druggability Simulations and X-Ray Crystallography Reveal a Ligand-Binding Site in the GluA3 AMPA Receptor N-Terminal Domain. Lee JY, Krieger J, Herguedas B, García-Nafría J, Dutta A, Shaikh SA, Greger IH, Bahar I. Structure 27 241-252.e3 (2019)
  43. Ethanol and a rapid-acting antidepressant produce overlapping changes in exon expression in the synaptic transcriptome. Wolfe SA, Farris SP, Mayfield JE, Heaney CF, Erickson EK, Harris RA, Mayfield RD, Raab-Graham KF. Neuropharmacology 146 289-299 (2019)
  44. Neuroprotective derivatives of tacrine that target NMDA receptor and acetyl cholinesterase - Design, synthesis and biological evaluation. Remya C, Dileep KV, Koti Reddy E, Mantosh K, Lakshmi K, Sarah Jacob R, Sajith AM, Jayadevi Variyar E, Anwar S, Zhang KYJ, Sadasivan C, Omkumar RV. Comput Struct Biotechnol J 19 4517-4537 (2021)
  45. Nobiletin as a Neuroprotectant against NMDA Receptors: An In Silico Approach. Jahan S, Redhu NS, Siddiqui AJ, Iqbal D, Khan J, Banawas S, Alaidarous M, Alshehri B, Mir SA, Adnan M, Pant AB. Pharmaceutics 14 1123 (2022)
  46. Prediction of ligand modulation patterns on membrane receptors via lysine reactivity profiling. Zhou Y, Liu Z, Zhang J, Dou T, Chen J, Ge G, Zhu S, Wang F. Chem Commun (Camb) 55 4311-4314 (2019)
  47. A prospective evaluation of thiamine and magnesium status in relation to clinicopathological characteristics and 1-year mortality in patients with alcohol withdrawal syndrome. Maguire D, Talwar D, Burns A, Catchpole A, Stefanowicz F, Robson G, Ross DP, Young D, Ireland A, Forrest E, Galloway P, Adamson M, Colgan E, Bell H, Orr L, Kerr JL, Roussis X, McMillan DC. J Transl Med 17 384 (2019)
  48. Pharmacological and Electrophysiological Characterization of Novel NMDA Receptor Antagonists. Leiva R, Phillips MB, Turcu AL, Gratacòs-Batlle E, León-García L, Sureda FX, Soto D, Johnson JW, Vázquez S. ACS Chem Neurosci 9 2722-2730 (2018)
  49. Roles of N-methyl-D-aspartate receptors and D-amino acids in cancer cell viability. Du S, Sung YS, Wey M, Wang Y, Alatrash N, Berthod A, MacDonnell FM, Armstrong DW. Mol Biol Rep 47 6749-6758 (2020)
  50. Age-dependent effects on social interaction of NMDA GluN2A receptor subtype-selective antagonism. Green TL, Burket JA, Deutsch SI. Brain Res Bull 125 159-167 (2016)
  51. How does binding of agonist ligands control intrinsic molecular dynamics in human NMDA receptors? Palmai Z, Houenoussi K, Cohen-Kaminsky S, Tchertanov L. PLoS One 13 e0201234 (2018)
  52. Revealing dynamically-organized receptor ion channel clusters in live cells by a correlated electric recording and super-resolution single-molecule imaging approach. Yadav R, Lu HP. Phys Chem Chem Phys 20 8088-8098 (2018)
  53. Structural insights into assembly and function of GluN1-2C, GluN1-2A-2C, and GluN1-2D NMDARs. Chou TH, Kang H, Simorowski N, Traynelis SF, Furukawa H. Mol Cell 82 4548-4563.e4 (2022)
  54. A glutamate concentration-biased allosteric modulator potentiates NMDA-induced ion influx in neurons. Costa BM, Kwapisz LC, Mehrkens B, Bledsoe DN, Vacca BN, Johnston TV, Razzaq R, Manickam D, Klein BG. Pharmacol Res Perspect 9 e00859 (2021)
  55. Allosteric Changes in the NMDA Receptor Associated with Calcium-Dependent Inactivation. Bhatia NK, Carrillo E, Durham RJ, Berka V, Jayaraman V. Biophys J 119 2349-2359 (2020)
  56. Intradomain Interactions in an NMDA Receptor Fragment Mediate N-Glycan Processing and Conformational Sampling. Subedi GP, Sinitskiy AV, Roberts JT, Patel KR, Pande VS, Barb AW. Structure 27 55-65.e3 (2019)
  57. Randomised trial of intravenous thiamine and/or magnesium sulphate administration on erythrocyte transketolase activity, lactate concentrations and alcohol withdrawal scores. Maguire D, Burns A, Talwar D, Catchpole A, Stefanowicz F, Ross DP, Galloway P, Ireland A, Robson G, Adamson M, Orr L, Kerr JL, Roussis X, Colgan E, Forrest E, Young D, McMillan DC. Sci Rep 12 6941 (2022)
  58. Allosteric coupling of sub-millisecond clamshell motions in ionotropic glutamate receptor ligand-binding domains. Rajab S, Bismin L, Schwarze S, Pinggera A, Greger IH, Neuweiler H. Commun Biol 4 1056 (2021)
  59. Biphenyl scaffold for the design of NMDA-receptor negative modulators: molecular modeling, synthesis, and biological activity. Karlov DS, Temnyakova NS, Vasilenko DA, Barygin OI, Dron MY, Zhigulin AS, Averina EB, Grishin YK, Grigoriev VV, Gabrel'yan AV, Aniol VA, Gulyaeva NV, Osipenko SV, Kostyukevich YI, Palyulin VA, Popov PA, Fedorov MV. RSC Med Chem 13 822-830 (2022)
  60. Correlated conformational dynamics of the human GluN1-GluN2A type N-methyl-D-aspartate (NMDA) receptor. Essiz S, Gencel M, Aktolun M, Demir A, Carpenter TS, Servili B. J Mol Model 27 162 (2021)
  61. Distinct structure and gating mechanism in diverse NMDA receptors with GluN2C and GluN2D subunits. Zhang J, Zhang M, Wang Q, Wen H, Liu Z, Wang F, Wang Y, Yao F, Song N, Kou Z, Li Y, Guo F, Zhu S. Nat Struct Mol Biol 30 629-639 (2023)
  62. Structural Analysis, Molecular Modelling and Preliminary Competition Binding Studies of AM-DAN as a NMDA Receptor PCP-Site Fluorescent Ligand. Ndzibongwana S, Ngobese S, Sayed A, Shongwe C, White-Phillips S, Joubert J. Molecules 24 E4092 (2019)
  63. A High-throughput Calcium-flux Assay to Study NMDA-receptors with Sensitivity to Glycine/D-serine and Glutamate. Yeboah F, Guo H, Bill A. J Vis Exp (2018)
  64. Allosteric modulation of GluN1/GluN3 NMDA receptors by GluN1-selective competitive antagonists. Rouzbeh N, Rau AR, Benton AJ, Yi F, Anderson CM, Johns MR, Jensen L, Lotti JS, Holley DC, Hansen KB. J Gen Physiol 155 e202313340 (2023)
  65. Ion Channels in Anesthesia. Zhou W, Guan Z. Adv Exp Med Biol 1349 401-413 (2021)
  66. Modulation on Glutamic Pathway of Frontal-Striatum-Thalamus by rs11146020 and rs3813296 Gene Polymorphism in First-Episode Negative Schizophrenia. Cai S, Lv Y, Huang K, Zhang W, Wang Q, Huang L, Wang J. Front Neurosci 14 351 (2020)
  67. NMDA Receptors' Structural Asymmetry. Jalali-Yazdi F, Gouaux E. Microsc Microanal 25 1218-1219 (2019)
  68. Naringenin Attenuates Cognitive Impairment in a Rat Model of Vascular Dementia by Inhibiting Hippocampal Oxidative Stress and Inflammatory Response and Promoting N-Methyl-D-Aspartate Receptor Signaling Pathway. Zhang J, Zhang Y, Liu Y, Niu X. Neurochem Res 47 3402-3413 (2022)
  69. Physiopathological Relevance of D-Serine in the Mammalian Cochlea. Wang J, Serratrice N, Lee CJ, François F, Sweedler JV, Puel JL, Mothet JP, Ruel J. Front Cell Neurosci 15 733004 (2021)
  70. The kynurenine pathway implicated in patient delirium: possible indications for indoleamine 2,3 dioxygenase inhibitors. Heimberger AB, Lukas RV. J Clin Invest 133 e164577 (2023)
  71. Binding Affinity and Mechanisms of Potential Antidepressants Targeting Human NMDA Receptors. Ye S, Han Y, Wei Z, Li J. Molecules 28 4346 (2023)
  72. Datumetine Preferentially Upregulates N-methyl-D-aspartate Receptor Signalling Pathways in Different Brain Regions of Mice. Ishola AO, Adetunji AE, Abanum IC, Adeyemi AA, Faleye CK, Martins JB, Ogbe NC, Ogundipe TC, Okewulonu KE, Okon UE, Ovbude DI, Akele RY, Omotade NT, Ajao MS. Basic Clin Neurosci 14 103-116 (2023)
  73. Targeting NMDA receptor in Alzheimer's disease: identifying novel inhibitors using computational approaches. Siddiqui AJ, Badraoui R, Jahan S, Alshahrani MM, Siddiqui MA, Khan A, Adnan M. Front Pharmacol 14 1208968 (2023)
  74. The structural basis of divalent cation block in a tetrameric prokaryotic sodium channel. Irie K, Oda Y, Sumikama T, Oshima A, Fujiyoshi Y. Nat Commun 14 4236 (2023)